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Numerical investigations are presented for an ionic liquid meniscus undergoing evaporation of
ions in a regime of high electric field. A detailed model is developed to simulate the behavior of a
stationary meniscus attached to a liquid feed system. The latter serves as a proxy for commonly
utilized electrospray emitters such as needles and capillary tubes. Two solution families are identified
for prototype liquid analogous to the ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate
(EMI-BF4). The first belongs to a regime of low electric field in which the meniscus is blunt and
does not emit charge. The second belongs to a regime of high electric field in which a cone-like
meniscus produces charge from a sharp tip. Electrohydrodynamic features of the meniscus in this
regime are presented. These reveal that the meniscus is Stokesian, hydrostatic, and governed by
conduction. The applied electric field influences both the shape of the meniscus and the current
that it produces while the impedance of the feed system — which must be above a threshold value
in order to ensure that the current, and therefore the flow, remains below a maximum value —
influences the meniscus current but not the macroscopic shape. In general this shape deviates from
Taylor’s idealized cone.

I. INTRODUCTION

Molecular and atomic ions are extractable from the
surface of an electrified liquid through the agency of a
strong electric field. This phenomenon serves as the foun-
dation for the liquid metal ion sources (LMIS) that have
found use in a variety of applications ranging from elec-
tric micropropulsion [1, 2], etching and deposition [3],
and analytical instrumentation [4]. Such broad techno-
logical utility has led to high levels of both empirical [5]
and theoretically [6] development. Owing to the high
electrical conductivity, LMIS beams are generally typi-
fied by low energy spread and high current. The latter
in particular is understood to be an integral component
of the source in that it confers strong space charge ef-
fects that damp perturbations to the meniscus and pro-
vide a mechanism for stability [7]. Ionic liquids (ILs) are
room temperature molten salts with conductivities that
are small in relation to those of liquid metals. Emission of
ions from such liquids is a more recent development with
heritage in electrospray [8, 9] but of significant interest
on account of the wide spectrum of complex molecular
chemistries to which they facilitate access. These include
heavy ions that are useful in electric propulsion, where
the thrust-to-power ratio scales as the root of the ion
mass [10–12], and highly reactive ions capable of preci-
sion etching [13]. Unlike LMIS, ionic liquid ion sources
(ILIS) emit more modest currents that typically preclude
substantial space charge effects [14], giving the source a
unique character that remains to be fully appreciated.
Although ILIS are already finding application, improved
understanding of their behavior is expected to serve as an
important bridge to more robust service and expansion
of use.
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In the simplest electrospray configuration a liquid
meniscus is formed at the end of a long tube or needle
which is disposed in a dielectric medium. This could be
vacuum [15], air [16], or an insulating liquid of sufficient
dielectric strength [17]. The meniscus is stressed with an
electric field that is applied through a relative bias be-
tween the tube or needle and a distant electrode. A well-
established instability exists in the case of an electric field
acting on the interface of two fluids. When the traction of
the field is strong enough to overcome the binding effects
of surface tension, a rapid rearrangement occurs in which
the surface adopts a quasi-conic geometry that serves to
mediate a compromise between electrical and interfacial
forces. The canonical structure, known commonly as a
Taylor cone [15], supports a field that scales as r−1/2,
where r is the distance from the meniscus tip. In order
to avoid a singularity at the tip, a thin jet-like protuber-
ance will emanate from the zenith of this cone and usher
charge under the action of electrical surface shear. The
jet ultimately breaks into a fine, monodisperse aerosol
as a result of capillary instability. The jet width, elec-
trosprayed droplet size, and the droplet mass per unit
charge are all proportional to the resistivity of the liquid
and its flow rate through the cone [18, 19]. External con-
trol of the flow rate and liquid conductivity are therefore
useful tools in the regulation of the aerosol properties. In
this way jets as small as 10 nm can be produced before
the electric field acting on the surface of the cone-to-jet
transition region becomes substantial enough to extract
individual ions (no solvation) through a kinetic process
akin to thermal evaporation [20, 21]. This produces a
mixed beam of droplets and ions that is characterized by
a bimodal distribution of specific charge. The droplets
provide a low specific charge peak while the ions provide
a much higher counterpart. Under certain conditions,
further reductions to the flow facilitate complete extinc-
tion of the jet, such that ions evaporate in the absence of
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any droplets (Fig. 1). Aside from liquid metals [3], con-
centrated aqueous acids [22] and ILs [23, 24] are among
a very limited number of liquids known to support this
unique mode of electrohydrodynamic charge emission.

