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We present a data-driven method for separating complex, multiscale systems into their constituent
time-scale components using a recursive implementation of dynamic mode decomposition (DMD).
Local linear models are built from windowed subsets of the data, and dominant time scales are
discovered using spectral clustering on their eigenvalues. This approach produces time series data
for each identified component, which sum to a faithful reconstruction of the input signal. It differs
from most other methods in the field of multiresolution analysis (MRA) in that it 1) accounts for
spatial and temporal coherencies simultaneously, making it more robust to scale overlap between
components, and 2) yields a closed-form expression for local dynamics at each scale, which can
be used for short-term prediction of any or all components. Our technique is an extension of
multi-resolution dynamic mode decomposition (mrDMD), generalized to treat a broader variety of
multiscale systems and more faithfully reconstruct their isolated components. In this paper we
present an overview of our algorithm and its results on two example physical systems, and briefly
discuss some advantages and potential forecasting applications for the technique.

I. INTRODUCTION

Physical systems whose dynamics evolve on a broad
range of scales simultaneously (spatial or temporal) have
been the subject of much study in the development of
diagnostic and modeling tools. These multiscale systems
are ubiquitous in physics, so there is a great deal of prac-
tical interest in methods which are accommodating to
scale disparities spanning orders of magnitude. Of par-
ticular note are those systems whose behavior can be de-
composed into a finite number of discrete scales, as this
lends an additional structural constraint which can be ex-
ploited in modeling. For instance, atmospheric climate
data and/or simulations can be characterized by devel-
oping separate models for variations on the order of one
day and one year, respectively, and then coupling them.
Mathematical methods for exploiting these distinct and
disparate scales can greatly simplify the problem of state
estimation and forecasting. We extend the method of
dynamic mode decomposition (DMD) in order to char-
acterize multiscale physics and their coupling dynamics,
showing that such a data-driven strategy provides a vi-
able and adaptive strategy for diagnostics and dynamical
modeling.

The task of identifying distinct multiscale temporal
physics directly from data in a way that allows the sig-
nal to be decomposed into its constituent scale-separated
components is a subject of ongoing investigation. Well-
established methods use Fourier- and wavelet-based tech-
niques to separate coarse-grain and fine-grain features
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in space or time (but generally not both at once) [1–3].
These approaches, though often useful, are purely diag-
nostic. They do not directly produce dynamical models
from data. Moreover, their focus on exclusively temporal
(or exclusively spatial) coherencies limits their utility as
precursors to model discovery for state estimation and
forecasting. Regardless, such techniques form the math-
ematical basis of multiresolution analysis (MRA) [4, 5]
which provides a rigorous foundation for multiscale de-
composition.

To address the dynamical limitations of MRA, re-
searchers have put forth a number of equation-free,
data-driven modeling techniques tailored to multiscale
spatio-temporal systems. Indeed, there is a significant
body of research focused on modeling multiscale systems
and linking scales: notably the heterogeneous multiscale
modeling framework, equation-free methods, and struc-
ture preserving versions known as FLAVORs [6–9]. Addi-
tional work has focused on testing for the presence of mul-
tiscale dynamics so that analyzing and simulating multi-
scale systems is more computationally efficient [10, 11].
Many of the same issues that make modeling multiscale
systems difficult can also present challenges for model
discovery and system identification [12]. This motivates
the development of specialized methods for performing
model discovery on problems with multiple time scales,
taking into account the unique properties of multiscale
systems. A purely data-driven approach was recently
introduced by Kutz. et. al.[13] which recursively ap-
plies DMD to build closed-form linear models to approx-
imate dynamics at all scales simultaneously. DMD was
first proposed as a decompositional technique for com-
plex fluid flows [14–16], but it has since been adopted
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more widely as a method for finite approximation of the
Koopman operator in a large variety of data sets [17].
DMD produces a linearized model for a (generically non-
linear) data set. It can be thought of as a best-fit approx-
imation of a signal generated by a linear combination of
static spatial modes whose time-varying weights follow
complex exponential trajectories of oscillation, growth,
or decay. The technique proposed by Kutz et. al.,
dubbed multi-resolution Dynamic Mode Decomposition
(mrDMD), builds on MRA wavelet techniques by recur-
sively subdividing the data set to access different regimes
of the time-frequency domain. The length of the window
over which DMD is applied is repeatedly halved, and the
most salient components of each iteration are interpreted
as a simplified local model for the dynamics at that scale.

