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ABSTRACT 

Near-field thermal emission can be engineered by using periodic arrays of sub-wavelength 

emitters. The array thermal emission is dependent on the shape, size, and materials properties of 

the individual elements as well as the period of the array. Designing periodic arrays with desired 

properties requires models that relate the array geometry and material properties to its near-field 

thermal emission. In this study, a periodic method is presented for modeling two-dimensional 

periodic arrays of sub-wavelength emitters. This technique only requires discretizing one period 

of the array, and thus is computationally beneficial. In this method, the energy density emitted by 

the array is expressed in terms of array’s Green’s functions. The array Green’s functions are 

found using the discrete dipole approximation in a periodic manner by expressing a single point 

source as a series of periodic arrays of phase-shifted point sources. The presented method can be 

employed for modeling periodic arrays made of inhomogeneous and complex-shape emitters 

with non-uniform temperature distribution. The proposed technique is verified against the non-

periodic thermal discrete-dipole-approximation simulations, and it is demonstrated that this 

method can serve as a versatile and reliable tool for studying near-field thermal emission by 

periodic arrays.  

I. INTRODUCTION 

Thermal emission is in the near-field regime when the observation distance from the emitter is 

smaller than or comparable to the dominant thermal wavelength as determined using Wien’s 

displacement law. Otherwise, thermal emission is said to be in the far-field regime. While far-

field thermal emission is broadband, incoherent, unpolarized and limited by blackbody radiation, 
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near-field thermal emission can be quasi-monochromatic, coherent, polarized and exceeds the 

blackbody limit by several orders of magnitude [1]. These properties of thermal near field are 

capitalized on for many promising applications in waste heat recovery [2–8], thermal 

rectification [9–15], nanoscale imaging [16–19], and nanomanufacturing [20–22]. Most of these 

applications require near-field properties that are not found among natural materials. Near-field 

thermal emission can be engineered by using periodic arrays of sub-wavelength 

emitters [23,24,33–36,25–32]. Designing periodic arrays with desired properties requires models 

that relate the geometry and material properties of the array to its near-field thermal emission. 

Analytical models do not exist for this purpose. As such, periodic arrays have been modeled 

using the effective medium theory (EMT) [23–26,28,31–33,35] or by employing numerical 

methods [27,30,44,45,36–43]. The EMT is an approximate method in which the array is modeled 

as a homogenous medium with effective dielectric properties. The validity of the EMT in the 

near-field regime, where the observation distance is in the same order of magnitude as the 

emitter sizes, is questionable. Numerical simulation of periodic arrays is done either by modeling 

an effective length of the array [27,30,36] or by exploiting the periodicity and modeling only a 

period of the array [37–45]. Modeling an effective length of the array, which usually comprises 

of several periods, can be computationally expensive. Particularly, a greater number of periods 

needs to be discretized as the observation distance increases. Furthermore, simulations should be 

repeated a few times to ensure that the number of periods selected for modeling results in a 

converged solution. It is very beneficial to have periodic numerical methods in which only a 

period of the array is discretized. So far, periodic modeling of near-field thermal emission is 

done for rectangular, triangular and ellipsoidal gratings [37–45]. One-dimensional rectangular 

gratings are modeled using the scattering approach [37–39], the finite-difference time-domain 

method (by applying the Bloch boundary conditions) [40], as well as the rigorous coupled wave 

analysis (RCWA) [41–44]. One-dimensional periodic arrays of triangular and ellipsoidal beams 

have been studied using the RCWA [43]. Near-fear heat transfer for a two-dimensional periodic 

array of rectangular gratings has also been calculated using a Wiener chaos formulation [45]. In 

this paper, we present a periodic method based on the discrete dipole approximation 

(DDA) [46,47] which can be used for modeling two-dimensional periodic arrays of complex-

shape emitters. The periodic emitters can be inhomogeneous and have non-uniform temperature 

distribution. In this method, the energy density emitted by the array is expressed in terms of 
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array’s Green’s functions that are the response of the array to illumination by a single point 

source. The array Green’s functions are found in a periodic manner by expanding the single point 

source into a series of periodic arrays of phase-shifted point sources. The DDA is used for 

numerical simulations. This approach requires modeling only one period of the array and thus is 

computationally beneficial. Although the array is assumed to be periodic in two dimensions, the 

proposed method can easily be applied for modeling one-dimensional and three-dimensional 

periodic arrays.  

This paper is structured as follows. The problem under consideration is described and formulated 

in Sections II and III, respectively. The proposed periodic technique is discussed in Section IV, 

and numerical examples are provided in Section V. Finally, the concluding remarks are 

presented in Section VI.  