The seminal work of Perel et al. in the late 1960’s
established, for the first time, the viability of the pure
ion mode with non-metallic liquids [22]. This work lever-
aged concentrated solutions of sulfuric acid but received
little follow-up until the early 2000’s when Romero-Sanz
and colleagues extended the finding to ILs [23]. Recent
work has shown that, in contrast to the amenability of the
LMIS to a wide variety of emitter configurations, the ILIS
is most compatible with a simple needle geometry. This
owes primarily to the strong proclivity of tubes to sporad-
ically generate droplets when the liquid does not satisfy
an obscure combination of high conductivity and surface
tension [25]. Currents vary roughly linearly with the ap-
plied electric field but typically reside in a range from
approximately 100 nA to 1000 nA that is low in compar-
ison to the output of common LMIS [26–28]. This limits
space charge effects and apparently makes the quality of
the source susceptible to the specific properties of the
working liquid and the details of its emitter [14].

A clear understanding of the source and its relation-
ship to key operating parameters has remained elusive
as a result of several important empirical limitations.
These include, e.g., the difficulty in resolving the mor-
phology of the meniscus tip and its internal flow. Similar
to what has been done with cone-jets [29], where infer-
ences based on the electrosprayed beam are insufficient
for resolving key properties of the meniscus, several at-
tempts have been made to approach this problem from
a computational perspective. Collins explored incipient
electrohydrodynamic tip streaming from leaky dielectric
films and found that, in the limit as the charge relaxation
time becomes the smallest global timescale, the tip begins
to exhibit a conic cusp which is likely prerequisite to ion
emission [30]. Higuera investigated a small (nanoscopic)
sessile drop of ionic liquid undergoing steady evapora-
tion [31]. A hydrostatic condition and conduction-limited
charge transport were found to prevail. This paper builds
on those works by advancing a basic ILIS continuum
model that is germane to a meniscus of practical (mi-
croscopic) size serviced by a feeding architecture, where
the latter is intended to capture important effects relat-
ing to the emitter. It is benchmarked against previous
studies and used to study a family of ionic liquid emission
solutions, recently reported by Coffman [32, 33], that are
believed to hold practical significance. Special empha-
sis is placed on generic features of the meniscus during
emission and the influence of various parameters that are
amenable to external control, such as the applied electric
field, the meniscus size, and the impedance of the needle
or feeding tube.
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FIG. 1. Evolution of a cone-jet as the flow rate is reduced.
Top: At high flow rates Q the meniscus resembles a clas-
sical Taylor cone (angle θT ≈ 49.2◦) and exhibits a charac-
teristic protuberance at the tip. The tip supplies a train of
electrosprayed droplets that propagate under the influence of
the external field E. It may eventually shed ions and other
charges of low solvation as its diameter dj decreases in re-
sponse to waning flow. Bottom: Under certain conditions,
very low flow rates lead to complete extinction of the jet, such
that only ions emanate from a sharp tip through electrically-
induced evaporation.

II. GOVERNING PHYSICS

A. Emission field, tip sharpness, and characteristic
current

Evaporation of charged species from the surface of an
electrified liquid meniscus formed in vacuo is a kinetic
process taken to obey [34, 35]

je = σ
kBT

h
exp

(

−∆G−G (Ev
n)

kBT

)

(1)

where je is the current emitted per unit surface area; σ
is the local density of surface charge; kB is Boltzmann’s
constant; T is the liquid temperature; h is Planck’s con-
stant; ∆G is an evaporation energy barrier for solvated
species; and Ev

n is the normal component of the local
vacuum electric field. G(Ev

n) is a reduction factor owing
to Ev

n that assumes the form G(Ev
n) = (q3Ev

n/4πǫ0)
1/2

for polar media based on the Schottky hump. Here, q
is the charge state of evolving species and ǫ0 is the per-
mittivity of vacuum. Since ∆G/kBT is typically large
in practical situations, little to no emission is seen until
∆G−G(Ev

n) = O(kBT ) ≪ ∆G, such as when
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Ev
n ≈ 4πǫ0 (∆G)