Decomposition of a multiscale signal can also be cast
as a Blind Source Separation (BSS) problem by treating
each time scale as an independent source contributing to
the composite signal being measured. Typical methods
for BSS include Principal Component Analysis (PCA)
and Independent Component Analysis (ICA). A compar-
ison of these methods to DMD is presented in [18]. When
the source signals occupy fairly narrow frequency bands,
as is assumed to be the case in this paper, DMD is shown
to drastically outperform the other techniques. For this
reason it is an obvious candidate for the decompositional
method used in the sliding window framework we present
here.

This paper aims to extend and generalize the mrDMD
algorithm. The essential insight of mrDMD is the sensi-
tivity of results to duration of the input signal: given a
time series containing dynamics on widely-varying time
scales, the eigenfrequencies obtained by DMD could re-
flect any of these time scales depending on the duration
and resolution of sampling. The window lengths tested in
mrDMD are limited to some base time span and power-
of-two subdivisions thereof. This can be problematic in
systems whose multiscale frequency content does not fol-
low that pattern—the ability of DMD to robustly identify
a persistent component at a particular time scale turns
out to be fairly sensitive to window size. The simple
halving scheme could easily fail to resolve a component
whose characteristic time scale falls between those given
by powers of two. We solve this problem by 1) imple-
menting a protocol using sliding, overlapping windows on
the data set to generate spectral bands of DMD eigenval-
ues, and 2) developing a diagnostic to use the narrowness
of these bands to tune the window size for optimal reso-
lution of a particular scale component. The method we
propose here effectively identifies and isolates the con-
stituent time scale components of two test systems. In
addition to providing diagnostic information on the fre-
quency content of a signal, it produces 1) faithful recon-
structions of each constituent component with minimal
cross-pollution between them, 2) closed-form expressions
for these reconstructions which can be used for low-cost
forecasting at any time scale, and 3) statistics on the pa-
rameters of windowed DMD models, whose distributions

can be sampled for stochastic ensemble forecasting.
The method we present bears some similarity to the

Frequency Map Analysis (FMA) technique often used in
analysis of time series generated by nonlinear dynamics
[19]. Both seek to identify dominant frequencies in a mul-
tivariate signal and fit the data to a linear combination
of sinusoids at these frequencies. However, FMA does
this with a static basis of spatial modes (corresponding
to the canonical coordinates of Hamiltonian mechanics)
whereas our approach allows spatial modes to vary over
time using a sliding-window framework. This makes it
more versatile in its ability to reconstruct a wide variety
of input signals. Moreover, FMA typically restricts its
analysis to real-valued frequencies which produce purely
sinusoidal dynamics. Our method can be similarly con-
strained, but in general it admits complex-valued fre-
quencies which also allow for exponential growth or decay
in its local windowed reconstructions.

The rest of the paper is outlined as follows: In Sec. II
we present an overview of the theory and implementa-
tion of DMD. In Sec. III we outline the protocol for our
sliding-window scale separation technique and demon-
strate it on a simple toy model. In Sec. IV we briefly
discuss the advantages of our method over traditional
temporal filtering tools. A fully-fledged recursive, many-
scale example using data from a three-body planetary
system is presented in Sec. V. The paper is concluded in
Sec. VII with a discussion of theoretical context for our
approach and possibilities for its future application.

II. BACKGROUND: DYNAMIC MODE
DECOMPOSITION

Dynamic Mode Decomposition (DMD) seeks a best-
fit linear model for a time-series data set. Given some
collection of sequential measurements xj ∈ RN for j =
1, . . . ,M , DMD solves for an operator A which satisfies,
to closest approximation, xj+1 ≈ Axj for all snapshots
j. This can be computed by separating the data X ∈
CN×M (where N is the dimension of the measurement
space and M is the number of data points measured)
into two sequential matrices X1 ∈ CN×(M−1) and X2 ∈
CN×(M−1):

X1 =

 | | |
x1 x2 · · · xM−1
| | |


X2 =

 | | |
x2 x3 · · · xM
| | |

 (1)

The operator A is then simply the matrix which mini-
mizes the Frobenius norm ||X2 −AX1||F so that X2 ≈
AX1. This is a straightforward computation, but can
become prohibitively expensive for large state dimension
N . Indeed, the exact DMD algorithm [17] approximates

the operator as A = X2X
†
1 where † denotes the Moore-

Penrose pseudo-inverse (least-square regression). It is
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therefore common to first project the data into a lower-
dimensional space using Singular Value Decomposition
(SVD). For a more detailed overview of the method, see
Tu et. al. (2014) [17].

