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Resonant three-wave coupling is an important mechanism via which waves interact in a nonlinear
medium. When the medium is a magnetized warm-fluid plasma, a previously-unknown formula for
the coupling coefficients is derived by solving the fluid-Maxwell’s equations to second order using
multiscale perturbative expansions. The formula is not only general but also evaluable, whereby
numerical values of the coupling coefficient can be determined for any three resonantly interacting
waves propagating at arbitrary angles. To illustrate how the general formula can be applied, cou-
pling coefficient governing laser scattering is evaluated as one example. In conditions relevant to
magnetized inertial confinement fusion, Raman and Brillouin instabilities are replaced by scatter-
ing from magnetized plasma waves when lasers propagate at oblique angles. As another example,
coupling coefficient between two Alfvén waves via a sound wave is evaluated. In conditions relevant
to solar corona, the decay of a parallel Alfvén wave only slightly prefers exact backward geometry.

I. INTRODUCTION

Plasmas are ionized gases wherein waves can interact
nonlinearly. Unlike crystals whose optical properties may
have limited range of tunability, plasma parameters can
vary by many orders of magnitude. In particular, an ad-
justable optical axis can be introduced by applying an
external magnetic field. Thereby, all nonlinear optical
phenomena seen in crystals [1] also occur in magnetized
plasmas with ample flexibility. In addition to hosting
optical phenomena, magnetized plasmas also support a
zoo of other waves. These additional waves, such as the
Alfvén wave, Bernstein waves, and hybrid waves, not only
mediate new interactions between light waves, but also
couples nonlinearly among themselves. For example, in-
teractions between Alfvén waves is thought to be a major
mechanism for anisotropic turbulence [2–8] and particle
heating [9, 10] in astrophysical plasmas.

While nonlinear wave coupling occurs in any dielectric
medium, what makes the biggest difference is perhaps
the coupling coefficient. When the coupling is weak, very
large amplitude waves are needed in order to cause siz-
able effects. On the contrary, when the coupling is strong,
even small amplitude waves can lead to observable con-
sequences. Since plasma parameters span many orders of
magnitude, it is impractical to exhaust the multidimen-
sional parameter space by experiments and first-principle
simulations. An analytical formula, which can be used to
determine numerical values of the coupling coefficient, is
thereof invaluable for mapping out wave-wave coupling
behaviors in magnetized plasmas.

For over half a century, numerous attempts are made
to calculate wave coupling in magnetized plasmas due
to three-wave interactions, which are the leading-order
terms of the nonlinear response tensor [11, 12]. How-
ever, the presence of a background magnetic field signif-
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icantly complicates the calculation, and most attempts
start by restricting to a particular set of wave triad in
some special geometry. For example, theories have been
developed when waves propagate perpendicular to the
magnetic field [13, 14], and explicit results have been ob-
tained when the pump is the extraordinary wave [15–22],
the ordinary wave [23, 24], the upper-hybrid wave [25],
and the lower-hybrid wave [26]. For wave propagation
nearly parallel to the magnetic field, transverse and lon-
gitudinal modes decouple [27, 28], and results have been
obtained when all waves are electrostatic [29], when the
pump wave is a circularly polarized laser [30], the whistler
wave [31], the fast wave [32, 33], and the Alfvén waves
[34–53]. Although more general theories exist [54–58],
the formal expressions of the coupling coefficient are too
cumbersome to be useful and are rarely evaluated in prac-
tice [59]. Moreover, in order to simplify results, increas-
ing number of assumptions are usually made as the dis-
cussion progresses, and conflicting assumptions have led
to numerous disputes in the literature.

In order to obtain a formula for the coupling coefficient
that is not only general but also evaluable, a mathemat-
ically robust approach is necessary. In a previous paper
[60], an approached based on multiscale perturbative so-
lution has been demonstrated for magnetized cold-fluid
plasmas. The key to simplifying the general result is not
to make additional assumptions, but to package seem-
ingly complex terms into well-motivated operators. By
studying properties of these operators, profound simpli-
fications can then be unveiled, which would otherwise be
obscured by tedious arithmetics. This approach is not
only useful for obtaining analytical expressions, but also
necessary to avoid brute-force manipulation of large ma-
trices during numerical evaluations.

In this paper, I will further demonstrate the opera-
tor approach by considering three-wave interactions in
magnetized warm-fluid plasmas. The ideal warm-fluid
model is applicable when the wavelengths of interest are
much longer than the Debye length, while much shorter
than the collisional mean free path. In this regime,
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plasma particles respond collectively to perturbations
like “fluids” and dissipative terms due to both collision-
less and collisional effects are subdominant. The plasma
is “warm” in the sense that particles have finite thermal
speed while kinetic effects are not yet important on the
scale of wave-wave interactions. For fusion and astro-
physical plasmas, this model has a reasonable range of
applicability. For example, in inertial confinement fusion
conditions, the coronal plasma density n ∼ 1020 cm−3

and temperature T ∼ 1 keV, wherein a low-Z plasma
is fully ionized and weakly coupled. Correspondingly,
the Debye length λD ∼ 10−2 µm (TkeV/n20)1/2 is usu-
ally much smaller than the laser wavelength, which is in
turn much smaller than the collisional mean free path
λmfp ∼ 102 µm (T 2

keV/Z
2n20) in low-Z plasmas, so ki-

netic and transport effects are well separated from wave
dynamics.

Within its range of applicability, the fluid model may
then be solve perturbatively when amplitudes of fluc-
tuations are small. In plasmas, amplitudes may be re-
garded small as long as longitudinal wave electric fields
are much smaller than the wavebreaking field mecωp/e ∼
1012 V/m (n20)1/2. The corresponding power density

is ∼ 1021 W/cm
3

(n20/λµm), which is much larger than

that due to bremsstrahlung ∼ 109 W/cm
3

(Zn2
20T

1/2
keV),

and cyclotron radiation ∼ 107 W/cm
3

(B2
MGn20TkeV).

When coherent waves are much stronger than thermal
fluctuations while much weaker than allowed by wave-
breaking, incoherent radiation can be ignored, and linear
wave phenomena are only slightly modified by plasma
nonlinearities, which cause waves to couple. The lowest-
order modifications are due to three-wave coupling, which
usually dominates higher-order four-wave coupling and
so on. To compute these couplings, special procedures
are necessary in order to avoid secular behaviors. A
well-suited procedure is multiscale expansion, which ex-
pand spatial and temporal scales in addition to expand-
ing the amplitudes. By renormalizing the spacetime,
well-behaved high-order perturbative solutions can then
be obtained rigorously, with no need of further assump-
tions. This perturbative treatment is valid in the weak-
coupling regime, where nonlinear interactions change the
wave amplitudes but preserve the eigenmode structures.
Within this regime, the perturbative solution obtained in
this paper may then be used to study three-wave interac-
tions in the most general geometry under a wide variety
of plasma conditions.

This paper is organized as followes. In Sec. II, the fluid
model and the multiscale method will be reviewed. In
sec. III, I will introduce important operators and review
linear waves from the operator perspective. In Sec. IV,
I will derive a general formula for the three-wave cou-
pling coefficient by solving the second-order equations.
In Sec. V, I will first demonstrate that existing results in
the literature are just special cases of the general formula,
and then apply the formula to two examples where the
coupling was previously unknown. Discussion is made in

Sec. VI followed by a summary. Supplemental details are
provided in the Appendix.

II. WARM-FLUID MODEL

The fluid model describes plasma species as charged
gases, which couple with self-consistent electromagnetic
fields through the Lorentz force law and the Maxwell’s
equations. The multi-fluids model can be regarded as
moments of the kinetic model, and can be used to obtain
magnetohydrodynhamics (MHD) models after further as-
sumptions.

A. Fluid-Maxwell’s equations

For each plasma species, its density evolves according
to the continuity equation. In the absence of ionization
and recombination, the number of particles is conserved,
and the continuity equation is

∂ns
∂t

+∇ · (nsvs) = 0, (1)

where ns is the density of species s, whose fluid velocity
is vs. The continuity equation contains a nonlinear term
nsvs, which will contribute to wave-wave couplings.

The fluid velocity evolves according to the momentum
equation. Using the continuity equation, the nonrela-
tivistic momentum equation can be written as

msns

(∂vs
∂t

+vs ·∇vs
)

= −∇ps+esns(E+vs×B), (2)

where ms and es are the mass and charge of each particle
of species s, whose thermal motion leads to a pressure ps.
The above is the simplest momentum equation for warm
plasmas, assuming collisions play negligible role, and the
internal stress tensor τij = −pδij remains isotropic de-
spite of external forces.

To close the infinite hierarchy of fluid equations, we
can express the pressure in terms of density and velocity.
For simplicity, consider polytropic process for which pV ξ

is a constant, where ξ ≥ 0 is the polytropic index, p is
the pressure, and V is the volume of the fluid element.
Suppose the number of particles in the fluid element is
constant, then the polytropic condition relates changes
of pressure and density by

nsdtps = ξspsdtns, (3)

where dt = ∂t + vs · ∇ is the convective derivative. The
polytropic process assumes that the heat to work ratio is
a constant. In particular, the polytropic process recovers
the isobaric process when ξ = 0; the isothermal process
when ξ = 1; the isochoric process when ξ = ∞; and the
adiabatic process when ξ = Cp/Cv, where Cp and Cv are
heat capacities at constant pressure and volume.



3

To model plasmas with self-consistent electric and
magnetic fields, we can couple the fluid equations with
the Maxwell’s equations. The time evolution of the mag-
netic field is given by the Faraday’s law:

∂B

∂t
= −∇×E, (4)

which is independent of plasma dynamics. In compari-
son, the time evolution of the electric field is given by the
Ampère’s law:

∂E

∂t
= c2∇×B− 1

ε0

∑
s

esnsvs, (5)

where ε0 is the vacuum permittivity. The other two
Maxwell’s equations ∇ · E =

∑
s esns/ε0 and ∇ ·B = 0

are guaranteed once they are satisfied at the initial time.
The fluid-Maxwell system satisfies local energy-

momentum conservation laws. The total energy density
of the system is

U =
1

2
ε0E

2 +
1

2µ0
B2 +

∑
s

1

2

(
msnsv

2
s +

ps
ξs − 1

)
, (6)

which is the sum of the field, the kinetic, and the thermal
energy densities. Similarly, the energy flux is

S =
1

µ0
E×B +

∑
s

1

2

(
msnsv

2
svs +

ξs
ξs − 1

psvs

)
, (7)

which is constituted of the Poynting flux, the kinetic flux,
and the enthalpy flux. The local conservation law is

∂tU +∇ · S = 0, (8)

which can be verified by straightforward calculations us-
ing Eqs. (1)-(5). Analogously, one can show that the local
momentum is also conserved: ∂tΠj +∂iσij = 0, where Πi

is the momentum density, and σij is the stress tensor.