2

q3
≡ E∗ (2)

which is interpreted as a critical field for strong evapo-
ration. Unlike hard-body or solid field emitters, e.g., hot
cathodes, steady emission from the electrified meniscus is
only permissible when the liquid interface is able to reach
a mechanical balance between the forces of electrical trac-
tion and surface tension. To a good approximation it is
therefore appropriate to take τen ∼ 2γ/r∗ near the tip,
where τen is the normal electric traction in vacuum and
r∗ is the inverse of the characteristic tip curvature. After
invoking the Maxwell tensor the former is expanded to
yield τen = ǫ0/2[(E

v
n)

2−ǫ(El
n)

2+(ǫ−1)E2
t ], where E

v
n and

El
n are both orthogonal to the interface — on the vac-

uum and liquid sides, respectively — and consistent with
the boundary relation for idealized surface charge, i.e.,
σ = ǫ0(E

v
n − ǫEl

n). Et is the tangential electric field at
the surface. The characteristic field within the meniscus
during emission will in general depend upon the evapora-
tion state and properties of the liquid but may be of order
E∗/ǫ at most. Taking El

n = O(E∗/ǫ) during evaporation
with Et = 0 at the tip by symmetry and Ev

n ≈ E∗ yields
ǫ0(E

∗)2(ǫ − 1)/2ǫ ∼ 2γ/r∗. Consistency with the use of
the kinetic law, Eq. 1, requires ǫ≫ 1, a condition which
is effectively satisfied by many ionic liquids [36]. In the
polar limit, the appropriate length scale for the meniscus
tip is, therefore

r∗ =
4γ

ǫ0 (E∗)
2
=

q6γ

4π2ǫ30 (∆G)
4

(3)

The distance r∗ here may be interpreted as the extent
of the meniscus over which fields of order E∗ act. As a re-
sult, the size of the area from which charge will emanate
is π(r∗)2 to first a approximation. The prevailing current
is then of order I∗ ∼ π(r∗)2j∗, where j∗ is a character-
istic current density. This is determined by recognizing
that charge transport in the liquid obeys j = K0E

l
n when

Ohm’s law is valid and conduction dominates — see be-
low for congruent findings. In the steady-state, the mo-
tion of this charge must identically balance kinetic losses
at the interface. Invoking Eq. 1 and imposing this condi-
tion with Ev

n = E∗ yields j∗ = K0E
∗ǫ−1(1 + χ)−1. Note

that the exponent from the general kinetic law vanishes
now by virtue of the vacuum field E∗, which by definition
requires the argument to be precisely zero. The factor in
the denominator χ = hK0/ǫǫ0kBT is an important di-
mensionless group representing the ratio of the kinetic
emission time h/kBT to the characteristic charge relax-
ation time ǫǫ0/K0 in the liquid. There are two asymp-
totic limits: in the liquid metal limit χ ≫ 1 as a result
of very high electrical conductivity while the ionic liquid
limit implies χ≪ 1. The current density is then

j∗ ≈
{ ǫ0E

∗kBT
h , χ≫ 1

K0E
∗

ǫ

(

1− hK0

ǫǫ0kBT

)

, χ≪ 1
(4)

The primary interest pertains to the latter case, where
it is now clear that fields of the order E∗/ǫ do in fact pre-
vail within the meniscus upon strong evaporation. This
is a direct result of limited conductivity. In the ionic
liquid limit it follows that the characteristic current den-
sity must be of order j∗ ∼ K0E

∗/ǫ, and so for the total
current

I∗ =
π (r∗)

2
K0E

∗

ǫ
=

K0γ
2q9

4π2ǫǫ50 (∆G)
6

(5)

which is apparently very sensitive to the solvation bar-
rier of evolving species. Typical ionic liquid properties
include the solvation energy ∆G ∼ 1 - 2 eV [20, 34];
the ambient conductivity K0 ∼ 1 S/m [37]; the dielectric
constant ǫ ∼ 10 - 100 [36]; the surface tension γ ∼ 0.01
- 0.1 N/m [38]; the specific charge q/m ∼ 106 C/kg; the
density ρ ∼ 103 kg/m3 [39]; the nominal (room tempera-
ture) viscosity µ0 ∼ 0.01 - 0.1 Pa-s [38, 39]; the thermal
conductivity kT ∼ 0.1 W/m-K [39]; and the thermal ca-
pacity cp ∼ 103 J/kg-K [39]. Under these conditions the
characteristic electric field, tip size, and current are E∗ ∼
108 - 109 V/m, r∗ ∼ 10-8 - 10-7 m, and I∗ ∼ 10-8 - 10-6

A, where the latter is a good indication of the spectrum
of experimentally observed values [14]. Clearly, the very
strong electric fields that are required to overcome the
kinetic barrier presuppose a sharp meniscus tip.