A well-known deficiency of the exact DMD approach
is the adverse effect of the measurement errors (sensor
noise) on its performance [20–22]. Previous studies in-
dicate that presence of sensor noise can negatively in-
fluence the computation of eigenvalues and they would
be biased, presenting a serious problem for studies that
rely upon exact DMD to distinguish between stable and
unstable modes. This is primarily because exact DMD
treats data sequentially rather than as a whole, and thus
favors the forward time direction. Recent studies have
addressed this issue and proposed several techniques to
mitigate this problem through employing various forms
of ensemble averaging, cross-validation, windowing, and
rank reduction. However, Hemati et al. [21] showed that
the resulting analysis from the aforementioned techniques
are subject to systematic bias errors when the measure-
ments are inexact due to sensor noise or other effects.

In this paper, we employ a variation on the standard
DMD algorithm known as Optimized DMD, which seeks
to address these shortcomings. Optimized DMD recasts
the minimization problem outlined above as a task of
exponential curve-fitting making use of the variable pro-
jection method. This comes at the price of convexity,
but yields a decomposition which much more faithfully
reconstructs the input data series. A full exposition of
the Optimized DMD algorithm and its advantages is pre-
sented in Ashkam & Kutz (2018)[20].

III. METHODS: TIME SCALE SEPARATION
USING DMD

The decomposition method introduced in this paper
consists of the following steps:

1. A sliding-window implementation of DMD to ex-
tract a large number of (complex) frequencies ωkj
associated with spatially-coherent dynamics in the
input time series

2. A clustering algorithm to identify the most highly-
represented frequencies in the population of

{
|ωkj |

}
.

These clusters represent the multiple time scale
regimes present in the input data

3. Retroactive labeling of modal components of each
windowed DMD identified in Step 1 with labelling
based on the cluster assignments of their associated
frequencies

4. For each distinct scale regime identified in Step 2, a
separate DMD reconstruction is produced by sum-
ming over the components assigned to that clus-
ter. These reconstructions are produced separately
for each iteration of the sliding-window DMD from
Step 1

5. A single global reconstruction is produced for each
time scale regime by combining weighted contribu-
tions from each windowed reconstruction

Note that Steps 1-3 are offline computations. Having
carried them out on a representative data set for a given
system, the clustering results can be used to label new
data from the same system.

A. A Simple Toy Model

To introduce this decomposition method, we make use
of a simple system with nonlinear dynamics on two dis-
tinct time scales. The model is given by the equations

v̇1 = v2

v̇2 = −w2
1v

3
1

ẇ1 = w2

ẇ2 = −ε−1w1 − δ−1w3
1

(2)

The parameters which set the time scale separation were
assigned the values δ = 0.25 and ε = 0.01, respec-
tively. The system is initialized at t = 0 in the state
(v1, v2, w1, w2) = (0, 0.5, 0, 0.5). Taken alone, the w vari-
ables (i.e. the “fast scale”) form an undamped Duffing
oscillator in which the cubic nonlinearity term can be
considered a small perturbation from simple harmonic
motion. The v variables (representing the “slow scale”)
also take the form of a cubic oscillator (sans linear term),
but with a coefficient (w2

1) which is dependent on the
state of the w variables.

This construction separates the fast and slow dynam-
ics for the sake of interpretability. Because no such sep-
aration is guaranteed in measurements made on a real
multiscale physical system, we take the additional step
of applying a random linear mixing to the above coordi-
nates: x1x2x3

x4

 = Q

v1v2w1

w2

 (3)

where Q is a randomly generated 4 × 4 orthogonal ma-
trix. This system is numerically integrated (using Mat-
lab’s ode45 solver) for a duration of 48 time units with
a sampling interval of ∆t = 4 × 10−4. The results are
aggregated into a data matrix X ∈ CN×M where N = 4
and M = 120, 000.

B. Sliding Window DMD

The sliding window approach takes advantage of
DMD’s sensitivity to the duration and sampling rate of
the time series input it receives. Consider an N -variable
system measured over M time points. An application
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FIG. 1. Sliding a window filter across a longer time-series
data set. For each step of the window’s movement, a new
DMD result is obtained. Note that the width of the window
is such that it contains multiple complete oscillations of the
fast scale but only a fraction of a period of the slow scale.

of DMD to the full data matrix X would identify a fre-
quency spectrum that would likely look quite different
from that of the same algorithm applied to a subset
X̄ ∈ CN×W , (W << M). For the purposes of this in-
vestigation, the “correct” sample length is defined by the
multiscale properties of the data: it must be long enough
to capture variations on the slowest scale, but not so
long as to fail to resolve the fastest scale. In the example
model, the sample length TW that most cleanly sepa-
rated the two distinct time scales was TW ≈ 2 Tfast and
TW ≈ Tslow/20 (The approximate periods of oscillation
associated with the fast-scale and slow-scale dynamics,
respectively). This is illustrated in Fig. 1 (though the
width of the window drawn has been increased slightly
for visual clarity). The step size for the foreward mo-
tion of the window is chosen to be much smaller than the
width of the window (about 4%) so that any given time
point is contained by a large number of windows.