II. DESCRIPTION OF THE PROBLEM 

A schematic of the problem under consideration is shown in Fig. 1. A two-dimensional, infinite 

array of arbitrarily-shaped objects is periodic in x- and y-directions. The array has periods Lx and 

Ly along the x- and y-directions, respectively, and is submerged in the free space. The smallest 

building block of the array, which can consist of an arbitrary number of arbitrarily-shaped 

objects, is referred to as the unit cell. The replica of the unit cell along x- and y-directions are 

numbered using variables p and q, respectively, where p and q vary from -∞ to ∞. The unit cell is 

identified as the cell with (p, q) = (0, 0). The array is at a temperature T greater than absolute 

zero and thus emits thermal radiation in the free space. The objects are assumed to be non-

magnetic, isotropic, in local thermodynamic equilibrium, and their dielectric response is 

described by a frequency-dependent dielectric function ε(ω) = ε′ (ω)+ iε″(ω) . The spectral 

energy density, u, emitted by the array at an observation point ro in the free space is to be 

calculated.  



4 
 

 

Figure 1. A schematic of the problem under consideration. A two-dimensional periodic array of 

arbitrarily-shaped objects with periods Lx and Ly in x- and y-directions, respectively, emits 

thermal radiation in the free space. The emitted energy density at the observation point ro, 

u(ro,ω), is desired. 

III. FORMULATION OF THE PROBLEM 

The energy density at observation point ro and angular frequency ω is given by [48]: 

( ) ( ) ( ) ( ) ( )0 0
1 1, Trace , , Trace , ,
2 2o o o o ou ω ε ω ω μ ω ω= ⊗ + ⊗r E r E r H r H r    (1) 

where ε0 and μ0 are the free space permittivity and permeability, respectively, E is the electric 

field, H is the magnetic field, ⊗  is the outer product and  denotes the ensemble average. The 

electric field at point ro can be obtained using the dyadic electric Green’s function of the array 

G E and the thermally fluctuating current Jfl as [49]: 

( ) ( ) ( )0, , ,E r G r r J rE fl
o o

V

i dVω ωμ ω′ ′ ′= ⋅∫   (2) 

where i is the imaginary unit number and the integral is performed over the volume of the array 

where the fluctuating current is non-zero. The dyadic electric Green’s function GE(ro,r′) relates 

the electric field at observation point ro to the thermally fluctuating current at r′ generating this 
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electric field. The magnetic field at the observation point ro can be obtained in a similar manner 

using the dyadic magnetic Green’s function G H : 

( ) ( ) ( ), , ,H r G r r J rH fl
o o

V

dVω ω′ ′ ′= ⋅∫  (3) 

The ensemble average of the thermally fluctuating current Jfl is zero, while the ensemble average 

of its spatial correlation function is given by the fluctuation dissipation theorem [50,51]: 

( ) ( ) ( ) ( )04, , ,J r J r r r Ifl fl Tωε εω ω ω δ
π

′′
′ ′′ ′ ′′⊗ = Θ −  (4) 

In Eq. (4), ε ′′ is the imaginary part of the dielectric function of the objects, ( ),TωΘ =

( )exp 1Bk Tω ω⎡ ⎤−⎣ ⎦h h , h  and kB being the reduced Planck and Boltzmann constants, 

respectively, is the mean energy of an electromagnetic state [52], δ is the Dirac delta function, 

and I is the unit dyad. Substituting Eqs. (2) to (4) into Eq. (1), the energy density is written as: 

( ) ( ) ( ) ( ) ( ) ( )
2

20
0

2, , Trace , , , ,r G r r G r r G r r G r rE E H H
o o o o o

V

ku T k dVω ε ω
πω

′′ ′ ′ ′ ′ ′⎡ ⎤= Θ ⊗ + ⊗⎣ ⎦∫  (5) 

The electric and magnetic Green’s functions of the array, ( ),G r rE
o ′ and ( ),G r rH

o ′ , are needed 

for calculating the energy density using Eq. (5). Since the emitting array is made of isotropic and 

linear media, the reciprocity principle can be applied to this problem [53]. Based on the 

reciprocity principle, ( ),G r ro
γ ′ = ( ),G r r

T

o
γ ′⎡ ⎤⎣ ⎦ where γ = E or H [53,54]. As such, the energy 

density can equivalently be found using the Green’s functions ( ),G r rE
o′ and ( ),G r rH

o′ . As 

shown in Fig. 2, the electric Green’s function  is determined by calculating the electric field 

generated at r′ due to radiation by a point source J(r) of magnitude 1/(iωμ0) located at ro (i.e., 

J(r) = ( ) ( )0r ro iδ ωμ− I ) [49]. In a similar manner and as shown in Fig. 2, the magnetic dyadic 

Green’s function, ( ),G r rH
o′ , is obtained by measuring the electric field at point r′ due to a 

magnetic point source M(r) of unit magnitude radiating at ro (i.e., M(r) = ( )r roδ − I) [7]. This 
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problem cannot be solved using the periodic DDA [55–57] which is employed for modeling light 

scattering by periodic arrays. In the periodic DDA, the array is illuminated by a planar incident 

field propagating at a given direction. However, in the problem shown in Fig. 2, the array is 

illuminated by a spherical wave generated due to radiation by the aperiodic point source. A 

periodic approach for solving this problem is presented in the next section. 