B. Space charge

The high currents of liquid metals result in a cloud
of ions surrounding the meniscus tip. The effects of
this cloud on the local potential field are known to sig-
nificantly influence the behavior of the source, in part
by tempering the emission [7]. The more modest cur-
rents of ionic liquids accompany a rarefied form of this
cloud [14]. Consider from the Poisson equation ∇ ·E =
ρsc/ǫ0 that the electric field induced by the ion cloud is
E∗

sc = ρ∗scr
∗/ǫ0. The space charge density ρ∗sc = j∗/v∗sc

depends on the evaporation current j∗ = K0E
∗/ǫ and

a characteristic ion speed v∗sc = (2qΦ∗

sc/m)1/2 that is
determined through an interplay of kinetic and elec-
tric potential energies, i.e., m(v∗sc)

2 = qΦ∗

sc. The po-
tential change near the tip is Φ∗

sc = E∗r∗, and thus
E∗

sc = K0/ǫǫ0(mE
∗r∗/2q)1/2. In relation to the char-

acteristic evaporation field E∗

E∗

sc

E∗
=
K0

ǫǫ0

(

r∗

2E∗

m

q

)1/2

(6)

where the right-hand side is the ratio of the gas-phase
ion residence time, r∗/v∗sc, to the charge relaxation time,
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ǫǫ0/K0. Under typical ionic liquid conditions this is
small, from 10-2 to 10-1, indicating that space charge
effects are tenuous. Notice, however, that for liquid met-
als that the same analysis confirms the preponderance
of space charge effects since E∗

sc/E
∗ → ∞ in the perfect

conductor limit.

C. Hydraulics

The flow of liquid induced by evaporation exhibits a
characteristic velocity u∗ = j∗/ρ(q/m) near the meniscus
tip. Owing primarily to the high specific charge of ions,
the corresponding Reynolds number Re = ρu∗r∗/µ0 and
the ratio of viscous stresses to surface tension stresses
— Capillary number Ca = µ0u

∗/γ — are both small,
indicating a regime of Stokesian motion in a quasi-
hydrostatic meniscus.

D. Transport processes

The balance of electrical surface shear, of order σE∗/ǫ,
and viscous stress at the tip produces a flow of charac-
teristic speed u∗τ = ǫ0E

∗2r∗/µ0ǫ that is comparable to
u∗, i.e., u∗τ = O(u∗). The characteristic residence time
for species moving through the meniscus tip is therefore
r∗/u∗. The time scales for electrical and thermal conduc-
tion are, respectively, ǫǫ0/K0 and ρcp(r

∗)2/kT . These are
fast on the scale of the residence time, between 10 and
104 times shorter, indicating that convection processes
are subordinate to conduction.

III. MODEL FORMULATION

Figure 2 depicts a meniscus model in which a volume of
liquid is attached to a flat horizontal plate under vacuo
with a prescribed wetting radius r0 that could in gen-
eral be much larger than r∗, as is typical in practice
[14, 23, 25]. The plate comprises a hole of the same ra-
dius, r0, causing the liquid contact line to remain pinned
when the wetting angle is sufficiently high. For numeri-
cal convenience the plate is infinite in the radial direction
and assumed to be a perfect conductor. In connection
with a distant counter-electrode this defines an axial elec-
tric field E0 that is asymptotically uniform very far from
the meniscus. The shape of the meniscus is contingent
upon a mechanical balance that is influenced in part by
this field. A reservoir of liquid exists beneath the plate
where it is charged to a pressure pr and in communica-
tion through a feed line of characteristic impedance Rh,
such that pr − p = RhQ, where p is the mean pressure of
the liquid on the plate and Q = I(q/m)−1/ρ is the flow
rate due to evaporation.
The dimensionless equations and boundary conditions