DMD approximates the dynamics contained in each
window with a linear operator. The best-fit reconstruc-
tion of the windowed data can then be expressed in the
standard form for solutions to a first-order linear system,
using the eigendecomposition of that operator:

x̄k(t) =

r∑
j

φkj e
iωk

j tbkj + ck (4)

Here k is used to index the steps of the sliding window
(i.e. x̄k(t) is the time series contained by the kth window
position). j indexes the eigenvalues (ω) and eigenvectors
(φ) of the linear DMD operator (numbered from 1 to r for
a rank-r decomposition). ck denotes the (constant) mean
of the input data, which must be reintroduced only if it
was subtracted off before applying the DMD algorithm.

Note that while the form presented in Eq. (4) is man-
ifestly complex, applying DMD to a real-valued input
signal leads it to identify oscillatory modes in complex
conjugate pairs whose imaginary components cancel each
other out in the reconstruction process. In the discussion
that follows, all x̄k(t) can be taken to be real.

C. Frequency Clustering

The spectral results of the sliding-window DMD pro-
cedure are then clustered to discover their dominant fre-
quency content. Concatenating the set of all |ωkj |2 into
a single vector, cluster centroids are obtained using the
k-medians algorithm [23] (i.e. k-means using an L1 dis-
tance metric to limit the influence of outliers). The choice
to cluster in |ωkj |2 rather than |ωkj | has the effect of inflat-
ing the separation of higher frequencies and compressing
that of lower frequencies. For this example, this has no
practical effect. In the second half of this paper, how-
ever, we introduce a recursion method which uses mul-
tiple clustering iterations working sequentially from the
fastest time scales to the slowest. In this case, improved
differentiation between higher frequencies is an asset, and
the compression of the lower frequencies is inconsequen-
tial because they can simply be dealt with on the next
iteration.

Plotted in Fig 2 are the spectra obtained by apply-
ing DMD to each windowed subset of the sample data.
The multiscale structure is immediately obvious: there
are two strong bands at |ω|2 ≈ 100 and |ω|2 ≈ 1. Al-
though there are a number of outliers from these domi-
nant bands (particularly in regions where the slow-scale
dynamics are relatively flat), the full set of

{
|ωkj |2

}
is

unambiguously peaked about two centroids (depicted in
Fig. 3). Using the clustering results, we retroactively la-
bel each frequency (and, by association, each windowed
DMD mode) based on its k-medians categorization.

A brief digression regarding clustering parameteriza-
tion: k-medians requires that the number of clusters be
supplied a priori. In the above case the choice of k = 2
seemed quite obvious from the band structure of Fig. 2.
But the window size was specifically tuned to be sensitive
to the fast-scale dynamics at |ω|2 ≈ 100 (as described in
Sec. III B). If there had been a third, even slower time
scale (e.g. at |ω|2 ≈ 0.01), it would have gone entirely
unnoticed—fully subsumed by Cluster #1—resulting in
an incomplete separation of scales. This apparent failure
is resolved by the recursion method which is outlined in
the second half of this paper. In the meantime, we sim-
ply wish to remark that for any system with persistent
dynamics on multiple, discrete time scales, each of these
scale components can be resolved into a clean frequency
band with an appropriate choice of DMD window length.
Thus, for a given window size, choosing the number of
clusters for k-medians can be easily accomplished by vi-
sual inspection or using the statistical cluster ennumera-
tion method of your choice. Fully isolating all time scale
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FIG. 2. Spectra of the (modulus squared) frequencies ob-
tained by the sliding-window DMD procedure. Frequencies
are plotted at the midpoints of the windows from which they
were computed. Colors denote the cluster labels assigned to
each point retroactively.

FIG. 3. Histogram of all |ωk
j |2 with the k-medians cluster

centroids overlaid in color. Note that the outliers visible in
Fig. 2 are vastly outnumbered by in-band data points

components may require multiple clusterings at multiple
window lengths (see Sec. V B), but the choice of k for
each of these will be independent and greatly simplified
by a well-delineated band structure.