B. Multiscale perturbative expansions

The fluid-Maxwell’s equations are a set of nonlin-
ear partial differential equations. The equations self-
consistently determine the fluid variables ns, vs, and
ps, as well as the field variables E and B. Although
calculating the general solution is difficult, perturbative
solutions may be obtained when fluctuations have small
amplitudes. Since the equations are nonlinear, special
procedures are needed in order to remove secular behav-
iors beyond the leading order. Once secular behaviors
are removed, the perturbative solutions are well-behaved
without violating the small-amplitude assumption.

Consider perturbations from an equilibrium state of
the plasma. Then, a generic fluid or field variable Z can
be expanded as

Z = Z0 + λZ1 + λ2Z2 + . . . . (9)

Here, the equilibrium state is labeled by the subscript
“0”, and λ is an auxiliary smallness parameter. Notice
that at this step, it is not necessary to assumed any prop-
erty of higher order terms Zj . In particular, the average
〈Zj〉 needs not be zero, and the equilibrium state Z0 is
not necessarily the averaged quantity.

One way of removing secular behavior from the per-
turbative solution is to also expand temporal and spatial
scales. Using multiscale expansions, the time and space
derivatives are

∂t = ∂t0 + λ∂t1 + λ2∂t2 + . . . , (10)

∂i = ∂i0 + λ∂i1 + λ2∂i2 + . . . , (11)

where λ is the same auxiliary expansion parameter. The
multiscale expansion assumes that weaker interactions
occur on slower time scales and larger spatial scales. This
is intuitive because weaker couplings require further ac-
cumulations before their effects become appreciable. In
the multiscale expansion, t1 is a time scale slower than t0
by a factor of λ, and processes that occur on t1 scale is
assumed to be well separated from processes on t0 scale.
Similarly, other temporal and spatial scales are ordered
by λ and are assumed to be independent.

Consider the simplest equilibrium where the plasma
is uniform and stationary under a constant background
magnetic field. In this case, E0 and vs0 are zero, whereas
B0, ns0, and ps0 are nonzero but constant. Although this
simple situation is rarely encountered in realistic plas-
mas, it provides a reasonable simplification when the
scales of inhomogeneities are well-separated from char-
acteristic scales of three-wave interactions.

When perturbed from the simple equilibrium, the λ-
order equations are homogeneous linear partial differen-
tial equations with constant coefficients. The linearized
fluid equations are

∂t0ns1 = −ns0∇0 · vs1, (12)

msns0∂t0vs1 = −∇0ps1 + esns0(E1 + vs1 ×B0), (13)

ns0∂t0ps1 = ξsps0∂t0ns1, (14)

which couple ns1, vs1, and ps1 in pairs. The linearized
Maxwell’s equations are

∂t0B1 = −∇0 ×E1, (15)

∂t0E1 = c2∇0 ×B1 −
1

ε0

∑
s

esns0vs1. (16)

These linear partial differential equations can be easily
solves in the Fourier space to obtain the full spectrum of
linear waves in magnetized warm-fluid plasmas.

To compute three-wave coupling between linear waves,
we need to solve the equation to the next order. The λ2-
order continuity equation is

∂t0ns2 + ns0∇0 · vs2
= −∂t1ns1 − ns0∇1 · vs1 −∇0 · (ns1vs1), (17)
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the λ2-order momentum equation is

msns0∂t0vs2 +∇0ps2 − esns0(E2 + vs2 ×B0)

= −ms[ns0(∂t1vs1+vs1 ·∇0vs1)+ns1∂t0vs1]−∇1ps1

+es[ns0vs1 ×B1 + ns1(E1 + vs1 ×B0)], (18)

and the λ2-order pressure equation is

ns0∂t0ps2 − ξsps0∂t0ns2
= −ns0(∂t1ps1 + vs1 · ∇0ps1)− ns1∂t0ps1

+ξs[ps0(∂t1ns1 + vs1 · ∇0ns1) + ps1∂t0ns1]. (19)

The above equations may be simplified using λ-order
equations, as will be done later in Sec. IV A. Similarly,
we can write down the λ2-order Maxwell’s equation. The
second-order Faraday’s law is

∂t0B2 +∇0 ×E2 = −∂t1B1 −∇1 ×E1, (20)

and the second-order Ampère’s law is

∂t0E2 − c2∇0 ×B2 +
1

ε0

∑
s

esns0vs2

= −∂t1E1 + c2∇1 ×B1 −
1

ε0

∑
s

esns1vs1. (21)

Although these equations may look complicated, they are
in fact linear equations for fluid variables ns2, vs2, and
ps2, as well as field variables E2 and B2. Moreover, these
second order variables couple in exactly the same way as
in the λ-order equations. The only difference is the pres-
ence of source terms, which I have arranged to appear on
the right-hand-sides (RHS) of the above equations. Once
the first-order variables are solved from the λ-order equa-
tions, these source terms can be regarded as known. The
above λ2-order equations are then a system of inhomoge-
neous linear partial differential equations, which can be
solved again in the Fourier space.

III. MAGNETIZED LINEAR WAVES

Before discussing three-wave interactions, it is useful
to familiarize with linear waves in magnetized warm-fluid
plasmas. In this section, I will review the eigenvalues, the
eigenvectors, and the eigenenergies of linear waves. Dur-
ing this review, I will also introduce important concepts
that will become indispensable in the next section.

A. First-order equations

Now let us solve the first-order equations. Since the
equations are linear, the general solution is a superposi-
tion of plane waves. In particular, the first-order electric
and magnetic fields are given by

E1 =
1

2

∑
k∈K1

E1,ke
iθk , (22)

B1 =
1

2

∑
k∈K1

k× E1,k

ωk
eiθk , (23)

where Faraday’s law has been used to relate B1 to E1.
In the above spectral expansion, θk = k ·x0−ωkt0 is the
fast varying phase, E1,k(x1, t1, . . . ) is the slowly varying
amplitude, and the summation is over a discrete spec-
trum K1. Since the electric field is real-valued, whenever
k ∈ K1, we must also have −k ∈ K1. Moreover, we
need the reality conditions ω−k = −ωk and E−k = E∗k,
where the star denotes complex conjugation. It is easy to
check that once these conditions are satisfied, B1 is also
real-valued.

The three fluid variables can also be expressed in terms
of the electric field. The pressure equation is easy to
solve, which gives a simple linear relation

ps1 = εsns1, (24)

where the constant εs := ξsps0/ns0 has the unit of energy.
Assuming ideal gas law p0 = n0kBT0, then ε = ξkBT0 is
proportional to the temperature. Substituting the above
relation into the momentum equation, vs1 and ns1 can
be solved in conjunction with the continuity equation:

vs1 =
ies

2ms

∑
k∈K1

F̂s,kE1,k

ωk
eiθk , (25)

ns1 =
iesns0
2ms

∑
k∈K1

k · F̂s,kE1,k

ω2
k

eiθk . (26)

Here, the solution is expressed in terms the warm forcing
operator F̂s,k : C3 → C3, which is a linear operator and
is specific to each species and wave vector.

To convert the above symbolic expressions to actual
solutions, we need to find an explicit expression for the
warm forcing operator. Using the momentum equation,
the warm forcing operator satisfies

F̂s,kZ = Z + iβs,k(F̂s,kZ)× b +
u2
s

ω2
k

k(k · F̂s,kZ), (27)

for any Z ∈ C3. In the above equation, βs,k = Ωs/ωk

is the magnetization ratio, where Ωs = esB0/ms is
the gyrofrequency; b is the unit vector along B0; and
u2
s := εs/ms = ξskBTs0/ms is the thermal speed. It

is easy to see that the inverse operator satisfies F̂−1
ij =

δij − iβεijlbl − u2kikj/ω
2, where εijl is the Levi-Civita

symbol and I have abbreviated all subscripts for simplic-
ity. Inverting F̂−1, the forcing operator can be expressed
as the composite:

F̂ = FP = P†F, (28)

where F is the cold forcing operator and P is the pressure
operator. The cold forcing operator acts on any complex
vector by [60]

FZ = γ2[Z + iβZ× b− β2(Z · b)b], (29)

where γ2 = 1/(1− β2) is the magnetization factor. It is
easy to check that F recovers the identity operator in the
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unmagnetized limit. The pressure operator acts on any
complex vector by

PZ = Z + γ̂2 u
2

ω2
k(k · FZ), (30)

where γ̂2 = 1/(1 − β̂2) is the thermal factor and β̂2 =
u2(k · Fk)/ω2 is the thermal ratio. It is easy to check
that P recovers the identity operator in the cold limit.
Using k ·Fk = γ2[k2− β2(k ·b)2], it is a straightforward

calculation to verify that F̂ given by the above formulas
satisfies Eq. (27). The warm forcing operator inherits a
number of properties from F and P. First, since F† = F
is self-adjoint with respect to vector inner products, the
warm forcing operator F̂† = F̂ is also self-adjoint, al-
though P† 6= P is not. Second, since F−k = F∗k, the pres-
sure operator P−k = P∗k and the warm forcing operator

F̂−k = F̂∗k. It is then easy to see that the fluid variables
given by Eqs.(24)-(26) are real-valued.

Having expressed all fluctuations in terms of E1,k,
the only remaining equation is the Ampère’s law, which
can be use to constrain the electric field. Substituting
Eqs. (23) and (25) into Eq. (16), each Fourier compo-
nent satisfies the matrix equation DkE1,k = 0, where the
dispersion tensor

Dijk = (ω2
k − c2k2)δij + c2kikj −

∑
s

ω2
psF̂

ij
s,k. (31)

Here, ω2
ps = e2

sns0/ε0ms is the plasma frequency of
species s. From the above first-order electric-field equa-
tion, it is easy to see that the forcing operator F̂s,k is
related to the linear susceptibility by

χs,k = −
ω2
ps

ω2
k

F̂s,k. (32)

Although the susceptibility is commonly used in linear
wave theories, the forcing operator is more convenient
when discussing nonlinear wave-wave couplings.

B. Dispersion relations

The first-order electric-field equation has nonzero so-
lutions if and only if the dispersion tensor is degenerate.
The degeneracy condition gives the dispersion relation
detDk = 0, which constrains the wave frequency ωk as a
function of the wavevector. For each wavevector k, there
can be multiple solutions of ωk, each living on a separate
dispersion branch.