governing the problem of steady evaporation from this
meniscus span two distinct domains (vacuum, liquid) and
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FIG. 2. Modeling configuration for an evaporating ionic liq-
uid meniscus. An axisymmetric meniscus is attached to a
conductive plate under vacuo with a contact radius r0 (arbi-
trary contact angle) and stressed by an applied electric field
E0 that is asymptotically uniform at distances much greater
than r0 from the plate. Fresh liquid enters the meniscus dur-
ing steady evaporation at a pressure p, by a reservoir that is
charged to a prescribed pressure pr and a feeding line with
characteristic impedance Rh.

two boundaries (liquid-vacuum interface, plate). Lengths
are scaled by the prescribed contact radius r0; areas by
r20 ; stresses by the capillary pressure pc = 2γ/r0; electric
fields by a value Ec satisfying ǫ0E

2
c = pc [11, 40, 41];

charge densities by ǫ0Ec; current densities by K0Ec; ve-
locities by the corresponding speed uc = mK0Ec/ρq; and
temperatures by the reference value T0. Conductivity
and viscosity are scaled by the nominal values K0 and µ0,
defined at ambient temperature. Scaling in this manner
yields the dimensionless parameters

B =
r∗

r0
, Λ =

K ′T0
K0

, ψ =
∆G

kBT0
, χ =

hK0

ǫǫ0kBT0
,

We =
ρ (u∗)

2
r∗

2γ
, Ca =

µ0u
∗

2γ
, Gz =

ρcpu
∗r∗

kT
,

Kc =
ǫǫ0u

∗

K0r∗
, H =

(j∗r∗)
2

K0kTT0
, CR =

K0Ecr
3
0

2γρ

(

m

q

)

RH

as well as E0, ǫ, and pr. B is an important menis-
cus size parameter that will in general be much less than
unity for conditions of interest. Λ is a parameter de-
scribing thermally-induced perturbations to the electrical
conductivity of the liquid, for which K ′ is an appropri-
ate thermal sensitivity (S/m-K), while ψ describes the
emission kinetics. The constants We, Ca, and Gz are
modified Weber, Capillary, and Graetz numbers, respec-
tively. Kc is the ratio of the charge relaxation time to
the characteristic residence time of liquid in the meniscus
tip. H is the ratio of Ohmic heat generation to conduc-
tive dissipation and CR relates a characteristic pressure
drop K0Ecr

2
0(m/q)RH/ρ to surface tension.
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A. Vacuum domain

Outside the liquid

∇2φv = 0, with (7)

Ev = −∇φv, (8)

where −∇φv → E0i very far from the meniscus, with i

a unit vector normal to the plate.

B. Liquid domain

Inside the liquid

∇ · j = 0, (9)

∇ · v = 0, (10)

ǫ2We (v ·∇)v = ∇ · τ , (11)

∇2T + ǫ2
H

B

(

j · j
K

)

− ǫ
Gz√
B

(v ·∇T ) = 0, (12)

K = 1 + Λ (T − 1) , and (13)

µ = K−1, (14)

where j and v are the current density and velocity in
the liquid. Eqs. 9-11 represent charge continuity, mass
continuity, and momentum conservation. In the latter,
τ = −pI + τ ′ is a stress tensor with the viscous (devia-
toric) component

τ ′ = ǫCa
√
Bµ

(

∇v + (∇v)
T
)

, (15)

Eq. 12 is a liquid heat equation with convection while
Eqs. 13 and 14 describe the temperature-dependent elec-
trical conductivity and viscosity. These assume a con-
stant product µK = µ0K0 [42, 43] and linear excursions
of the form K0 +K ′(T − T0).