 

Figure 2. The dyadic electric (magnetic) Green’s function for the array ( ),G r rE
o′  ( ( ),G r rH

o′ ) is 

found by placing an electric (a magnetic) point source at ro and measuring the electric field 

generated at r′.  

IV. A PERIODIC APPROACH FOR CALCULATING ARRAY GREEN’S FUNCTIONS 

The array Green’s functions are obtained by calculating the electric field generated at point r′ of 

the array due to radiation by a point source, represented by Dirac delta function, at the 

observation point ro. It is desired to solve this problem in a periodic manner. However, this 

problem is not periodic since the single point source illuminating the array is aperiodic. This 

aperiodic problem can be converted into a series of periodic problems by expressing the single 

point source as a periodic array of phase-shifted point sources.  

A. Periodic expansion of the Dirac delta function 

The single point source emitting at ro can be replaced by a periodic array of phase-shifted point 

sources with periods Lx and Ly using the fact that the Dirac delta function can be expanded as: 
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( )
( )

$ $( ) ( )
22

r r r r x y
yx

x x y y

x y

LL
i pL k qL kx y

o o x y y x
p qL L

L L
pL qL e dk dk

ππ

π π

δ δ
π

∞ ∞
+

=−∞ =−∞− −

⎡ ⎤− = − + +⎣ ⎦∑ ∑∫ ∫  (6) 

In Eq. (6), $ $( )r r x yo x ypL qLδ ⎡ ⎤− + +⎣ ⎦  represents the replica (p, q) of the point source at ro which 

is located at ropq = ro + pLx
$x  + qLy

$y , ( )x x y yi pL k qL ke +  is the phase shift of the point source at ropq 

relative to that located at ro, and kx and ky are the phasing gradients along the x- and y-directions, 

respectively. It should be noted that the phasing gradients are essentially mathematical wave 

vectors which are restricted to the periodicity of the Brillouin zone (kβ between-π/Lβ and π/Lβ, 

where β = x and y). These mathematical wave vectors allow for the expansion of the delta 

function and by no means they represent a physical wavevector. Equation (6) holds true because 

when the phase-shifted point sources are integrated over the Brillouin zone, all of the point 

sources in the phase-shifted array integrate to zero except for the one located at (p, q) = (0, 0). 

The proof of Eq. (6) is provided in the appendix. Using Eq. (6), the electric and magnetic point 

sources, J(r) and M(r), can be expressed as: 

( )
( )

$ $( ) ( )
2

02

r r x y
J r I

yx
x x y y

x y

LL
o x y i pL k qL kx y

y x
p qL L

pL qLL L
e dk dk

i

ππ

π π

δ

ωμπ

∞ ∞
+

=−∞ =−∞− −

⎡ ⎤− + +⎣ ⎦= ∑ ∑∫ ∫  (7a) 

( )
( )

$ $( ) ( )
22

M r r r x y I
yx

x x y y

x y

LL
i pL k qL kx y

o x y y x
p qL L

L L
pL qL e dk dk

ππ

π π

δ
π

∞ ∞
+

=−∞ =−∞− −

⎡ ⎤= − + +⎣ ⎦∑ ∑∫ ∫  (7b) 

When J(r) and M(r) are expressed using Eqs. (7a) and (7b), a series of periodic problems such 

as the one shown in Fig. 3 is obtained. In these problems, a periodic array of objects is 

illuminated by a periodic array of phase-shifted point sources. Equations (7a) and (7b) show that 

the electric and magnetic point sources can be expressed as double integrations of Bloch waves 

with wavevectors limited to the first Brilloiun zone. The double summations within the integrals 

of Eqs. (7a) and (7b) show the expansion of these Bloch waves in terms of the reciprocal-lattice 

vectors. An analytical solution for the problem shown in Fig. 3 is not feasible and numerical 

solutions should be sought. A numerical solution based on the DDA is presented for this problem 

in the next section. 



8 
 

 

Figure 3. A single point source at the observation point ro can be expressed as a series of 

periodic arrays of phase-shifted (relative to ro) point sources.  

B. Numerical solution of array Green’s functions 

The DDA, which is a volume discretization method [46,47,51], is used for calculating the 

Green’s functions of the array. In this method, the objects are discretized into cubical sub-

volumes with sizes much smaller than the thermal wavelength, the object sizes, the separation 

distance of the objects, and the distance between the observation point and the array. As such, 

the electric field can be assumed as uniform within the sub-volumes. It should be noted that the 

discretization size required for DDA simulations decreases as the refractive index of the emitters 

increases [51,58–61]. In this case, a volume discretization based on the Galerkin method of 

moments [61] can be computationally advantageous. By discretizing the volume-integral form of 

Maxwell’s equations, the electric field in the sub-volumes can be written as [51]: 