When evaluating determinant of the dispersion ten-
sor, it is convenient to use its matrix representations. A
particularly convenient coordinate is the field coordinate
(x̂, ŷ, ẑ), in which B0 = (0, 0, B0) is aligned with ẑ and
k = k(sin θ, 0, cos θ) is in the x-z plane. In this coordi-

nate, the warm forcing operator F̂ is represented by the

Hermitian matrix

F̂=

 γ2(1+γ2ρ2s2
θ) iβγ2(1+γ2ρ2s2

θ) γ2ρ2sθcθ
−iβγ2(1+γ2ρ2s2

θ) γ
2(1+β2γ2ρ2s2

θ) −iβγ2ρ2sθcθ
γ2ρ2sθcθ iβγ2ρ2sθcθ 1+ρ2c2

θ

,
(33)

where the reduced thermal factor ρ2 = γ̂2u2k2/ω2, and
I have abbreviated sθ := sin θ and cθ := cos θ. Summing
over responses of all plasma species, the dispersion tensor
is represented by the matrix

D
ω2

=

 S−n2c2
θ −iD (n2 − T )sθcθ

iD S+T s2
θ−n2 iEsθcθ

(n2−T )sθcθ −iEsθcθ P−n2s2
θ

 ,(34)

where n = ck/ω is the refractive index, and components
of the dielectric tensor are related to

S = 1−
∑
s

ω2
ps

ω2
γ2
s (1 + γ2

sρ
2
ss

2
θ), (35)

D =
∑
s

ω2
ps

ω2
βsγ

2
s (1 + γ2

sρ
2
ss

2
θ), (36)

P = 1−
∑
s

ω2
ps

ω2
(1 + ρ2

sc
2
θ), (37)

T =
∑
s

ω2
ps

ω2
γ2
sρ

2
s, (38)

E =
∑
s

ω2
ps

ω2
βsγ

2
sρ

2
s. (39)

The above expressions recover the standard Stix sym-
bols in the cold limit, where ρ2 becomes zero and the
k-dependence of the dielectric tensor vanishes.

Taking determinant of the dispersion matrix, the wave
dispersion relation can be written in the form

An4 −Bn2 + C = 0. (40)

Coefficients in the above equation depend on n2 as well
as ω due to thermal effects:

A = S′s2
θ + P ′c2

θ, (41)

B = R′L′s2
θ + S′P ′(1 + c2

θ) + 2TA, (42)

C = P ′R′L′ + T (B − TA) + E(2P ′D′ − EA)c2
θ. (43)

Here, S′ = S − T c2
θ, D

′ = D + Ec2
θ, and P ′ = P − T s2

θ.
Analogous to the cold case, R′ = S′ + D′ and L′ =
S′ − D′. If we formally treat Eq. (40) as a quadratic
equation for n2, the determinant F 2 = B2 − 4AC =
(R′L′ − S′P ′)2s4

θ + 4(D′P ′ − EA)2c2
θ ≥ 0. The formal

solutions n2 = (B ± F )/2A then give two implicit equa-
tions for n2 as a function of the wave frequency. In the
limit ck → 0, thermal effects vanish, and the asymptotic
dispersion relation is discussed in Appendix A.

A numerically robust procedure for evaluating the dis-
persion relation is to converted it to a polynomial equa-
tion for ω2, using which wave frequencies can be solved
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FIG. 1. Wave dispersion relations (a) and polarization an-
gles (b) in magnetized warm-fluid electron-ion plasma when
〈k,B0〉 = 30◦. The two electromagnetic (EM) waves are el-
liptically polarized R wave (blue) and L wave (red), which
become transverse and approach the light cone ω = ck when
ck → ∞. The other four branches are plasma waves, which
become longitudinal when ck → ∞. In this limit and when
〈k,B0〉 → 90◦, the yellow branch (P) is the upper-hybrid
(UH) wave and the purple branch is the lower-hybrid (LH)
wave. In the opposite limit ck → 0, the purple branch is
the fast (F) wave, the green branch is the Alfvén (A) wave,
and the cyan branch is the slow (S) wave. For all disper-
sion branches to be visible on the same scale (1012 rad/s),
the mass ratio mi/me = 5 is artificial. The plasma den-
sity is ne = ni = 1018 cm−3; the plasma temperature
is Te = Ti = 3.2 keV; the polytropic index is adiabatic
ξe = ξi = 3; the magnetic field is B0 = 2.5 MG such that
|Ωe|/ωpe ≈ 0.8 and vA/cs ≈ 4, where vA is the Alfvén speed
and cs is the sound speed.

as functions of the wavevector (Fig. 1a). To see what
multiplicative prefactor is needed, notice that the ra-
tional functions A, B, and C have a pole at ω2 = 0.
In addition, each warm species contribute two poles at
ω4 − (Ω2

s + u2
sk

2)ω2 + Ω2
su

2
sk

2c2
θ = 0. One of these poles

becomes degenerate with the ω2 = 0 pole either when
the species is cold, in which case the other pole becomes
the magnetic pole ω2 − Ω2

s = 0, or when the species is
unmagnetized, in which case the other pole becomes the
thermal pole ω2 − u2

sk
2 = 0. For parallel wave propa-

gation, c2
θ = 1, so the magnetic and the thermal poles

decouple; for perpendicular wave propagation, c2
θ = 0, so

one pole becomes ω2 = 0 while the other pole becomes
the hybrid pole ω2 − Ω2

s − u2
sk

2 = 0; the two poles are
otherwise mixed at general angles of propagation. After
multiplying the minimal pole-removing prefactor on both
sides of Eq. (40), it becomes a polynomial equation for ω2

of degree N . For an unmagnetized plasma N = 3 + Nc,
where Nc = Nt + sgn(Ns − Nt) − 1 is the number of
sound waves. Here, Ns is the total number of plasma
species, Nt is the number of warm species, and sgn is the
sign function. When the plasma becomes magnetized,
N = 3 + Nc + Ns, because each species contributes an
additional cyclotron resonance. At general propagation

angles, the dispersion relation is constituted of N sepa-
rate branches with hybrid characteristics.

C. Polarization of eigenmodes

Once the dispersion relation is satisfied, the first-order
electric-field equation has nontrivial solutions. The so-
lution space is a one-dimensional vector space when
ωk is nondegenerate. In this case, the vector space is
E1,k = E1,kek, where E1,k ∈ C is an arbitrary complex

scalar and the unit polarization vector e†kek = 1 is com-
pletely specified, up to the U(1) symmetry, by two po-
larization angles on the unit sphere.

It is physically meaningful to specify the two polariza-
tion angles in relation to the wavevector and the mag-
netic field. When k and B0 are not aligned, the unit

vector can be decomposed as e = k̂ek− iŷey+(k̂× ŷ)e×,
where the unit vector ŷ//B0×k. In spherical coordinate,
components of e can be written as

(ek, ey, e×) = (cosφ, sinφ sinψ, sinφ cosψ). (44)

The wave is longitudinal when φ = 0◦ and transverse
when φ = 90◦; the wave electric field is in the k-B0

plane when ψ = 0◦ and at maximum angle with the
plane when ψ = 90◦. Since arbitrary scaling is allowed,
the unit vector e is defined on the projective space. In
terms of φ and ψ, the wave polarization is invariant un-
der transformations Ψ± : (φ, ψ) → (−φ, ψ ± 180◦) and
Φ± : (φ, ψ)→ (φ±180◦, ψ). since the polarization angles
are periodic in 360◦, the wave polarization is invariant
under actions of Ψ± and Φ± in arbitrary compositions.

To compute polarization angles for each eigenmode,
it is more convenient to use the wave coordinate, which

is related to the field coordinate by (k̂,−iŷ, k̂ × ŷ) =
(x̂, ŷ, ẑ)Ly(θ), where Ly(θ) is a left-handed rotation
around ŷ → −iŷ by angle θ. In the wave coordinate,
the dispersion tensor is represented by a different matrix
D′ = L−1DL, which can be written explicitly as

D′

ω2
=

S′s2
θ+P ′c2

θ −D′sθ (P ′−S′)sθcθ
−D′sθ S′+T−n2 (D′−E)cθ

(P ′−S′)sθcθ (D′−E)cθ S′c2
θ+P ′s2

θ+T−n2

.(45)

The degenerate matrix equation D′e = 0 is solved when
the polarization angles satisfy

tanψ =
[(n2 − T )D′ − S′E]cθ

(n2 − T )S′ −R′L′ −D′Ec2
θ

, (46)

tanφ cosψ =
(P ′D′ − EA)cθ

[(n2−P ′−T )D′+(P ′−S′)Ec2
θ]sθ

. (47)

These polarization angles can be computed after solving
ω as a function of ck, using which the refractive index
and the dispersion symbols can be evaluated.

A numerically robust procedure for computing the unit
polarization vector is by directly solving the degenerate
matrix equation. Denoting d′i the i-the row vector of the
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matrix D′, then e ∝ α1d
′
2×d′3 +α2d

′
3×d′1 +α3d

′
1×d′2,

where αi is an arbitrary parameter. Since D′ is a rank-2
matrix when the dispersion relation is satisfied, the three
vectors on the RHS are parallel, and at most two of them
can be simultaneously zero when the plasma is magne-
tized. By summing up the three terms, it is guaranteed
that the RHS is never a zero vector as long as special
values of αi are avoided. Then, the unit polarization
vector can be determined after normalization. Having
obtained e in Cartesian coordinate, the polarization an-
gles in spherical coordinate can be easily determined. An
example is shown in Fig. 1b, where φ (solid lines) and ψ
(dashed lines) are plotted as functions of wave frequency.

While the above procedure is generally applicable, it is
instructive to note two special propagation angles. When
θ = 0◦ or 90◦, Eq. (46) and (47) become indeterminate,
even though the polarization vector remains well defined.
When θ = 0◦, the longitudinal electrostatic modes, which
satisfy P = 0, decouple with the transverse modes. One
set of transverse modes satisfy n2 = R and are right-
handed (R) circularly polarized with tanψ = 1; the other
set of transverse modes satisfy n2 = L and are left-
handed (L) circularly polarized with tanψ = −1. When
θ = 90◦, the ordinary (O) wave decouples. The O wave
is unmagnetized EM wave, which satisfies n2 = P with
the wave electric field along B0. The remaining modes
are the extraordinary (X) wave hybridized with plasma
waves, which satisfies n2 = RL/S + T with tanφ = S/D
neither transverse nor longitudinal. For these modes
cosψ = 0, and the wave electric field is always perpen-
dicular to the background magnetic field.

D. Energy of linear waves

Inherited from the nonlinear fluid-Maxwell equations,
the linear system also conserves energy locally. The en-
ergy density of the linear system is of λ2 order:

U2 =
ε0E

2
1

2
+

B2
1

2µ0
+
∑
s

1

2

(
msns0v

2
s1 +

εsn
2
s1

ns0

)
, (48)

where the last term comes from ps2 as will become clear
later when I discuss λ2-order equations. The energy flux
of the linear system is

S2 =
1

µ0
E1 ×B1 +

∑
s

εsns1vs1, (49)

where the last term is due to thermal flux and kinetic
flux does not contribute at λ2 order. Using the first-order
equations (12)-(16), it is a straightforward calculation to
show the energy conservation law on fast scales:

∂t0U2 +∇0 · S2 = 0. (50)

Notice that the conservation law mixes all linear waves
that are present in the system. In other words, not only
do linear waves contribute individually, but their inter-
ference also contributes to the total energy.