D. Scale-Separated Reconstruction

1. Global Reconstruction from Windowed Results

Each windowed dynamic mode decomposition admits
a linearized reconstruction of the signal, given in Eq. (4).
The reconstruction x̄k(t) (green) is overlaid on the origi-
nal data xk(t) (black) in Fig. 4. Results are only plotted
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Time
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0

2

4

Input Data

Windowed Reconstruction

FIG. 4. DMD reconstructions x̄k(t) plotted over input data
x(t) for four non-overlapping windows (delineated by dotted
lines)

for four non-overlapping windows (demarcated by verti-
cal dotted lines) to avoid visual clutter.

x̄global(t) =

∑
k e
−(t−µk)

2/σ2

x̄k(t)∑
k e
−(t−µk)2/σ2

(5)

It is evident from the plot that the reconstructions tend
to diverge from the true signal near the edges of each win-
dow. Converting an ensemble of windowed reconstruc-
tions into a single global reconstruction calls for a linear
combination of results from all windows that contain a
given point. But clearly they should not be weighted
equally—to estimate the system state at t = 12, for ex-
ample, the result from the window centered on t = 12 is
more likely to be accurate than the result from a window
whose boundary lies near t = 12. To address this issue,
we weight each windowed result with a Gaussian centered
on the midpoint of the window µk and with standard de-
viation σ equal to one eighth of the window’s width (see
Eq. 5). The denominator simply acts as a normalization
factor ensuring unit net contribution to every time point.
The result of this method, plotted in Fig. 5, hews closely
to the ground truth signal for the full duration of the
simulation.

2. Separation of Time Scales

Having labeled the individual modes according to the
clustering results, it is straightforward to separate this
summation to obtain separate reconstructions for each
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FIG. 5. Global DMD reconstruction x̄global(t) plotted over
the input data x(t)

identified time scale:

x̄kslow(t) =

r∑
i∈{slow}

φkj e
iωk

j tbkj

x̄kfast(t) =

r∑
i∈{fast}

φkj e
iωk

j tbkj

(6)

In the same fashion, Eq. (5) can be separated to pro-
duce fast- and slow-scale global reconstructions (plotted
in Fig. 6). This result has a number of desirable proper-
ties:

• Fidelity: The separated reconstructions sum to a
very close approximation of the original time series
(Fig. 5)

• Excellent time-scale separation: There is very little
mixing of frequency content between the identified
regimes. Plots of the signals’ power spectra (Fig.
7) show that the separated reconstructions closely
mirror the spectral content of the input signal near
their respective peaks, and they contribute very lit-
tle elsewhere.

• Spatial interpretability: Unlike other frequency fil-
tering approaches, sliding-window DMD identifies
spatial modes corresponding to dynamics of a given
frequency. Concatenating the results from all win-
dowed decompositions, we can construct time se-
ries of (complex) mode vectors which are already
labeled by time scale category using the cluster-
ing results. Identifying patterns in the evolution
of these modes presents a promising approach for
model-building or forecasting

• Closed analytic form: The reconstructions

x̄global
slow (t) and x̄global

fast (t) are simply weighted sums
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FIG. 6. Scale separated reconstructions x̄global
slow (t) (blue) and

x̄global
fast (t) (red) plotted over the input data x(t) (black)
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FIG. 7. Power spectra of the input signal (black) and fast- and
slow-scale reconstructions (red and blue, respectively). The
4 variables of each signal are summed to compute frequency
content

of exponentials. They therefore represent models
for scale-separated variables whose values can be
computed directly for arbitrary t (without need
for any iterative integration scheme).

These properties make this decomposition method a
powerful tool for data-driven analyses of systems with
multi-scale dynamics, with potential for application to-
wards a variety of modeling and forecasting tasks.
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IV. SCALE SEPARATION PERFORMANCE

Given the task of separating out time-scale regimes
from a multiscale signal, one standard and well-known
approach is Fourier filtering. Peaks in the power spec-
trum could be used to identify the constituent frequen-
cies, and each component could then be isolated using
an appropriately-designed bandpass filter. This method
differs from the one presented in this paper in that the
former identifies only temporal coherencies in the sig-
nal, whereas the latter incorporates spatial coherencies
as well. We here present a brief example of a case in
which the sliding-window DMD technique outperforms
Fourier filtering.