C. Liquid-vacuum interface

At the liquid-vacuum interface

τ e
n − n · τ · n =

1

2
∇ · n, (16)

t · τ · n = τ e
t , (17)

v · n = je (18)

je =
σT

ǫχ
exp

(

−ψ
T

{

1−B1/4
√

Ev
n

}

)

, (19)

je−KEl
n = KcB

3/2σ (n ·∇v · n)−KcB
3/2v ·∇σ, (20)

σ = Ev
n − ǫEl

n, (21)

I =

∫

jedA, and (22)

(n ·∇)T = 0, (23)

where n and t are unit vectors normal and tangent to the
liquid surface, along which ∇ · n is the local curvature.
The superscripts v and l denote the vacuum and liquid
sides, respectively. Eqs. 16 and 17 are balances of nor-
mal and tangential stresses involving the dimensionless
Maxwell components [44, 45]

τ e
n = (Ev

n)
2 − ǫ

(

El
n

)2
+ (ǫ− 1)E2

t , (24)

τ e
t = 2σEt, (25)

where En = E · n and Et = E · t. Eqs. 18 and 19 are
a kinematic condition and the kinetic evaporation rate.
Eqs. 20-23 represent charge transport, surface charge
density, total current, and thermal flux. Note that the
charge transport equation is the central relationship gov-
erning the evolution of the surface charge. At the tip, this
charge is especially critical for determining the character
of the meniscus [30].

D. Plate

At the plate (z = 0)

v =
I

π
i, p = pr − ICR for r < 1,

Φl = 0, T l − 1 = 0 for r < 1,

φv = 0, T − 1 = 0 for r > 1.

(26)

Eqs. 26 assign reference values to the potential, temper-
ature, and pressure of the liquid exiting the feeding line.
Notice here that Φl = 0 and T l/T0 = 1 are used to en-
sure that the liquid matches the ambient conditions of
the plate. These should be good approximations insofar
as the plate is a good electrical and thermal conductor.
The flow emerging from the feeding line is assumed to
be fully developed so that any pressure gradients in the
radial direction are small.
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IV. NUMERICAL METHOD

Stationary solutions satisfying the governing equations
are computed using finite element and iterative meth-
ods. An initial guess is made for the meniscus shape
and parameterized in axisymmetric cylindrical space as
z = h(r), where h is some function of r defined on the
dimensionless interval r ∈ [0, 1]. The meniscus corre-
sponding to this shape is analyzed to determine the elec-
trical, hydraulic, and thermal fields that would prevail if
the surface were motionless, i.e., in a state of mechanical
equilibrium. The vacuum region outside of the menis-
cus and the meniscus itself are included in these numer-
ical calculations while the effects of the feeding architec-
ture are expressed through the conditions of Eqs. 26 on
the boundary of the numerical domain. The liquid flow
upstream of the plate is treated analytically through a
lumped impedance RH that should in general be quanti-
fied by an independent analysis for specific feeding con-
figurations. Partitioning of the model in this way has
greatly enhanced the affordability of calculations.
The numerical fields are used to check the balance of

normal stresses at the interface, Eqs. 16-17, and deter-
mine the status of the meniscus dynamics. The balance
of tangential stress is always satisfied. If guess z = h(r)
does not coincide identically with an equilibrium shape,
a residue τrn of the form

τ e
n − n · τ · n− 1

2
∇ · n = τrn (27)

will in general exist on the surface. This residue relates
in some way to the dynamics of the meniscus and implies
a motion of the interface. Solutions for the stationary
meniscus are, therefore, configurations in which τrn → 0
globally. This is achieved here through a simple relax-
ation method permitting the interface to slowly evolve in
the direction of its preferred equilibrium. Consider that
for a prescribed z = h(r) the corresponding surface ten-
sion (Laplace) pressure is given by PL = ∇ · n/2. After
expansion of the divergence term

hrr +
hr
r

(

1 + h2r
)

− 2
(

1 + h2r
)3/2

PL = 0 (28)

where hr and hrr are the first and second spatial
derivatives of z = h(r), respectively. This is a second or-
der nonlinear ordinary differential equation (ODE) that
maps between PL(r) and a corresponding shape. Now
consider an initial meniscus guess z = hi(r) for which
the attendant residue (τrn)

i is non-zero. In an effort to
reduce the residue for a subsequent iteration the inter-
face may be relaxed by adding to the current Laplace
distribution P i

L a small measure of (τrn)
i, such that

P i+1

L = P i
L + β (τrn)

i
(29)

Here, β is a relaxation parameter residing on the inter-
val β ∈ (0, 1] that helps to control the rate of interfacial
evolution. An updated shape z = hi+1(r) is found after
solving Eq. 28 with PL = P i+1

L and used to initiate a new
set of calculations for which it is generally expected that
(τrn)

i+1 < (τrn)
i. Provided a stationary meniscus exists

for the given parameter set, after many relaxing itera-
tions the residues become sufficiently small. Numerical
termination is therefore invoked when the condition

τrn
τR

≤ Θ (30)

is satisfied. τR is a reference stress and Θ is a number
much less than unity. In most cases that follow these
numerical parameters are taken as Θ = 10−2, β = 10−2,
and τR = ‖τ‖∞, where ‖τ‖∞ is the local maximum norm
(largest local stress). Note that the max norm is typically
τ e
n, particularly in proximity to the meniscus tip, while

Θ ensures that the residue is never greater than 1% of
any dominant stress.