Now let us focus on the energy of a single linear wave.
Using the Fourier expansion E1 = (Eeiθ + E∗e−iθ)/2,
E2

1 = (E2e2iθ + 2EE∗ + E∗2e−2iθ)/4. We see the elec-
tric energy has a rapidly-oscillating part and a slowly-
varying part. Only the later remains after averaging
on t0 and x0 scales, namely, 〈E2

1〉0 = EE∗/2. Fol-
lowing similar arguments, the averaged magnetic en-
ergy can be computed using Fourier expansion Eq. (23).

Then, the averaged field energy density is ε0E†i (2δij −∑
s ω

2
psF̂ijs /ω2)Ej/4, where I have used DkE1,k = 0 and

Eq. (31). Similarly, the averaged kinetic energy density

is ε0
∑
s ω

2
psE
†
i (F̂2

s)
ijEj/4ω2, where I have used the self-

adjoint property of F̂s. Finally, the averaged thermal

energy density is ε0
∑
s ω

2
psu

2
sE
†
i F̂ias kakbF̂bjs Ej/4ω4. Sum-

ming up the three terms, the total energy density of the
linear wave can be written as

〈U2〉0 =
ε0
4
E†iH

ijEj . (51)

The Hamiltonian H of the linear wave is related to the
dielectric tensor ε = I +

∑
s χs by the usual relation

ωH = ∂(ω2ε)/∂ω, where the partial derivative is at fixed

k. Since the susceptibility χs is related to F̂s by Eq. (32),
the wave energy operator

H =
1

ω

∂D
∂ω

= 2I−
∑
s

ω2
ps

ω

∂F̂s
∂ω

, (52)

where I is the idensity operator and the partial deriva-
tive is again at fixed k. To see the connection between
Eqs. (51) and (52), note the following identity

ω
∂F̂ij
∂ω

= F̂ij − F̂2
ij −

u2

ω2
F̂iakakbF̂bj . (53)

An easy way to show the above identity is to take pa-
tial derivative on both sides of F̂F̂−1 = I, then ∂F̂/∂ω =

−F̂(∂F̂−1/∂ω)F̂. Using the expression of the inverse op-

erator, it is easy to see ω(∂F̂−1/∂ω)Z = iβZ×b+2u2k(k·
Z)/ω2. Replacing Z by F̂Z, and using the Eq. (27), the
above identity is then obvious.

The averaged wave energy depends on the wave enve-
lope. To leading order, the wave envelope is a function of
x1−vgt1, where vig = ∂ω/∂ki is the group velocity of the
linear wave. Consequently, the averaged energy satisfies
the advection equation on slow scales:

∂t1〈U2〉0 + vg · ∇1〈U2〉0 = 0. (54)

This equation is consistent with the λ3-order conserva-
tion law if and only if

〈S2〉0 = vg〈U2〉0. (55)

Now let me show this is indeed the case by direct calcu-
lations. The averaged Poynting flux is ε0c

2E†a(2kiδab −
kaδib − kbδia)Eb/4ω, and the averaged thermal flux is

ε0
∑
s ω

2
psE†a(∂F̂abs /∂ki)Eb/4ω. For the thermal flux, I
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have used the identity that the partial derivative of F̂
at fixed ω is given by

∂F̂ab

∂ki
=
u2

ω2
kl(F̂aiF̂lb + F̂alF̂ib), (56)

which can be shown similarly to Eq. (53). Summing the
Poynting and the thermal fluxes, Eq. (55) is satisfied
whenever ωvigE∗aHabEb = E∗a [c2(2kiδab − kaδib − kbδia) +∑
s ω

2
ps∂F̂abs /∂ki]Eb. This equation is nothing other than

E∗adkiDabEb = 0, which is trivially satisfied as a conse-
quence of DkE1,k = 0 for all linear eigenmodes, whose
frequency satisfies the dispersion relation and polariza-
tion solves the first-order electric-field equation. I have
thus verified that the envelope of a single linear wave
advects at the wave group velocity as expected.

IV. MAGNETIZED THREE-WAVE
INTERACTIONS

Building upon a thorough understanding of linear
waves, we are now ready to study their interactions.
Due to these interactions, waves become coupled. Conse-
quently, instead of passing through each other unevent-
fully with only linear superpositions, waves now actually
“collide” and exchange energy and momentum. In this
section, I will investigate couplings mediated by three-
wave interactions. These lowest-order interactions are
usually the strongest whenever resonance conditions can
be satisfied.

A. Second-order equations

The λ2-order fluid-Maxwell’s equations (17)-(21) are
linear partial differential equations for E2, B2, ps2, ns2,
and vs2 with source terms. The general solution is again
a superposition of plane waves, whose spectrum is com-
pletely determined by existing linear waves in the system.

Let us express all second-order fluctuations in terms of
electric-field fluctuations:

E2 =
1

2

∑
k∈K2

E2,ke
iθk , (57)

where the λ2-order spectrum K2 and amplitudes E2,k will
be determined later. Using the second-order Faraday’s
law [Eq. (20)], the λ2-order magnetic field is

B2 =
1

2

∑
k∈K2

k× E2,k

ωk
eiθk

+
1

2

∑
p∈K1

(∇1 × E1,p

iωp
+

p× ∂t1E1,p

iω2
p

)
eiθp . (58)

The second line involves slow derivatives of linear wave
amplitudes, which are unknown at this point.

To solve the fluid equations, let us first express ps2 in
terms of ns2. Using ps1 = εsns1 [Eq. (24)], many terms in
the second-order pressure equation cancels. Integrating
Eq. (19) on t0 time scale, the second-order pressure is

ps2 = εs

(
ns2 +

ξs − 1

2

n2
s1

ns0

)
. (59)

Notice that due to quadratic nonlinearities, the average
〈ps2〉0 is in general nonzero. We see that ps2 is related to
n2
s1, as anticipated from the energy of linear waves.
Next, let us express ns2 in terms of vs2. Suppose

the Fourier expansion of the second-order velocity is
vs2 =

∑
k exp(iθk)Vs2,k/2. Then, substituting vs1 and

ns1 [Eqs. (25) and (26)] into the second-order continuity
equation [Eq. (17)], the λ2-order density is

ns2
ns0

=
1

2

∑
k

k · Vs2,k
ωk

eiθk

+
es

2ms

∑
p∈K1

(p · F̂s,p∂t1E1,p

ω3
p

+
∇1 · F̂s,pE1,p

ω2
p

)
eiθp

− e2
s

4m2
s

∑
p,q∈K1

(p + q) ·Cs
p,q

(ωp + ωq)ωq
eiθp+iθq , (60)

where summation on the first line is over the spectrum of
vs2. Since thermal effect does not enter through the con-
tinuity equation directly, the above expression is identical
to the cold-fluid case, where the current beating is

Cs
p,q =

(F̂s,pE1,p)(q · F̂s,qE1,q)

ωpωq
. (61)

The current beating comes from the nonlinearty ns1vs1,
and thermal effects enter only indirectly through the
warm forcing operator.

Eliminating ps2 and ns2, we can now solve for vs2. Us-
ing Eq. (13) to simplify Eq. (18), the equation is of the
form

∑
k(V2,k− iβV2,k×b−u2kk ·V2,k/ω

2
k) exp(iθk) =∑

k Zk exp(iθk), where I have suppressed the species in-
dex for simplicity. Then, using Eq. (27) of the warm
forcing operator, the solution is

v2 =
ie

2m

∑
k∈K2

F̂kE2,k

ωk
eiθk (62)

+
e

2m

∑
p∈K1

F̂p

ω2
p

[(
I+

u2pp

ω2
p

)
∂t1+

u2(p∇1+∇1p)

ωp

]
F̂pE1,pe

iθp

− e2

4m2

∑
p,q∈K1

F̂p+q(Lp,q + Tp,q + Up,q)

ωp + ωq
eiθp+iθq .

The spectrum V2,k can now be read out from the above
equation, and explicit expressions of ns2 and ps2 can then
be obtained. On the third line of Eq. (62), the first term
Lp,q is the longitudinal beating introduced by the v1×B1

nonlinearity:

Lsp,q =
(F̂s,pE1,p)× (q× E1,q)

ωpωq
. (63)
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The second term Tp,q is the turbulent beating introduced
by the v1 · ∇0v1 nonlinearity:

Ts
p,q =

(F̂s,pE1,p)(p · F̂s,qE1,q)

ωpωq
. (64)

These two terms are the same as in the cold case, except
that the cold forcing operator is now replaced by the
warm forcing operator. Additionally, the thermal effect
introduces thermal beating as a third term:

Us
p,q =

u2
s

ωpωq

[ (p + q)(p + q)

1 + ωq/ωp
+(ξs−2)pp

]
·Cs

p,q, (65)

which is caused by nonlinearities in ns2 and ps2. The tur-
bulent and thermal beatings can be rewritten in terms of
the velocity perturbation V1,k. These beatings are purely
fluid effects, which exist even when the fluid is neutral
(Appendix B). On the other hand, the longitudinal and
current beatings are genuine electromagnetic nonlinear-
ities, whereby transverse EM waves in the vacuum be-
come mixed with the otherwise longitudinal motion of
the plasma.

Having expressed all fluctuations in terms of electric-
field fluctuations, we can now solve for the electric field.
Substituting in B2 and vs2 into Eq. (21), the λ2-order
electric-field equation can be grouped into four sets of
terms, involving E2,k, ∂t1E1,k, ∇1E1,k, and E1,pE1,q.
Differentiating on t0 scale, the first set simplifies to
DkE2,k using Eq. (31). The second set simplifies to
(∂Dk/∂ωk)∂t1E1,k, using DkE1,k = 0 and Eq. (53). The
third set simplifies to −(∂Dk/∂k)·∇1E1,k, using Eq. (56).
Finally, the fourth set encapsulates all beatings. With all
these simplifications, the second-order electric-field equa-
tion is then ∑

k∈K2

DkE2,ke
iθk

+ i
∑
k∈K1

(∂Dk

∂ωk
∂t1 −

∂Dk

∂k
· ∇1

)
E1,ke

iθk (66)

=
i

2

∑
p,q∈K1

Sp,qe
iθp+iθq ,

where the scattering strength summed over all plasma
species is

Sp,q =
∑
s

esω
2
ps

2ms

(
Rs

p,q + Rs
q,p

)
. (67)

The above equation is formally identical to the cold case,
except that the dispersion tensor D now contains thermal
modifications. In addition, thermal effects directly enter
the quadratic response of each species:

Rs
p,q = F̂s,p+q

(
Lsp,q+Ts

p,q+Us
p,q

)
+
(
1+

ωp
ωq

)
Cs

p,q. (68)

The thermal beating Us
p,q vanishes when the thermal

speed u2
s → 0, while the three other beatings remain

finite when the species becomes cold.