Two separate signals with different characteristic time
scales are generated using two simple models:

FitzHugh-Nagumo

v̇ = v − 1

3
v3 − w + 0.65

ẇ =
1

τ1
(v + 0.7− 0.8w)

Unforced Duffing

ṗ = q

q̇ = − 1

τ2

(
p+ p3

)
(7)

Characteristic time scales are set to τ1 = 2 and τ2 = 0.2,
a factor of 10 apart. The FitzHugh-Nagumo model, used
as a simple model for biological neuron dynamics, spikes
sharply at intervals determined by its characteristic time
scale. The Duffing model, on the other hand, is a simple
nonlinear oscillator whose dynamics resemble a distorted
sinusoid. Therefore, despite the disparity between τ1 and
τ2, the “slow” component periodically acquires a rate of
change comparable to that of the “fast” component. A
combined signal x is generated from these by a random-
ized linear mapping into R4:

x = A ·
[
v
p

]
(8)

where A is a 4×2 Gaussian-random orthonormal matrix.
Signal separation is carried out using a simple Fourier

filtering approach and the sliding-window DMD method.
For the Fourier processing, we use Matlab’s built-in low-
and high-pass filter functions with passband frequencies
of 0.04 Hz and 0.15 Hz, respectively. Results are plotted
in Fig. 8.

Note that while the sliding-window DMD approach
clearly performs better, neither method’s reconstruction
conforms perfectly to the ground truth (plotted under-
neath in black). Disambiguating truly overlapping scales
without error is a highly nontrivial problem, beyond the
scope of this paper. We present this result as evidence
that sliding-window DMD is at least superior to purely-
temporal methods in the case of a problem with nearly-
overlapping scales, e.g. closely-spaced frequencies or non-
linear oscillations with spiking behavior.

It is also worth commenting that the data requirements
for this method (i.e. duration and frequency of sam-
pling) are at most only slightly greater than those for a
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FIG. 8. Comparison of two scale separation techniques. The
measurement signal (top) is constructed from two compo-
nents, generated by the FitzHugh-Nagumo (center) and Duff-
ing (bottom) models. The ground-truth signal separation is
plotted in black, with the results of the two data-driven meth-
ods overlaid in color. The sliding-window DMD approach is
much more successful in recovering the true components

Fourier-based decomposition. From an information the-
oretic perspective, DMD is subject to the same sampling
rate restriction that applies to discrete-time Fourier anal-
ysis, i.e. the Nyquist criterion that sampling frequency
must be greater than twice the highest frequency present
in the signal. The lower bound on sampling duration is
less strictly defined, but qualitatively it should of course
be long enough to capture dynamical evolution of the
lowest-frequency content of the signal. Our method in-
troduces the additional requirement that there be enough
distinct positions for the sliding window to obtain a suffi-
cient set of frequency points for clustering. Windows can
overlap with one another though, so this would (at most)
perhaps double the requisite sampling duration relative
to that of Fourier decomposition.
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V. APPLICATION: A THREE-BODY
PLANETARY SYSTEM

A. Multiscale Properties of Nearly Keplerian
Orbits

In this section we present an application of our decom-
position technique to a real physical system with mul-
tiscale properties. We consider the case of three bodies
interacting gravitationally in bounded orbits, with rela-
tive masses comparable to those of Jupiter, Saturn, and
the Sun. Because the Sun is larger than the planets by
several orders of magnitude, the system resembles two
fairly stable elliptical orbits which interact weakly with
one another. This suggests the presence of at least three
well separated time scales in the dynamics: two “fast”
frequencies corresponding to the planetary orbits, and
one “slow” regime capturing the evolution of the orbits
over much longer durations (which may itself have a mul-
tiscale makeup).

B. Recursive Application and Results

Data was generated for the three-body planetary sys-
tem using a 4th-order symplectic integrator in Cartesian
coordinates over a time span of 1,000,000 years. Apply-
ing the same sliding-window DMD procedure outlined
in the previous section (window size ∼ 600 years), the
frequency content very cleanly separated into the three
expected regimes (Fig. 9).

Here we observe a key limitation of the sliding-window
DMD approach as it has been presented thus far. The
technique is sensitive to the chosen window duration, and
data spanning 600 years simply does not contain suffi-
cient information to characterize processes taking place
over many millennia. Dynamics unfolding on a scale of
10,000 years would be indistinguishable from those un-
folding over 100,000 years: both would just appear as
a constant-valued background. While the window size
used here does an excellent job of separating out the or-
bital frequencies of the two planets, it relegates every-
thing taking place on time scales longer than those to
a single “slow” regime. Zooming out on Fig. 10 to see
the evolution of this component, it is evident that it it-
self constitutes a rich multiscale signal with nontrivially
complex dynamics (Fig. 11).