( ) ( )2 0
0 0 ,

1

1 1 1E G E E
N

E inc
i i imn j j imn jpq jpq imn

j p qi
jpq imn

V k Vε ε ε
α

∞ ∞

= =−∞ =−∞
≠

− − − ⋅ =∑ ∑ ∑ , 

 i = 1, 2, …, N; m, n = 0, ±1, ±2, … (8) 
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where Eimn is the electric field in replica (m, n) of sub-volume i in the unit cell (sub-volume imn) 

which is located at rimn = ri + mLx x̂   + nLy ŷ  with ri being the position of sub-volume i, 0
,G E

imn jpq  

is the free-space dyadic electric Green’s function between sub-volumes imn and jpq  [51,62], 

E inc
imn  is the electric field incident on sub-volume imn due to radiation by the point-source arrays, 

αi is the polarizability of sub-volume i and its replica [51], and k0 is the magnitude of the 

wavevector in the free space.  The first summation in Eq. (8) runs over the N sub-volumes 

located in the unit cell, while the second and third summations run over replica of the sub-

volumes in the unit cell along the x- and y-directions, respectively. It should be noted that the 

double summation in Eq. (8) excludes the term corresponding to sub-volume imn, and it is 

assumed that the replica sub-volumes have the same dielectric function and volume as their 

counterpart in the unit cell.  

For calculating the electric Green’s function ,
E
imn oG , the incident field on the sub-volumes is due 

to radiation by the electric source J(r) given by Eq. (7a), and it can be calculated using the free-

space electric Green’s function as [49,63]:  

 ( )0
0 , ( )E G r r J rinc E

imn imn
V

i dVωμ= ⋅∫   (9) 

Substituting for J(r) using Eq. (7a) and using the commutativity and associativity properties of 

the integral and summation, the incident field can be written as: 

( )
( ) $ $( ) ( )0

2 ,
2

E G r r r r x y
yx

x x y y

x y

LL
i pL k qL kx yinc E

imn imn o x y y x
p qL L V

L L
pL qL e dVdk dk

ππ

π π

δ
π

∞ ∞
+

=−∞ =−∞− −

⎡ ⎤= − + +⎣ ⎦∑ ∑∫ ∫ ∫  (10) 

which due to the fundamental property of the delta function reduces to: 

( )
( )0

,22
E G

yx
x x y y

x y

LL
i pL k qL kx yinc E

imn imn opq y x
p qL L

L L
e dk dk

ππ

π ππ

∞ ∞
+

=−∞ =−∞− −

= ∑ ∑∫ ∫  (11) 

For calculating the array magnetic Green’s function ,G H
imn o , the incident field is due to 

illumination by the magnetic current array M(r) as is given Eq. (7b). The incident electric field 
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due to the magnetic source M(r) can be obtained in the same manner as for the electric current 

J(r), and it is given by: 

( )
( )0

,22
E G

yx
x x y y

x y

LL
i pL k qL kx yinc H

imn imn opq y x
p qL L

L L
e dk dk

ππ

π ππ

∞ ∞
+

=−∞ =−∞− −

= ∑ ∑∫ ∫  (12) 

where 0
,G H

imn opq  is the free-space dyadic magnetic Green’s function [48]. Equations (11) and (12) 

show that the incident electric field due to the electric and magnetic point sources can be written 

as integrals of Bloch waves with wavevector located in the first Brilloiun zone. The double 

summations within the integrals represent the expansion of the Bloch waves in the reciprocal-

lattice domain. Substituting Eqs. (11) and (12) into Eq. (8) results in the following equation: 

( ) ( )

( )
( )

2 0
0 , 0 , ,

1

0
,2

1 1 1

2

G G G

G
yx

x x y y

x y

N
E

i i imn o j j imn jpq jpq o
j p qi

jpq imn

LL
i pL k qL kx y

imn opq y x
p qL L

V k V

L L
e dk dk

γ γ

ππ
γ

π π

ε ε ε
α

π

∞ ∞

= =−∞ =−∞
≠

∞ ∞
+

=−∞ =−∞− −

− − − ⋅

=

∑ ∑ ∑

∑ ∑∫ ∫
,     

 γ = E or H; i = 1, 2, …, N; m, n = 0, ±1, ±2, … (13) 

When Eq. (13) is written for all sub-volumes in the periodic array (i = 1, 2, …, N; m, n = 0, ±1, 

±2, … ), two self-consistent linear systems of equations are obtained which can be solved for 

,GE
imn o  and ,GH

imn o . Since the system of equation (13) is linear, its solution can be written as the 

double integral of a wave-vector dependent Green’s function, ( ), ,g imn o x yk kγ , as: 

( )
( ), ,2 ,

2
G g

yx

x y

LL
x y

imn o imn o x y y x
L L

L L
k k dk dk

ππ
γ γ

π ππ − −

= ∫ ∫ ,        γ = E or H (14) 

where ,gimn o
γ is the solution of the following equation: 

( ) ( ) ( )2 0 0
0 , 0 , , ,

1

1 1 1g G g G x x y y
N

i pL k qL kE
i i imn o j j imn jpq jpq o imn opq

j p q p qi
jpq imn

V k V eγ γ γε ε ε
α

∞ ∞ ∞ ∞
+

= =−∞ =−∞ =−∞ =−∞
≠

− − − ⋅ =∑ ∑ ∑ ∑ ∑ , 
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                                                                γ = E or H; i = 1, 2, …, N; m, n = 0, ±1, ±2, …   (15) 