Since the second-order electric-field equation must be
satisfied for each Fourier component, the equation can
be split into two sets. The first set involves only λ-order
spectrum K1. Suppose within the spectral bandwidths,
k,p,q ∈ K1 satisfy the three-wave resonance conditions
k = p + q and ωk = ωp + ωq, then the on-shell equation
is of the form(∂Dk

∂ωk
∂t1 −

∂Dk

∂k
· ∇1

)
E1,k = Sp,q. (69)

The RHS is simply zero if k ∈ K1 is not in resonance
with other waves. The second set of equations generate
K2 from K1. To aviod secular behavior, we can demand
that K2 ∩K1 is the empty set, so that all k ∈ K2 is
generated by off-resonance beatings. Then, each off-shell
equation is of the form

DkE2,k = iSp,q, (70)

where k = p + q and ωk = ωp + ωq are still satisfied,
except that k /∈ K1 is no longer a linear eigenmode. In
other words, the wave dispersion relation is not satisfied
for off-shell waves, so the operator Dk can be inverted
to give E2,k = iD−1

k Sp,q. Thus, the λ2-order spectrum
is completely determined by the λ-order spectrum. Af-
ter solving both the on-shell and the off-shell equations,
B2,vs2, ns2, ps2 can be determined and the second-order
equations are then solved.

Now that the λ2-order equations have been formally
solved, it is important to note Sp,q satisfies a number
of identities, which are required in order for the solu-
tions to be valid. First, from its definition, it is obvi-
ous that Sp,q = Sq,p is symmetric, which is expected
from the symmetry of three-wave interactions. Second,
it is a straightforward calculation to check that S∗p,q =
−S−q,−p satisfies the reality condition. Consequently,
all second-order fluctuations are real-valued. Finally,
Sp,−p = 0 is secular-free. In other words, a wave does
not beat with itself to generate a mode with both ω = 0
and k = 0. To show the last identity, notice that for each
species Up,−p+U−p,p = 0. Moreover, since ω−p = −ωp,

we have Rp,−p + R−p,p = F̂0(Lp,−p + L−p,p + Tp,−p +

T−p,p) = −iβpF̂0[(p · F̂∗pE∗p)(F̂pEp × b) + c.c.]/ω2
p. To

see what F̂0 is, we can take limits ω → 0 and k → 0.
Although F̂0 depends on the how these two limits are
taken, Rp,−p +R−p,p = 0 is independent of the limiting
procedure. Therefore, Sp,−p = 0 is always satisfied.

B. On-shell equations and action conservation

While the off-shell equations are easy to solve, the on-
shell equations are where the nontrivial dynamics is con-
tained. These equations are nonlinearly-coupled advec-
tion equations. Due to the vector nature of these equa-
tions, not only does wave amplitude change, but the wave
polarization can also evolve. Moreover, the wave phase,



10

trajectory, and angular momentum are usually altered as
well due to three-wave interactions.

Since the wave polarization can change in general, it is
important to verify whether the on-shell equation is com-
patible with the first-order equation. Suppose DE = 0 is
satisfied over the entire space before the waves encounter,
then DE = 0 will be satisfied for all time if D∂t1E = 0
for all x1. Using the on-shell equation (69), this compat-
ibility condition is satisfied if

D
(∂D
∂ω

)−1(∂D
∂k
· ∇1E + S

)
= 0, (71)

where I have used the fact that the Hamiltonian ωH =
∂D/∂ω is invertible. Since the dispersion operator D is
degenerate for linear eigenmodes, the above condition
only requires that (∂D/∂k)·∇1E+S is in the null space of
D(∂D/∂ω)−1. Notice that the rank of D is at most two,
so the above condition imposes at most two constraints.
Therefore, there always remains degree of freedom allow-
ing E to evolve in time.

The compatibility condition can be used to remove
the redundant degree of freedom of the on-shell equa-
tion. Taking total k derivative on both sides of DE = 0,
where ω and E are now regarded as functions of k, we
have (dD/dk)E+DdE/dk = 0. Here, the total derivative
of the dispersion tensor is dD/dk = vg∂D/∂ω + ∂D/∂k,
where vg = ∂ω/∂k is the wave group velocity. Using the
wave energy operator [Eq. (52)], the on-shell equation
(69) becomes ωH(∂t1 + vg · ∇1)E +D∂ldE/dkl = S. The
compatibility condition Eq. (71) then guarantees that the
advection keeps E inside the eigenspace. To be more
specific, denoting Π the projection operator into the null
space of D, then after applying the compatibility condi-
tion, the on-shell equation is reduced to

ωH(∂t1 + vg · ∇1)E = Sπ, (72)

where Sπ = HΠH−1S is the eigen projection of S. This
somewhat abstract notation is illustrated using cold un-
magnetized plasma as an example in Appendix C. Since
E†D = 0 for eigenmodes, E†Sπ = E†S. We see only
the eigen projection of the scattering strength affects the
evolution of the linear wave.

Now let us focus on the simplest nontrivial case,
namely, the resonant interaction between three on-shell
waves. Without loss of generality, the resonance condi-
tions can be written as

k1 = k2 + k3, (73)

ω1 = ω2 + ω3, (74)

where ωi are positive. For simplicity, I will abbreviate
Ej := E1,kj . Moreover, since the slow dynamics is on
t1 and x1 scales only, I will suppress the index of the
temporal and spatial scales. Then, the three on-shell
equations can be written as

ω1H1dE1 = Sπ2,3, (75)

ω2H2dE2 = Sπ3̄,1, (76)

ω3H3dE3 = Sπ1,2̄, (77)

where j̄ := −j, and d := ∂t + vg · ∇ is the convective
derivative at respective wave group velocities. Notice
that the group velocity vg is in general not aligned with
k when the plasma is magnetized.

What is nontrivial about the on-shell equations is that
they guarantee action conservation for resonant three-
wave interactions. The conservation laws are conse-
quences of the action identity

E1 · S2̄,3̄

ω2
1

=
E∗2 · S3̄,1

ω2
2

=
E∗3 · S1,2̄

ω2
3

. (78)

Using this identity, E†Sπ = E†S, and S−p,−q = −S∗p,q,
it is easy to show the action conservation laws

d
〈U1〉
ω1

= −d 〈U2〉
ω2

= −d 〈U3〉
ω3

, (79)

where 〈Uj〉 is the energy of wave j averaged on fast scales
[Eq. (51)]. The action conservation laws are manifesta-
tions of the Feynman rules of three-wave interactions [61]:
each quanta of wave “1” is converted to a quanta of wave
“2” and a quanta of wave “3”, or vice versa. Using the
action conservation laws and ω1 = ω2+ω3, the total wave
energy is also conserved:

d〈U1〉+ d〈U2〉+ d〈U3〉 = 0. (80)

Notice that the above conservation laws hold only when
the three waves are in resonance.

The action identity can be shown by direct calcula-
tions. During the calculation, one will encounter terms
like F∗1 ·F2, where Fj = F̂jEj . Such terms can be simpli-
fied using the following quadratic identity of the Forcing
operator:

(β1 − β2)F̂1F̂2 = β1F̂1P2 − β2P†1F̂2, (81)

which can be obtained from Eq. (28) using property of the
cold forcing operator [60]: (β1− β2)F1F2 = β1F1− β2F2.

A suite of similar identities can be obtained using F̂j̄ = F̂∗j
and F̂† = F̂. The product is then

F∗1 ·F2 =
ω1

ω3
(E∗1 ·F2)− ω2

ω3
(E2 ·F∗1 ) (82)

+
u2

ω3

[ (k1 ·F∗1 )(k1 ·F2)

ω1
− (k2 ·F∗1 )(k2 ·F2)

ω2

]
,

where I have used property of the pressure operator:
PZ = Z+ u2(k · F̂Z)k/ω2. The action identity [Eq. (78)]
can then be shown by straightforward calculation of
E1 · (R2̄,3̄ + R3̄,2̄)/ω2

1 , and comparing it with the other
two terms of the same structure.

In fact, terms in the action identity can be organized
into a very simple and intuitive form:

cE1 · (Rs
2̄,3̄ + Rs

3̄,2̄)

ω2
1

=
E1E∗2E∗3
ω1ω2ω3

(
Θs + Φs

)
. (83)

Here, Ei is the scalar amplitude such that Ei = Eiei,
where ei is the unit polarization vector. In the above
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expression, Θs and Φs are the nondimensionalized elec-
tromagnetic and the thermal scattering strengths. The
electromagnetic scattering Θs is due to the P is(∂iAl)J

l
s

coupling in the Lagrangian [60], where Ps is the displace-
ment and Js is the current of species s in response to per-
turbations of the gauge field A. Same as the cold case,
the electromagnetic scattering contains six permutations:

Θs = Θs
1,2̄3̄ + Θs

2̄,3̄1 + Θs
3̄,12̄ + Θs

1,3̄2̄ + Θs
3̄,2̄1 + Θs

2̄,13̄. (84)

Each scattering channel, which satisfies Θs
i,j̄l̄

= Θs∗
ī,jl

is

given by the simple formula

Θs
i,jl =

1

ωj
(cki · fs,j)(ei · fs,l), (85)

where fs,j := F̂s,jej . The thermal scattering Φs is due
to warm-fluid effects, which is present even in neutral
fluids (Appendix B). The thermal scattering contains
four contributions

Φs = Φs0 + Φs1 + Φs2̄ + Φs3̄. (86)

The symmetric thermal scattering is formed by contract-
ing f with its own wave vector:

Φs0 = − (ξs − 2)u2
s

c2ω1ω2ω3
(ck1 ·fs,1)(ck2 ·f∗s,2)(ck3 ·f∗s,3). (87)

On the other hand, the skewed symmetric thermal scat-
tering, which satisfies Φs

j̄
= −Φsj , is formed by contract-

ing f with a common wave vector:

Φsj = − u2
s

c2ω1ω2ω3
(ckj ·fs,1)(ckj ·f∗s,2)(ckj ·f∗s,3). (88)

Since Φs is proportional to u2
s/c

2, it is usually very small,
otherwise a relativistic plasma model is required in the
first place. It is obvious that when the species is cold, the
thermal scattering vanishes and the three-wave scattering
reduces to purely electromagnetic scattering in the cold-
fluid case.