To better characterize these dynamics, we recursively
re-apply the sliding-window DMD approach to identify
and isolate signals present in this slow component at dif-
ferent time scales. The methodology is identical to that
of the first iteration, but now uses a window of length
∼ 4, 600 years. Repeating this process with successively
longer windows, we obtain a decomposition of the original
data into 5 distinct time scale components. These com-
ponents are plotted separately in Fig. 12. The full recon-
struction obtained by summing them is plotted against
the input data in Fig. 13. It successfully captures the

FIG. 9. Histogram of frequency results of sliding window
DMD on the three-body planetary system. k-medians cluster
centroids (k = 3) are overlaid in color
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FIG. 10. Scale-separated reconstructions of three components
(color) overlaid on the Cartesian input data (black). Note
that for the short domain plotted (150 years), the slow-scale
component in blue looks like a constant

true dynamics across all time scales.

C. Physical Interpretation of Results

We chose this example in part because it is a well-
studied system with a known set of scale-separated pa-
rameters: the six Keplerian Orbital Elements provide the
minimum information necessary to unambiguously define
a (two-body) orbit. For each planet, we compute these
quantities over the duration of the simulation: eccentric-
ity (e), semimajor axis (a), inclination (i), longitude of
ascending node (Ω), argument of periapsis (ω), and true
anomaly (θ). The multiscale properties of the planetary
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FIG. 11. The isolated slow-scale component obtained by the
first pass of sliding-window DMD on the three-body planetary
system. Plotted in blue as Component 1 in Fig. 10, the full
scope of its dynamics is revealed over this longer time domain.
The multiscale behavior evident within this single component
motivates our recursive approach to scale separation

orbits can be observed by plotting these elements over
different time scales. Fig. 14 suggests three distinct scale
regimes: θ and a vary at a time scale corresponding to
the planetary year, Ω, e and i oscillate at some preces-
sional frequency with a period of about 53,000 years, and
the outer envelope of sin(ω) has a period of over 300,000
years.

While the DMD components we have identified (Fig.
12) do not all correspond precisely to the dominant fre-
quencies of these elements, they mostly fall neatly into
the same three regimes. Like θ, components 1 and 2
have periods corresponding to the revolutions of the two
planets. Components 4 and 5 have periods of 47,000 and
383,000 years, respectively, which fall neatly into the two
slowest regimes of the orbital elements. Physically, these
oscillations seem to relate to the eccentricity cycles of the
planets, whose periods have been estimated from numer-
ical models to be 45,900 years (Saturn) and 305,000 years
(Jupiter) [24]. The discrepancy between these reported
values and those obtained from our simulation likely re-
sults from the tertiary effects of other planets and moons
in the solar system (which were omitted from our model).

The only DMD component that is not closely matched
to any of the orbital elements is the third, with a period
of 107 years. This may represent some minor resonance
phenomenon of the planetary revolution (it is almost ex-
actly 9 Jovian years), but its specific origin is not clear.
In any case it is not a dominant effect; this component
has the smallest amplitude of all those identified and it
could be omitted entirely without dramatically affecting
the full reconstruction.
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FIG. 12. Scale-separated reconstructions obtained from 4 re-
cursive applications of the sliding-window DMD procedure
to the three-body planetary system. Dotted lines are used
to indicate the relative time scales between each successive
recursion. Only the x coordinates are plotted. Solid lines
denote xJupiter and dot-dashed lines denote xSaturn.

VI. MULTISCALE FORECASTING

Finally, we present a brief example of how the sliding-
window DMD approach might be put to practical use.
While the decomposition process can be somewhat costly
in computational overhead, the execution of the resulting
dynamical model is quite efficient (it is simply a closed-
form sum of complex exponentials which can be evaluated
at arbitrary t). The cost-benefit assessment therefore fa-
vors applications in which many calls are made to the
predictive model. It is thus quite a natural fit to ex-
plore the use of this technique as a precursor to Ensem-
ble Kalman Filtering (EnKF). EnKF is a well-established
data assimilation technique that integrates measurement
data with an ensemble of modeled forecasts [25]. For
many models, this ensemble must be built by stochasti-
cally perturbing the parameters of some governing differ-
ential equation and then numerically integrating out to
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FIG. 13. The full reconstruction to the three-body plane-
tary system obtained by summing the scale-separated com-
ponents (xJupiter in solid green, xSaturn in dot-dashed green)
plotted over the original simulation data (black). Each plot
here contains the same result, visualized over progressively
longer timespans. In the last two plots, only the upper-bound
envelope has been plotted for ease of visualization. The final
plot shows moving averages to show the conformity even over
the longest time scales

the target time. With a DMD-based model, however, no
integration is necessary. Perturbations can be applied di-
rectly to the model parameters bkj , φkj , and ωkj according
to distributions obtained from the spread of those val-
ues over all windowed iterations. A very large ensemble
could therefore be built quite efficiently, which would be
of particular use for online EnKF. A sample of such an
ensemble is plotted component-wise in Fig. 15.