Equation (15) describes a periodic problem because the periodic array of the objects is 

illuminated by a periodic and phase-shifted incident field represented by the summation on the 

right-hand side of this equation. Since the problem is periodic and due to the translational 

symmetry of the free space Green’s functions, the wave-vector dependent Green’s function for 

sub-volume jpq, ,g jpq o
γ , in Eq. (15) should be periodic and phase-shifted relative to that for sub-

volume j00 located in the unit cell, ,g j o
γ  [56]. As such, the wave-vector dependent Green’s 

function of replica sub-volumes is related to that of their counterpart in the unit cell as: 

( )
, ,g g x x y yi pL k qL k

jpq o j oe
γ γ += ,         p, q = 0, ±1, ±2, … (16) 

It should be noted that the subscript 00 used for referring to the sub-volumes in the unit cell is 

dropped for simplicity. Equation (16) allows for solving the system of equations (15) only for the 

sub-volumes in the unit cell (i.e., for i = 1, 2, …, N; m = n = 0). Substituting Eq. (16) into Eq. 

(15) and applying this equation to the sub-volumes in the unit cell results in: 

( ) ( ) ( ) ( )2 0 0
0 , 0 , , ,

1

1 1 1g G g Gx x y y x x y y
N

i pL k qL k i pL k qL kE
i i i o j j i jpq j o i opq

j p q p qi

V k V e eγ γ γε ε ε
α

∞ ∞ ∞ ∞
+ +

= =−∞ =−∞ =−∞ =−∞

− − − ⋅ =∑ ∑ ∑ ∑ ∑ , 

                                                                γ = E or H; i = 1, 2, …, N (17) 

where ,g j o
γ  is taken out of the summations as it is independent of p and q. The periodic free-space 

dyadic Green’s function between two points h and l is defined as [64]: 

( )0 , 0
, ,G G x x y yi pL k qL kP

h l h lpq
p q

eγ γ
∞ ∞

+

=−∞ =−∞

= ∑ ∑ ,        γ = E or H (18) 

where subscript h indicates a sub-volume in the unit cell and l refers to either a sub-volume in the 

unit cell or the observation point. Using the definition in Eq. (18), the system of equation (17) 

can be re-written in the following form: 
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( ) ( )2 0 , 0 ,
0 , 0 , , ,

1

1 1 1g G g G
N

E P P
i i i o j j i j j o i o

ji

V k Vγ γ γε ε ε
α =

− − − ⋅ =∑ ,        γ = E or H; i = 1, 2, …, N (19) 

Eq. (19) is dyadic, and 3 systems of equations of size 3N are obtained when it is applied to the 

sub-volumes in the unit cell (i = 1, 2, …, N). The solution of these systems of equations provides 

the wave-vector dependent Green’s functions for the sub-volumes located in the unit cell (i.e., 

,gi o
γ  where i = 1, 2, …, N). The wave-vector dependent Green’s function for replica sub-volumes 

( ,gimn o
γ ) is only phase-shifted relative to the sub-volumes in the unit cell ( ,g i o

γ ), and it can be 

obtained using Eq. (16). Once the phase-dependent Green’s functions ,gimn o
γ are found, the array 

Green’s functions ,G imn o
γ  can be calculated using Eq. (14). The energy density then can be found 

by using the discretized form of Eq. (5) and the array Green’s functions ,G imn o
γ  as: 

( ) ( )
2

20
0 , , , ,

1 0 0

2, , Tracer G G G G
kykx NNN

E E H Hi
o i i o imn o imn o imn o imn

i m n

k Vu T kω ε ω
πω = = =

′′ ⎡ ⎤= Θ ⊗ + ⊗⎣ ⎦∑ ∑∑  (20) 

where Nkx and Nky are the number of wavevectors selected for discretizing Brillouin zone along 

the x- and y-directions. The description of the periodic method for calculating energy density 

emitted by the periodic array is complete. The main steps in this technique can be summarized as 

follows. 

1- The objects in the unit cell are discretized into N cubical sub-volumes. The size of the sub-

volumes should be much smaller than the thermal wavelength, the object sizes and the separation 

distances, such that the electric field can be assumed uniform in the sub-volumes. 

2- Equation (19) is applied to the N sub-volumes in the unit cell, and 3 systems of 3N equations 

are obtained. The solution of these systems of equations provides the wave-vector dependent 

Green’s functions  ,gi o
γ  for the sub-volumes in the unit cell. 

3- The wave-vector dependent Green’s function for replica sub-volumes ,gimn o
γ  is calculated 

using Eq. (16). 
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4- The array Green’s function, ,G imn o
γ , is found using the wave-vector dependent Green’s 

functions, ,gimn o
γ , and Eq. (14). 