C. Coupling coefficient and growth rate

When polarization is not of concern, the on-shell equa-
tions can be reduced to scalar-amplitude equations called
the three-wave equations, which contain a single essential
parameter: the coupling coefficient. Denoting E = Ee,
we can define the wave energy coefficient

u =
1

2
e†He, (89)

such that the averaged wave energy 〈U〉 = ε0u|E|2/2. It
is then convenient to normalize the scalar amplitude by

a =
eE

mecω
u1/2, (90)

where e and me are the charge and mass of electrons.
With this normalization, the wave energy 〈U〉 ∝ ω2|a|2.
Notice that the decomposition E = Ee is not unique,
and we can always perform U(1) rotations E → Eeiα and
e→ ee−iα such that the vector amplitude E is invariant.
To remove this arbitrariness, we can impose the condi-
tion that E ∈ R is real-valued. Then, the decomposition
is unique up to the Z2 symmetry E → −E and e → −e.
With this reduced symmetry, the normalized scalar am-
plitude is also real-valued.

The equation for the normalized scalar amplitude
can be derived from the on-shell equations. Allowing
the polarization to evolve, the derivative d(Eu1/2) =
[e†Hd(Ee)+c.c.]/4u1/2. Then, the real-valued amplitude

evolves according to da1 = e(e†1S2,3+c.c.)/(4mecω
2
1u

1/2
1 ).

Using Eq. (67) for S2,3 and Eq. (83) for the inner prod-
uct, the normalized scalar amplitudes satisfy the follow-
ing three-wave equations:

da1 = −Γr
ω1
a2a3, (91)

da2 =
Γr
ω2
a1a3, (92)

da3 =
Γr
ω3
a1a2, (93)

where the convective derivatives are at respective group
velocities of the three waves. Due to the Z2 symme-
try, only the relative signs of the above equations are of
importance. The essential parameter of the three-wave
equations is the coupling coefficient Γr, which is the real
part of the complex-valued coupling coefficient

Γ =
∑
s

Zsω
2
ps(Θ

s + Φs)

4Ms(u1u2u3)1/2
. (94)

Here, Zs := es/e and Ms := ms/me are the normalized
charge and mass of species s. As a consequence of wave
interference, contributions of different plasma species add
up in the complex plane. Moreover, the three waves also
interfere. The three-wave interference depends on the
relative wave phase, whose change corresponds to a ro-
tation of Γ in the complex plane. When the three waves
are phase locked, Γr = |Γ| is maximized. In this case,
the beat wave of a1 and a2 are in phase with a3, so the
plasma responses constructively interfere. The above for-
mula is formally identical to the cold case, except for the
extra Φ term due to thermal scattering.

The three-wave coupling may be small for three dis-
tinct reasons [62]. First, the coupling coefficient Γ may be
interference-suppressed because terms in the summation
cancel one another. In this case, although scattering due
to each species is appreciable, the nonlinear responses are
of opposite phases and destructively interfere. Second,
Γ may be polarization-suppressed because the numera-
tor of each terms is small. In this case, the wave vectors
and polarization vectors are at orthogonal angles, so that
vector inner products in Θs and Φs are small. Finally,
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Γ may be energy-suppressed because its denominator is
large. In this case, a large fraction of the wave energy is
kinetic or thermal, so the electromagnetic field amplitude
is small for given wave energy.

A consequence of the three-wave interactions is the
parametric decay instability. During the instability, a
large amplitude pump wave a1 decays to the frequency-
downshifted daughter waves a2 and a3, whose relative
phases are automatically locked. In the linear regime of
parametric interaction, a1 barely changes and a2 and a3

grow almost exponentially with growth rate

γ0 =
|Γa1|√
ω2ω3

. (95)

The actual growth rate observed in experiments are likely
influenced by wave damping, which includes both colli-
sional and collisionless damping. Damping effects can be
important and may be introduced phenomenologically in
the three-wave equations. However, the ideal-fluid model
does not capture damping self-consistently.

The growth rate may be compared to that of Raman
backscattering γR =

√
ω1ωp|a1|/2 in cold unmagnetized

plasmas of the same density, where ω2
p =

∑
s ω

2
ps is the

total plasma frequency. We can write the growth rate
γ0 = γRM, then

M = 2
|Γ|
ω2
p

( ω3
p

ω1ω2ω3

)1/2

. (96)

The normalized growth rate is now symmetric with re-
spect to the three waves, and is proportional to the cou-
pling coefficient up to some kinematic factors. Since
Γ ∼ ω2

p, the normalized growth rate is zero in the limit
ωp → 0. This is expected because there is no three-wave
coupling in the vacuum.

V. EXAMPLES

The above general theory is applicable to a discrete
spectrum of weakly-damped and weakly-coupled waves
in magnetized warm-fluid plasmas. The waves can prop-
agate in any directions and have arbitrary frequencies.
An example of resonant interaction is shown in Fig. 2,
where a1 is on the L branch, a2 is on the P branch, and
a3 is on the F branch. The matching of resonance con-
ditions in the Fourier space is shown in the inset for
collimated scattering. Also shown in the inset is the
interaction geometry in the configuration space, where

〈k̂1,B0〉 is fixed at 30◦, while k̂2 has polar angle θ2

and azimuthal angle φ2. Due to mirror symmetry, the
frequency downshift ∆ω = ω2 − ω1 is plotted only for
the western hemisphere (Fig. 2a), while the normalized
growth rateM is shown only for the eastern hemisphere
(Fig. 2b). Plasma parameters used in this example are
the same as in Fig. 1. The pump wave (marked by green
dot) has frequency ω1 = 75 Trad/s, which corresponds to

FIG. 2. Maps of frequency downshift (a) and normalized
growth rate (b) when an L wave decays to P and F daughter
waves (insets). Plasma parameters are the same as in Fig. 1.
The pump wave (green dot) has frequency ω1 = 75 Trad/s,
and propagates at θ1 = 30◦ with respect to B0. The P-
daughter wave propagates at polar angle θ2 and azimuthal
angle φ2. Due to the presence of B0, backscattering is not
the strongest. Moreover, special angles exist where the cou-
pling is suppressed.

ck1 ≈ 51.54 Trad/s. Due to the presence of the magnetic
field, the coupling has intricate angular dependence.

A numerically robust procedure for evaluating the cou-
pling coefficient and the growth rate is as follows. First,
imagine we launch a pump wave with frequency ω1 in di-

rection k̂1 on a given branch. Then, the wave number k1

can be solved from the dispersion relation [Eq. (40)] using
procedures described in Sec. III B, and the unit polariza-
tion vector e1 [Eq. (44)] can be computed using proce-
dures described in Sec. III C. The matrix representation
of the warm forcing operator F̂1 [Eq. (33)] can be com-
puted and rotated into appropriate coordinate systems,
based in which the wave energy operator H1 [Eq. (52)]
and the wave energy coefficient u1 [Eq. (89)] can be eval-

uated. Second, suppose we place a detector along k̂2, we
can in principle detect all waves whose wave number is
such that ω1−ω2(k2) = ω3(k1−k2) is in resonance with
a third wave. For each pair of wave branches, solving the
above resonance condition gives k2, from which ω2 and e2

can be determined and F̂2 and u2 can be evaluated. At
the same time, k3 also becomes known, from which ω3,
e3, F̂3 and u3 can be calculated. Once these kinematic
quantities are determined, the electromagnetic scattering
strength Θs [Eq. (84)] and thermal scattering strength
Φs [Eq. (86)] can be evaluated for each plasma species.
Finally, the coupling coefficient Γ [Eq. (94)] and the nor-
malized growth rateM [Eq. (96)] can be computed. This
numerical procedure is used to obtain Fig. 2, and will be
further demonstrated below using two examples.

A. Scattering of high-frequency lasers

As the first example, let us consider coherent laser
scattering from plasmas. Controlling laser-plasma in-
teractions is of central importance for achieving iner-
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tial confinement fusion [63, 64] and developing plasma-
based optical components [65–67]. Over the past decades,
attention is focused on three-wave interactions in un-
magnetized plasmas [68]. However, in many situations,
large background magnetic fields turn out to be present
[69, 70]. How magnetic fields can affect collective laser
scattering was unknown until recently, when we the-
oretically predicted profound effects [24, 62, 71] and
demonstrated their existence using simulations [72, 73].
Through this example, our analysis will be further ex-
tended to the warm-fluid regime. Here, I will first show
that the well-known Raman and Brillouin scattering are
special cases of the general theory, which will then be
utilized to evaluate the previously-unknown coupling co-
efficient when lasers propagate at oblique angles in mag-
netized plasmas.

When the pump a1 and the seed a2 are high-frequency
lasers, whose frequencies ω1, ω2 � ωps, |Ωs|, they asymp-
tote to vacuum EM waves. In the high-frequency limit,

β, β̂ → 0, γ, γ̂ → 1, and the forcing operators F̂1, F̂2 ∼ I.
Since a3 is a plasma wave with much lower frequency, the
electromagnetic scattering is dominantly Θs ' −(ck3 ·
f∗s,3)(e1 · e∗2)/ω3 whenever e1 · e∗2 is of order unity. More-
over, since vacuum EM waves are transverse, the ther-

mal scattering becomes Φs ' u2
sk

2
3(ck3 · f∗s,3)(k̂3 · e1)(k̂3 ·

e∗2)/ω1ω2ω3. When the angle between k1 and k2 is not

too small, ck3 ∼ ω1, ω2 is always large, so e3 ∼ k̂3 is
approximately longitudinal. Then, P3e3 ' γ̂2

3e3 and
e3 · f∗3 ' γ2

3 γ̂
2
3(1 − β2

3 cos2 θ3), where θ3 = 〈k3,B0〉 and

the thermal ratio β̂2
3 ' u2k2

3γ
2
3(1 − β2

3 cos2 θ3)/ω2
3 . Fi-

nally, the wave energy coefficients u1, u2 ' 1, and u3 can
be evaluated with f3·f∗3 = γ̂4

3 [cos2 θ3 + γ4
3(1 +β2

3) sin2 θ3].
Using these asymptotics, the coupling coefficient and the
parametric growth rate can be approximated.