VII. DISCUSSION

We have developed a data-driven method for separat-
ing complex, multiscale systems into their constituent
time-scale components using a recursive implementation
of dynamic mode decomposition (DMD). The method
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FIG. 14. Keplerian Orbital Elements for the orbit of Jupiter,
computed from the Cartesian simulation data of the three-
body planetary system. The three plots show the same data
over three distinct time scales

provides a robust mathematical architecture for regress-
ing to a hierarchy of linear models approximating the
nonlinear dynamics at different temporal scales. It even
applies to multiscale dynamics produced by coupled,
strongly nonlinear oscillators. For integrable systems, for
instance, it can extract the constant frequencies of non-
linear oscillations. For nearly integrable systems, these
frequencies may no longer be constant, but they change
slowly and such variations can be captured by the slid-
ing windows. If there are fast chaotic dynamics, however,
then it has no theoretical guarantee to work. In addition
to providing diagnostic information on the frequency con-
tent of a signal, our method produces 1) faithful recon-
structions of each constituent component with minimal
cross-pollution between them, 2) closed-form expressions
for these reconstructions which can be used for low-cost
forecasting at any time scale, and 3) statistics on the pa-
rameters of windowed DMD models, whose distributions
can be sampled for stochastic ensemble forecasting.
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FIG. 15. Ensemble component-wise forecasts from the sliding-
window DMD model on the three-body planetary system.
The dotted vertical lines represent the “current time;” ev-
erything to their right is the forecasted trajectory. At each
scale, the unperturbed DMD forecast (black) is overlaid by
an ensemble of predictions generated by sampling bkj , φk

j , and

ωk
j according to their statistics in the preceding windowed it-

erations (constraining all φk
j to maintain unit length). Note

that these trajectories are all nearly identical in the fast-scale
components, where the variance of DMD parameters is mini-
mal

A. Connection to Koopman Theory

The underlying DMD algorithm exploited has a well-
documented relationship to Koopman theory, so we
briefly comment on how this applies to our technique.
The Koopman operator is a linear operator in some mea-
sure space which is fully represents the nonlinear dy-
namics in the original state space of some system. It
is typically infinite-dimensional, but can sometimes be
well-approximated in finite dimensions. DMD is one of a
number of methods which accomplish this: the matrix A
which steps the data forward in time plays the same role
in r dimensions that the full Koopman operator would
in infinite dimensions.

The sliding-window approach presented in this paper
generates a new approximator to the Koopman opera-
tor for each DMD iteration. As such, the scale discovery
protocol can be viewed as an ensemble approach to build-
ing a statistical distribution for the Koopman eigenvalue
spectrum and identifying peaks that correspond to dis-
crete time scales present in the original data. While the
eigenvectors of A vary from one window to the next, and
so cannot be interpreted as global Koopman eigenfunc-
tions, the spectral distribution of eigenvalues could serve
as a valuable starting point for an algorithm seeking these
functions.

B. Utility and Applications

The recent ascendance of machine learning techniques
for analyzing complex systems, along with advances in
hardware to support these techniques, has dramatically
overhauled engineering approaches for diagnostics and
control of such systems. These methods of course re-
quire high quality data sets, but also often rely heav-
ily on an interstitial preprocessing step. For time series
data with highly disparate time scale content, scale sep-
aration is an integral preprocessing procedure for many
tasks. Modeling, forecasting, and control of discretely-
multiscale systems are much more effective when the
scale components can be treated separately. This is par-
ticularly true in the common case where the governing
dynamics of these components are only weakly coupled
to one another: modeling them independently can pro-
duce excellent approximations to the true dynamics at a
fraction of the computational cost.

With this in mind, the method outlined in this pa-
per is presented as a possible precursor to any data-
driven application seeking to exploit a system’s multi-
scale properties. While its output is not entirely dissim-
ilar from well-established multiresolution analysis meth-
ods, its differences from other approaches render it par-
ticularly well-suited to this role. Its synthesis of spatial
and temporal coherencies in the data integrate well into
dynamics-focused applications; it can more robustly sep-
arate components even when one briefly encroaches on
the other’s characteristic time scale. Clean separation
on this basis is crucial for scale-separated model discov-
ery. Furthermore, it generates a closed-form parametric
model for time-local dynamics, which opens up possibil-
ities for forecasting explored in Section VI. The example
presented there is fairly rudimentary, but a more nuanced
approach might prove a useful forecasting tool in and
of itself. One possible approach is a two-step algorithm
which first predicts time evolution of DMD eigenvectors
and then builds a full data prediction from those results.
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