5- The energy density is calculated using the array Green’s function, ,G imn o
γ , and Eq. (19). 

C. Periodic free-space dyadic Green’s functions 

Calculating the periodic free-space dyadic Green’s function defined in Eq. (18) requires 

evaluating two infinite summations. For near-field thermal radiation problems, these summations 

converge significantly faster in the reciprocal-lattice domain or using the Ewald method. Here 

we report the periodic dyadic Green’s functions in the reciprocal-lattice domain. An Ewald 

representation can alternatively be utilized [64]. The periodic free-space scalar Green’s function 

in the reciprocal domain is given by [64]: 

,
0,
,

,2
K ρ

z pq h l
pq

ik z z
iP

h l
p qx y z pq

i eG e
L L k

−∞ ∞
⋅

=−∞ =−∞

= ∑ ∑  (21) 

where ( ) ˆ2K xpq x xk p Lπ= + ( ) ˆ2 yy yk q Lπ+ +  is the sum of the wave vector associated with 

the array of phase-shifted point sources and the wave vector of reciprocal lattice, ρ = (xh – xl) x̂  + 

(yh – yl) ŷ  is the two-dimensional distance vector between points h and l, and kz,pq is defined as: 

2 2
, 0 ,, Im 0z pq pq z pqk k K k⎡ ⎤= − ≥⎣ ⎦  (22) 

The free-space electric dyadic Green’s function can be determined by applying operator 

2
0

1I+
k

⎡ ⎤
∇∇⎢ ⎥

⎣ ⎦
on the scalar free-space Green’s function given by Eq. (21) [49]. The result is: 

,
0 ,

, 2
0 ,2

z pq h l
pq

T ik z z
ipq pqE P

h l
p qx y z pq

i e e
L L k k

−∞ ∞
⋅

=−∞ =−∞

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑ K ρk k

G I  (23) 

Where subscript T means transpose, and kpq is a wave vector defined as: 
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, ˆk K zh l
pq pq z pq

h l

z z
k

z z
−

= +
−

 (24) 

The periodic free-space magnetic dyadic Green’s function in the reciprocal domain can be found 
using the scalar periodic free-space Green’s function as [49]: 

( )0 , 0,
, ,

0

1G IH P P
h l h lG

ik
= ∇×  (25) 

which can be written as: 

,
0 ,

,
0 ,2

K ρk I
G

z pq h l
pq

ik z z
ipqH P

h l
p qx y z pq

i e e
L L k k

−∞ ∞
⋅

=−∞ =−∞

×⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ ∑  (26) 

V. NUMERICAL RESULTS 

A. Verification 

The periodic technique presented in Section IV is verified against the thermal discrete dipole 

approximation (T-DDA) [51,65] simulations. Since the T-DDA is a non-periodic approach, an 

effective length of the array needs to be determined and modeled. The effective length is 

determined by increasing the array size until no significant change in the T-DDA results is 

observed. The periodic approach has been tested for two arrays. The first array, as shown in Fig. 

4a, is made of silica nanospheres of diameter 10 nm separated by a distance of 40 nm in the x- 

and y-directions (Lx = Ly = 50 nm). The array emits at 400 K. The spectral energy density is 

calculated at two observation distances of 20 nm and 40 nm above the array along the 

perpendicular (to the array) axis of the nanospheres. The size of the particles is small compared 

to the wavelength, the period of the array, and the observation distance. As such, the nanospheres 

can be modeled as point dipoles using a single sub-volume. The effective length of the array 

required for the T-DDA simulations increases as the observation distance, d, increases. An 

effective length of 200 nm (equivalent to 25 periods of the array) is sufficient for calculating 

energy density at both observation distances of d = 20 nm and 40 nm. The kx and ky intervals 

(i.e., [-π/Lx, π/Lx] and [-π/Ly, π/Ly]) in the periodic method are each discretized into 19 sub-

intervals. The spectral energy density as calculated using the T-DDA (non-periodic approach) 
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and the periodic approach is shown in Fig. 4b. The periodic and non-periodic simulations are in 

excellent agreement for both observation distances. There are two resonances in the spectrum of 

energy density at ωres,1 = 9.21×1013 rad/s and ωres,2 = 2.13×1014 rad/s. These resonances are due 

to the thermal excitation of localized surface phonons (LSPhs) of the silica nanospheres. Thermal 

emission by the nanospheres is proportional to the imaginary part of their polarizability α which 

is given by Im[α] = 9ε0V
22ε ε′′ + . The LSPhs are excited at the frequencies for which the 

denominator of Im[α] vanishes, i.e., when 2ε ′ → − . This condition is satisfied at ωres,1 and ωres,2. 