The above approximations clearly recover the cold
magnetized case [60], and they also recover the well-
known Raman and Brillouin scatterings in warm unmag-
netized plasmas. In the unmagnetized limit, β = 0,

γ = 1, and β̂2
3 = u2k2

3/ω
2
3 . Moreover, the plasma

waves are purely longitudinal with the dispersion rela-
tion ω2

3 =
∑
s ω

2
psγ̂

2
s,3. Then, e3 · f∗3 = γ̂2

3 , f3 · f∗3 = γ̂4
3 ,

and u3 =
∑
s ω

2
psγ̂

4
s,3/ω

2
3 . In most cases Φs � Θs,

because ω3 � ω1, ω2 ∼ ck3. For the same reason,
k3 ' 2k1 sin(α/2), where α is the angle between k1

and k2. Now let us focus on quasi-neutral electron-ion
plasma with Zi = 1. In this two-species plasma, there
are two longitudinal waves. The high-frequency wave is
the Langmuir wave, whose mediation gives rise to the
Raman scattering. Since λDk3 � 1 is required for weak
collisionless damping, the dispersion relation is ω2

3 ' ω2
p,

so β̂2
i,3, β̂

2
e,3 � 1, and γ̂2

i,3 ' γ̂2
e,3 ' 1. The normalized

unmagnetized Raman growth rate is then

MR ' sin
α

2

(ωp
ω3

)1/2(
1− 1

Mi

)
|e1 · e∗2|. (97)

We see responses by the two species destructively inter-
fere, and exact cancellation occurs in electron-positron

FIG. 3. Decay rates of a pump laser in a deuterium plasma
via R→R (a, c) and R→L (b, d) scattering . The rates are in
units of Raman backscattering, and the curves are color-coded
by frequency downshifts. The 351-nm pump laser propagates
along a 30-T magnetic field (a, b) or a 300-T field (c, d),
and the scattered light propagates at angle θ2 = 〈k2,B0〉.
The plasma density is ne = ni = 4.5 × 1020 cm−3, the tem-
perature is Te = 400 eV and Ti = 150 eV, and the polytropic
index ξe = ξi = 3. Since |Ωe| � ωp, scattering mediated by
the P branch is close to Raman; since vA < cs, scattering
mediated by the S branch is close to Brillouin. Additionally,
the laser can scatter from the F branch, which is energy-
suppressed in weak magnetic field.

plasma where Mi = 1. On the contrary, the responses
constructively interfere for the low-frequency sound wave,
whose mediation gives rise to the Brillouin scattering.
For sound wave, the dispersion relation is ω2

3 ' c2sk
2
3,

where the sound speed c2s = 2Miu
2
i /(Mi + 1) assum-

ing u2
e = Miu

2
i . Then, γ̂2

e ' 2/(1 − Mi) and γ̂2
i '

2Mi/(Mi−1) are of opposite signs. The wave energy co-
efficient u ' 4ω2

pMi/ω
2(Mi − 1)2, and the unmagnetized

Brillouin growth rate is then

MB ' sin
α

2

( ωp
Miω3

)1/2

|e1 · e∗2|, (98)

for both electron-ion and electron-positron plasmas when
temperature is not too high. The above recovers the
weak-coupling results in the literature [74–80], which
were derived for unmagnetized plasmas in the parametric
interaction picture.

Without any approximation, let me now evaluate the
growth rate numerically to determine collective laser
scattering in warm magnetized plasmas. Consider an
example relevant to laser-driven magnetized liner fu-
sion [81, 82]. In the experimental design, a preheat
laser with 351-nm wavelength propagates along B0 of
about 30 T. The D2 plasma, for which Zi = 1 and
Mi ≈ 3671, has density ∼1.5 mg/cm3. After fully
ionized, the number density is about ne = ni =
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4.5 × 1020 cm−3, and the plasma temperature is about
Te = 400 eV and Ti = 150 eV. In this example, the De-
bye length ∼ 10−2 µm is much smaller than the laser
wavelength λ0, and λ0 is much smaller than the colli-
sional mean free path ∼ 10µm, so the ideal fluid model
is applicable. Moreover, since λ0 is much smaller than
the ion gyro radius, ions are essentially unmagnetized
and the A branch has minuscule contribution. Therefore,
effects of magnetization are mainly due to electrons.

Due to cylindrical symmetry, the scattering only de-
pends on the polar angle θ2, which is 0◦ for forward scat-
tering and 180◦ for backward scattering. The growth
rates, in units of Raman backscattering, are shown
in Fig. 3, where the curves are color-coded by fre-
quency downshifts. The growth rates are polarization-
dependent, and the eigenmodes are elliptically polarized,
except when θ = 90◦ where they become the linearly
polarized X and O wave. For the R-wave pump, scat-
tering to the R branch (a, c) is polarization-suppressed
for near backward scattering, while scattering to the L
branch (b, d) is polarization-suppressed for near forward
scattering. When B0 = 30 T (a, b), Ωe ≈ 5.3 Trad/s is
much smaller than ωp ≈ 1.2× 103 Trad/s, so scattering
from the P branch is close to Raman. Similarly, since
vA/c ≈ 7 × 10−5 is smaller than cs/c ≈ 9 × 10−4, the
sound wave is little modified, and scattering from the S
branch is close to Brillouin. Other than modifying Ra-
man and Brillouin, the magnetic field introduces addi-
tional modes from which the laser can scatter. However,
in weak magnetic fields, scattering from the F branch is
energy-suppressed, because the F branch is dominated
by electron cyclotron motion. In larger magnetic fields,
for example B0 = 300 T (c, d), effects of magnetization
then become larger.

B. Scattering of MHD waves

To illustrate that the general formula is applicable to
any wave triplets, let us consider scattering of MHD
waves as another example, which is relevant to the on-
set of weak astrophysical turbulence. In this case, the
wave frequency ω � Ωi, and the fluid-Maxwell’s equa-
tions asymptote to MHD equations. Consequently, the
wave dispersion relation also asymptotes to that of the
MHD waves (Appendix A). The asymptotics are partic-
ularly simple for wave propagation parallel to B0, where
the forcing operator becomes F̂‖Z = γ2(Z + iβZ × b) +

(γ̂2 − γ2)(Z · b)b. It may be tempting to already take

the ω/Ω → 0 limit for F̂‖. However, the limit should be
taken only after summations over species is carried out,
because leading terms may turn out to cancel.

First, let us determine the approximate wave disper-
sion relations. Consider two species plasmas with Zi = 1,
then the sum in D11 is ω2

peγ
2
e +ω2

piγ
2
i ' −c2ω2/v2

A, where

v2
A = c2MiΩ

2
i /ω

2
p is the Alfvén speed. The sum in D12

is βeω
2
peγ

2
e + βiω

2
piγ

2
i ' −(1 − 1/Mi)c

2ω3/v2
AΩi. Fi-

nally, the sum in D33 is ω2
peγ̂

2
e + ω2

piγ̂
2
i ' ω2ω2

p(ω2 −
c2sk

2)/(ω2 − u2
ek

2)(ω2 − u2
i k

2). The dispersion ten-
sor D for parallel wave propagation can then be eas-
ily determined in the field coordinate. The longitudinal
wave satisfies ω2 ' c2sk

2, which is essentially the un-
magnetized sound wave. The transverse waves satisfy
(1+v2

A/c
2)ω2 = v2

Ak
2±(1−1/Mi)ω

3/Ωi. The “+” branch
has higher phase velocity and is right-handed circularly
polarized with e ∝ (1, i, 0); the “–” branch has lower
phase velocity and is left-handed circularly polarized with
e ∝ (1,−i, 0). To lowest order in ω/Ωi, the two branches
merge into dispersionless Alfvén waves ω2 = c2Ak

2, where
c2A = v2

A/(1+v2
A/c

2). The energy coefficient of the Alfvén
waves is u ' c2/c2A, which is usually very large because
most wave energy is contained in magnetic and fluid fluc-
tuations instead of the wave electric field. In the MHD
limit v2

A � c2, the above results recover the dispersion
relations of parallel-propagating MHD waves.

Now we can compute three-wave coupling between
MHD waves. For parallel wave propagation, other than
the coupling between three sound waves, which is dis-
cussed in Appendix B, the only nonzero coupling is be-
tween two Alfvén waves of the same polarization (a1, a2)
and a sound wave (a3). Since the waves are dispersion-
less, the resonance conditions can be satisfied only when
a1 and a2 are counter propagating. In this geometry, the
resonant wave vectors are k2/k1 = |cs − cA|/(cs + cA)
and k3/k1 = 2cA/(cs + cA). To compute the the scat-
tering between these waves, notice that for the sound
wave f = γ̂2b, while for the Alfvén wave f = e/(1 ± β)
where ± corresponds to the L and R polarizations. The
electromagnetic scattering due to each species is thereof
Θs ' −[1/(ω1+Ωs)+1/(ω2+Ωs)]cω1ω2ω3/cA(ω2

3−u2
sk

2
3),

and the thermal scattering is Φs ' 0 because two waves
are transverse. Summing over species and then take the
limit ω/Ωi → 0, the coupling coefficient is

Γ‖ '
c2A
vAcs

ω1ω2ω3

4MiΩi
. (99)

The coupling can also be expressed in terms of the mag-
netic field a1 = MiΩiB1/ω1B0 whereby the growth rate
[Eq. (95)] can be readily evaluated, which agrees with
the weak-coupling result in the literature [37–41] for both
electron-ion and electron-positron plasmas.

Not only can the general formula be used to recover
existing results in the literature, but it can also be used
to compute previously-unknown coupling at oblique an-
gles. Without any approximation, the exact formula of
the resonant coupling coefficient can be evaluated nu-
merically. Let us consider an example relevant for so-
lar corona at a height comparable to the solar radius
[83–86]. There, the plasma is mostly hydrogen with
Mi ≈ 1837. The plasma density ne ∼ ni ∼ 107 cm−3, the
plasma temperature Te ∼ Ti ∼ 100 eV, and the magnetic
field B0 ∼ 1 G. Correspondingly, ωp ≈ 1.8× 108 rad/s,
cs/c ≈ 8.0 × 10−4, and vA/c ≈ 2.3 × 10−3. The ion
cyclotron frequency Ωi ≈ 104 rad/s is much higher than
the observed Alfvén wave frequency, which is in the mHz
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FIG. 4. Resonant coupling between two Alfvén waves via the
sound wave in solar corona type plasma with cs/vA ≈ 0.35.
The pump Alfvén wave propagates along B0 with frequency
f1, while the daughter Alfvén wave propagates obliquely at
angle θ2. The frequency of the daughter wave f2/f1 (a) and
the coupling coefficient Γ/Γ‖ (b) have weak dependence on
both θ2 and f1. Consequently, the parametric decay rate is
only slightly larger for exact backward scattering.

band. In this frequency range, the low-frequency waves
are well-approximated by ideal MHD waves. Consider
the coupling between two Alfvén waves via the sound
wave. The daughter wave frequency f2/f1 is shown in
Fig. 4a, and the coupling coefficient Γ/Γ‖ is shown in
Fig. 4b, where Γ‖ is given by Eq. (99). While the cou-
pling has strong dependence on cs/vA, it has very weak
dependence on the frequency of the parallel pump Alfvén
wave. Moreover, the dependence on θ2, the angle of the
daughter wave with respect to the local magnetic field, is
also weak. Consequently, the decay of the parallel pump
wave only slight prefers exact backward geometry.

VI. DISCUSSION AND SUMMARY

Beyond linear waves, this paper treats coherent three-
wave interactions in magnetized plasma by solving the
warm-fluid model to second order. Unlike previous at-
tempts, which were specialized for each wave triad in
restricted geometry, here, the systematic treatment us-
ing perturbation theory offers a unified description of all
possible interactions at arbitrary angles. This method-
ology, first introduced for magnetized cold-fluid plasma
[60], is extended to incorporate thermal effects. The
ideal-fluid model is applicable when all wavelengths are
much larger than the Debye length, while much shorter
than the collisional mean free path. In this regime, ther-
mal effects enter indirectly through the forcing operator
[Eq. (27)], as well as directly in the quadratic response
[Eq. (68)]. Nevertheless, the second-order electric-field
equation [Eq. (66)] remains formally unchanged from the
cold-fluid case.