The second array, which is shown in Fig. 4c, is made of silica nanoribbons of 50 nm height and 5 

nm width. The nanoribbons are separated by 15 nm along the x- and y-directions such that Lx = 

Ly = 20 nm. The array emits at a temperature of 400 K. The spectral energy density is calculated 

at 15 nm and 30 nm above the array along the perpendicular (to the array) axis of the 

nanoribbons using the T-DDA and the periodic method. The nanoribbons need to be discretized 

into sub-volumes since they are large compared to the period of the array and the observation 

distance. As the size of the sub-volumes reduces, the accuracy of both methods increases until a 

converged solution is achieved for sufficiently small sub-volumes. A convergence analysis of the 

T-DDA can be found in Ref. [51]. For periodic simulations, the unit cell is discretized into 640 

sub-volumes of size 1.25 nm, while the kx and ky intervals are each discretized into 23 equal sub-

intervals. Modeling an effective length of 500 nm (equivalent to 625 periods of the array) is 

required for the T-DDA simulations. To reduce the computational time in the non-periodic T-

DDA simulations, a non-uniform discretization comprising of 14720 sub-volumes of various 

sizes is used for discretizing the effective length of the array. In this non-uniform discretization, 

the size of the sub-volumes increases as their distance from observation point increases. The 9 

periods of the array directly located underneath the observation point are each discretized into 

640 sub-volumes of size 1.25 nm, the next 40 periods are each discretized into 80 sub-volumes 

of size 2.5 nm, and the remaining 576 periods are each discretized using 10 sub-volumes of size 

5 nm. The results obtained using the two methods are shown in Fig. 4d, and they are in excellent 

agreement. The agreement between the T-DDA and the periodic approach, which are two 

different methods, confirms the validity of both approaches. The energy density has four 

resonances due to the excitation of LSPhs of the silica nanoribbons. These resonances are located 

at ωres,1 = 8.72×1013 rad/s, ωres,2 = 9.24×1013 rad/s, ωres,3 = 2.03×1014 rad/s and ωres,4 = 2.14×1014 

rad/s for the observation distance of 15 nm. The LSPh resonances for the observation distance of 
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40 nm are observed at almost the same frequencies. The LSPhs are excited when the 

denominator of Im[α] for nanoribbons vanishes. The polarizability of the nanoribbons can be 

estimated using that of a prolate spheroid with major and minor semi-axes equal to 25 nm and 

2.5 nm, respectively. The imaginary part of the polarizability of a spheroid along the j direction 

(j = x, y, and z) is given by Im[αj]= ε0V ( ) 2
1 1jLε ε′′ + − , where Lj is the geometrical factor of 

the spheroid [66]. As such, LSPhs are observed at the frequencies for which ε′ → ( )1j jL L− . 

For the nanoribbons, Lx = Ly = 0.4899 and Lz = 0.0203. Thus, the LSPhs along the major and 

minor axes are excited when ε′ → -48.3 and ε′ → -1.0, respectively. The first condition is 

satisfied at ωres,1 and ωres,3, while the second one holds true for ωres,2 and ωres,4. 

 

Figure 4. Schematics of periodic arrays of (a) nanospheres and (c) nanoribbons emitting at 400 

K, and the spectral energy density emitted by (b) nanosphere and (d) nanoribbon arrays.  
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B. Computational efficiency 

In this sub-section, the computational resources (i.e., CPU time and memory) required for the 

periodic method are compared with those needed for the non-periodic T-DDA simulations. 

While only the unit cell of the array is discretized in the periodic method, the simulations should 

be repeated for a number of kx and ky values in the intervals [-π/Lx, π/Lx] and [-π/Ly, π/Ly], 

respectively. Additionally, infinite double summations should be evaluated for finding the 

periodic free-space Green’s functions using Eqs. (25) and (26). Fortunately, these summations 

converge very rapidly in the reciprocal-lattice domain and they do not increase the computational 

time drastically. In the non-periodic T-DDA simulations, an effective length of the array 

comprising of several periods needs to be determined and modeled. As such, the number of sub-

volumes in the T-DDA simulations is much greater than that in the periodic method. However, 

T-DDA simulations are not repeated for multiple values of kx and ky. The CPU time in the T-

DDA simulations increases with the number of sub-volumes, N, approximately as N3  [51]. The 

number of sub-volumes can be written as p ucN N N= , where Np is the number of periods to be 

modeled and Nuc is the number of sub-volumes used for discretizing the unit cell. Therefore, the 

CPU time in the T-DDA is proportional to ( )3

p ucN N . The memory required in the T-DDA for 

storing the complex-number elements of the interaction and dipole-moment correlation matrices 

with a double precision format is equal to 2.68×10-7 ( )2

p ucN N GB. The number of periods of the 

array required for the T-DDA simulations, Np, depends on the observation distance. As the 

observation distance increases, Np and consequently the CPU time (proportional to 3
pN ) and the 

memory (proportional to 2
pN ) required for the T-DDA simulations increase very rapidly. For this 

reason, modeling thermal emission at observation distances larger than a few periods of the array 

using the T-DDA becomes intractable. Excluding the time required for computing the periodic 

free-space Green’s functions, the CPU time in the periodic method varies as 2
kx ky ucN N N , where 

kxN  and kyN are the number of wavevectors along the x- and y-directions, respectively. The 

memory required in the periodic method for storing the Green’s functions of the periodic array 

for various values of kx and ky is equal to 2.68×10-7 2
x yk k ucN N N  GB. Based on the above 

discussion, it can roughly be concluded that when kx kyN N  is smaller than 3
pN  and 2

pN , the 
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periodic method is advantageous with regard to CPU time and memory, respectively. This is 

usually the case especially when considering medium and large observation distances from the 

array.  