The formalism developed in this paper is not only gen-
eral, but also practical, whereby numerical values of the

coupling coefficient can be obtained. The coupling co-
efficient is an essential parameter in the commonly-used
three-wave equations [Eqs. (91)-(93)]. Previously, little
is known about the numerical value of the coupling co-
efficient when the plasma becomes magnetized. Now, a
general formula has been provided [Eq. (94)], which can
be evaluated for any three resonantly interacting waves.
To demonstrate the powerfulness of the general formula,
the coupling between high-frequency lasers via Raman
[Eq. (97)] and Brillouin [Eq. (98)] scatterings in unmag-
netized plasmas are recovered as special cases. More-
over, the same formula also recovers coupling between
two Alfvén waves and a sound wave [Eq. (99)], which
are at the other extreme of the wave spectrum. While
asymptotic expressions of the general formula may be
found for special cases, the exact formula can always be
evaluated using the numerical procedures outlined in this
paper. Based on nontrivial analytic simplifications, nu-
merical evaluations of the coupling coefficient can now be
made efficient and robust.

In summary, this paper derives a general formula gov-
erning resonant three-wave interactions in magnetized
warm-fluid plasmas in the weak-coupling regime. Apply-
ing the formula to magnetized inertial confinement fusion
conditions, the magnetic field is found to modify Raman
and Brillouin scatterings of lasers, as well as introduce
additional scattering modes at oblique angles. For pa-
rameters relevant to solar corona, the formula for parallel
coupling between two Alfvén waves via the sound wave is
found to give good approximations also at oblique angles.
Due to weak angular dependence, exact backscattering is
only slightly preferred over oblique decays.
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Appendix A: Asymptotic dispersion ck → 0

The dispersion relation contains gapped and gapless
modes. For gapped modes, the wave frequency ω → ωc
when ck → 0, where ωc is some finite cutoff frequency.
For gapless modes, ω → 0 when ck → 0, but the re-
fractive index n = ck/ω approaches some finite constant.
The asymptotic dispersion relation is useful for analytic
approximations, and may be used as initial guesses for
numerical root finding.
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For gapped modes, the cutoff frequencies are solu-
tions of C(ωc) = 0, where C is given by Eq. (43).
Since thermal effects vanish, one cutoff frequency is al-
ways ωp. The other cutoff frequencies are solutions of
R(ωc) = L(−ωc) = 0. In a magnetized plasma of Ns
species, there are Ns + 1 non-negative solutions, which
becomes strictly positive when the plasma is not quasi-
neutral. For finite but small ck, we can expand near
ωc. The asymptotic dispersion relation is quadratic:
ω ' ω2

c + δω2, where δω2 = 2Bc2k2/ωc∂ωC. Here, B
and ∂ωC are evaluated at ω = ωc and ck = 0. The ana-
lytic expression is simple, since thermal effects vanish.

On the other hand, thermal effects are important for
gapless modes. To obtain asymptotic dispersion relation
when ω → 0, we can expand using Laurent series. Af-
ter tedius but otherwise straightforward expansions, the
leading terms in a quasi-neutral plasma are

ω2A ' −I2c2θ, (A1)

ω2B ' (I0I2 − I2
1 )s2

θ −
2c2

c2A
I2, (A2)

ω2C '
[
(I0I2 − I2

1 )s2
θ −

c2

c2A
I2

] c2

c2Ac
2
θ

, (A3)

assuming c2θ � ω2/Ω2. The dispersion coefficients I0 =
1+
∑
s ω

2
psη

2
s/Ω

2
s, I1 =

∑
s ω

2
psη

2
s/Ωs, and I2 =

∑
s ω

2
psη

2
s ,

where η2
s = 1/(1 − n2c2θu

2
s/c

2). In the cold limit, I0 →
c2/c2A, I1 → 0, and I2 → ω2

p. Substituting Eqs. (A1)-
(A3) into the dispersion relation [Eq. (40)], we obtain
an equation for n2. The Alfvén wave decouples with the
dispersion relation

ω2 = c2Ak
2 cos2 θ. (A4)

What remains are the fast wave mixed with the sound
waves, which is given by

I2

(
n2 cos2 θ − c2

c2A
+ I0 sin2 θ

)
= I2

1 sin2 θ. (A5)

A special case is when all species are cold. Then, the
sound wave vanishes and the above recovers the cold fast
wave ω2 = c2Ak

2. In more general cases, a numerically
robust procedure for solving the dispersion relation is to
remove poles of Eq. (A5), and convert it to a polynomial
of n2c2θ of degree Nc+1. When Nt ≥ Ns − 1, the leading
coefficient is

∑
s ω

2
ps

∏
s′ 6=s(−µ2

s′), otherwise the leading

coefficient is
∏
µs′ 6=0(−µ2

s′) ·
∑
µs′=0 ω

2
ps. The polynomial

equation has exactly Nc+1 real and positive roots, which
can be found by standard numerical methods. The above
is a multi-fluid extension of MHD, which retains only one
sound wave.

Appendix B: Three-wave in neutral fluid

To illustrate that that turbulent and thermal beat-
ings are originated from fluid nonlinearities, let us con-
sider three-wave interactions in neutral fluid, which is

described by

∂tρ+∇ · (ρv) = 0, (B1)

ρdtv = −∇p, (B2)

ρdtp = ξpdtρ, (B3)

where ρ is the mass density and dt = ∂t + v · ∇ is the
convective derivative at the fluid velocity.

The linearized fluid equations describe sound waves.
Suppose we weakly perturbe the equilibrium with con-
stant ρ0, p0, and v0 = 0, the first-order fluid velocity
is v1 = 1

2

∑
k∈K1

exp(iθk)V1,k. The continuity equation

then gives ρ1/ρ0 = 1
2

∑
k∈K1

exp(iθk)k ·V1,k/ωk, and the

pressure equation gives p1 = u2ρ1, where u2 = ξp0/ρ0 is
the thermal speed. Substituting these into the momen-
tum equation, each Fourier amplitude satisfies

(ω2
k − u2kk)V1,k = 0. (B4)

The dispersion operator is now D̄k = ω2
k − u2kk. The

eigenmode satisfies the dispersion relation ω2 = u2k2,
and is the longitudinally polarized sound wave.

To second order in multiscale perturbative analysis,
the equations can be obtained from Eqs. (17)-(19) by
setting the electromagnetic contributions to zero. The
pressure equation gives p2 by Eq. (59) after replacements
mn→ ρ and ε/m→ u2. Expanding the second-order ve-
locity as v2 =

∑
k exp(iθk)V2,k/2, the continuity equa-

tion gives ρ2 by Eq. (60) after replacing ieF̂E/mω → V .
Using D̄kV1,k = 0, the second-order momentum equation
can then be written as∑

k∈K2

D̄kV2,ke
iθk

+ i
∑
k∈K1

(∂D̄k

∂ωk
∂t1 −

∂D̄k

∂k
· ∇1

)
V1,ke

iθk (B5)

=
1

2

∑
p,q∈K1

(ωp + ωq)S̄p,qe
iθp+iθq ,

which is formally identical to Eq. (66) if the later is
written in terms of velocity perturbations. Analogously,
S̄p,q = (R̄p,q + R̄q,p)/2, and the only difference is that
now R̄p,q = T̄p,q+Ūp,q. Here, T̄p,q and Ūp,q can be ob-

tained from Eqs. (64) and (65) by replacing F̂E/ω → V .
We see that turbulent and thermal beatings are intrinsi-
cally fluid nonlinearities.

The second-order velocity equation can be split into
off-shell and on-shell equations. The off-shell equations
can be solved by inverting the nondegenerate D̄, and the
on-shell equations can be simplified using eigen projec-
tions. Suppose the resonance conditions are of the form
“p = q + l”, the three-wave amplitude equations are

dtvp = − i(1 + ξ)

4
kpvqvl, (B6)

where vl = v∗−l is the complex amplitude such that

V1,kl
= vlk̂l. In the parametric decay picture, the growth
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rate γ0 = (1 + ξ)(k2k3)1/2|v1|/4. To obtain the above
three-wave equations, I have used the fact that resonance

conditions can be satisfied only when k̂1 = k̂2 = k̂3, be-
cause the sound waves are dispersionless. Due to the spe-
cial dispersion relation, three-wave interactions are one
dimensional, along which any two copropagating waves
can resonantly interact.

Appendix C: Eigen projection

To illustrate how the compatibility condition [Eq. (71)]
can be used in conjunction with the on-shell equation
[Eq. (69)], let us consider unmagnetized cold plasma as

an example. In this case, F̂ = I is the identity operator
and the dispersion tensor is

D = (ω2 − ω2
p − c2k2)I + c2kk. (C1)

The partial derivatives are ∂D/∂ω = 2ωI and ∂Dij/∂kl =
c2(kiδjl+kjδil−2klδij). The on-shell equation is then of
the form

2ω∂tE = c2[k(∇ · E) +∇(k · E)− 2(k · ∇)E] + S, (C2)

where I have omitted the subscripts of t1 and x1. Notice
that the Eq. (C2) has redundant degrees of freedom, be-
cause the spatial derivatives originate from the projection

operator I− k̂k̂, which has a nontrivial kernel.
For electromagnetic waves, the dispersion relation is

ω2 = ω2
p + c2k2. The dispersion tensor then becomes

D = c2kk, which is a rank-1 operator. The null space
is two dimensional, and the eigenmodes are transverse,

which satisfy k · E = 0. The compatibility condition is
satisfied if and only if

c2k2∇ · E + k · S = 0. (C3)

Substituting the solution of ∇ · E into Eq. (C2), the on-
shell equation becomes

(∂t +
c2k

ω
· ∇)E =

S⊥

2ω
, (C4)

where c2k/ω is nothing other than the group velocity, and

S⊥ = (I − k̂k̂)S is the transverse projection. While the
transverse projection is typically put in “by-hand” when
studying unmagnetized three-wave interactions [67], here
I have shown why the projection necessarily arises.

For the cold Langmuir waves, ω2 = ω2
p, and D =

c2(kk − k2I) is a rank-2 operator. The null space is
thereof one dimensional, and the eigenmode is longitu-
dinal, which satisfies E //k. The compatibility condition
is satisfied if and only if

(c2∇k · E + S)⊥ = 0. (C5)

Substituting this into Eq. (C2), which can be separated
into parallel and perpendicular components, the on-shell
equation becomes

∂tE =
S‖

2ω
, (C6)

As expected, the group velocity of the cold Langmuir
wave is zero, and only the longitudinal component S‖ =

k̂(k̂ · S) affects the wave evolution.
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