As an example, the CPU time and memory required for modeling energy density emitted by the 

nanoribbon array in Fig. 4c using the T-DDA and the periodic method are reported in Table 1 for 

two observation distances of d = 10 nm (d/Lx = 0.5) and 30 nm (d/Lx = 1.5). The energy density 

is calculated at an angular frequency of 1.0×1014 rad/s and a temperature of 400 K.  The unit cell 

of the array is discretized into 640 sub-volumes of size 1.25 nm. In periodic simulations, the kx 

and ky intervals are each divided into 23 equal sub-intervals. In the T-DDA simulations, the 

number of periods of the array is increased until the energy density is within 1% of that predicted 

using the periodic method. For d = 10 nm, 25 periods of the array (equivalent to an effective 

length of 80 nm and 16000 sub-volumes of size 1.25 nm) are required to achieve a converged 

solution using the T-DDA. While both methods require approximately the same amount of 

memory, the periodic method is more than 58 times faster than the T-DDA. When the 

observation distance is increased to d = 1.5Lx, the CPU time and memory in the periodic method 

remain the same. However, modeling 289 periods of the array (equivalent to an effective length 

of 320 nm and 184960 sub-volumes of size 1.25 nm) is needed for the T-DDA simulations. Since 

modeling 184960 sub-volumes using the T-DDA requires significant computational resources, a 

non-uniform discretization scheme is employed for this case. In the non-uniform discretization, 

the 9 periods of the array directly located underneath the observation point are each discretized 

using 640 sub-volumes of size 1.25 nm, the next 40 periods are each discretized using 80 sub-

volumes of size 2.5 nm, and the remaining 240 periods are each discretized using 10 sub-volume 

of size 5 nm. In total, the array is discretized into 11360 sub-volumes with non-uniform sizes. 

The CPU time for modeling this array is larger than that of the periodic method by more than 21 

times, not to mention the additional time required for repeating simulations to ensure 

convergence and designing a non-uniform discretization. As the observation distance increases 

further, the T-DDA simulations become increasingly more challenging. It is also worth 

mentioning that the computations in the periodic method are highly parallelizable, since the array 

Green’s functions can be calculated independently for each value of kx and ky. 
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Table 1. The CPU time and memory used for modeling the energy density emitted by the 

nanoribbon array in Fig. 4c using the periodic and non-periodic (T-DDA) methods. The energy 

density is calculated at 1.0 rad/s and 400 K. In Table 1, U (NU) indicates that uniform (non-

uniform) sub-volumes are used.  

 d/Lx = 0.5 (d = 10 nm) d/Lx = 1.5 (d = 30 nm) 

 u ×1014 
[Jm-3(rad/s)-1] N CPU time 

[s] 
Memory 

[GB] 
u ×1016 

[Jm-3(rad/s)-1] N CPU time 
[s] 

Memory 
[GB] 

Periodic 1.653 640 U 1326 63.2 3.654 640 U 1348 63.2 
Non- 

periodic 1.644 16000 U 77913 68.6 3.623 11360 NU 29076 34.6 

 

VI. CONCLUSIONS 

Near-field thermal emission by periodic arrays was modeled using a periodic technique which 

only requires discretizing one period of the array. This technique is based on the DDA and 

expressing a single point source in terms of a series of periodic arrays of phase-shifted point 

sources. The near-field energy density emitted by periodic arrays of silica nanospheres and 

nanoribbons was modeled using the presented technique and by direct numerical modeling using 

the T-DDA. An excellent agreement existed between the two techniques which demonstrates the 

validity of the periodic technique. The proposed technique is efficient and versatile, and it can be 

used for modeling a wide variety of arrays comprised of complex-shape emitters. The emitters 

can be inhomogeneous with non-uniform temperature distribution. However, the inhomogeneity 

and the temperature distribution should be periodic. 
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APPENDIX: PERIODIC EXPANSION OF THE DIRAC DELTA FUNCTION 

In this appendix, it is proved that the Dirac delta function can be expressed as a series of periodic 

arrays of phase-shifted delta functions with arbitrary periods Lx and Ly. Mathematically, this is 

written as: 
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Using the commutative property of integral and summation, the right-hand side of Eq. (A.1) can 

be written as: 
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where 
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∫ is zero unless q = 0. For q = 0, this integral equals 
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. As such, Eq. (A.2) 

can be re-written as: 
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In the same manner, 
x

x x

x

L
ipL k

x
L

e dk
π

π−
∫ is only non-zero when p = 0 in which case the integral equals  

2

xL
π . As such, the right-hand side of Eq. (A.3) reduces to ( )r roδ − .  
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