V. RESULTS AND DISCUSSION

Direct empirical validation of the model is challenging
on account of the absence of high-resolution meniscus vi-
sualizations. The literature is however replete with theo-
retical investigations of electrified interfaces — see, e.g.,
[15, 46, 47]. Most cases treat sessile or pendant drops
for which the volume is invariant. Such situations can be
addressed with the present model by substituting

p = p (E0,V) (31)

for the pressure relation p = pr − ICR describing the
effects of the feeding flow. The constant-volume p may
be identified iteratively as an extra step in the numerical
method. This procedure is used here to benchmark the
model against the findings of Higuera for ion emission
from ionic liquid sessile drops [31]. Dielectric drops (no
emission) are investigated elsewhere [33] and contrasted
with the findings of Wohlhuter and Basaran [47].
The generalized (free-volume) meniscus problem with

feeding flow is treated thereafter in the case of small B
where the contact line r0 is large in comparison to the
characteristic tip size r∗ since this is the situation that
is most commonly encountered in practice [14, 23, 25].
A test liquid is designed with properties similar to those
of 1-ethyl-3-methylimidazolium tetrafluoroborate (EMI-
BF4), an IL that is widely employed in empirical evap-
oration studies [10, 11, 23]. The neat IL is modeled at
room temperature (T0 = 300 K) using K0 = 1 S/m;
K ′ = 0.04 S/m-K; q/m = 106 C/kg; µ0 = 0.037 Pa-s;
kT = 0.2 W/m-K; cp = 1500 J/kg-K; γ = 0.05 N/m;
∆G = 1 eV; and ρ = 103 kg/m3. Note that the di-
electric constant ǫ = 10 is appropriate [36] but relatively
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apolar in comparison to those of typical electrolytic so-
lutions, e.g., aqueous solutions. These properties estab-
lish the dimensionless parameters Λ = 12; ψ = 38.6;
χ = 1.81 × 10−3; We = 2.26 × 10−6; Ca = 0.026;
Gz = 0.024; Kc = 1.32 × 10−4; and H = 0.176 while
those that remain (E0, Pr, B, CR) form a subspace that
is explored numerically. Two primary solution families
are identified: one spanning a regime of low electric field
for which meaningful emission is absent and another in a
regime of high electric field where evaporation is substan-
tial. The former is established in the literature [46–49]
while the latter has only recently been reported by Coff-
man [32, 33]. The high-field family is expanded upon
here. A prototype solution is presented to highlight elec-
tric, hydraulic, and thermal properties of the meniscus
which are representative of the regime. The meniscus is
sized B = 0.05 in this case to preserve ease of graphical
representation while still ensuring that it reasonably re-
sides in the small-B limit. The dependence of the menis-
cus morphology and emission current on the applied field,
meniscus size, and feeding flow setup are also delineated
to emphasize important relationships to external vari-
ables. These are shown for the specific case pr = 0, cho-
sen for its numerical economy and relevance to practical
configurations, e.g., solid needle electrospray emitters.

A. Constant-volume meniscus

Solution in the low-field regime are bracketed by the
null field E0 = 0 on one side and a non-zero electric
field corresponding to a so-called “turning point” on the
other [46, 47]. When the elongation of the meniscus is
defined as Ze = z0/r0, where z0 = h(r = 0) is the height
of the meniscus on the axis of symmetry, the turning
point coincides with the field at which the incremental
elongation ceases to be bounded, i.e., dZe/dE0 → ∞.
Two solution branches comprise this family: an unstable
branch of sharp menisci (high elongation) and a stable
counterpart typified by rounded structures [15]. Only the
latter is physical. The menisci of perfectly conducting
liquids [15], insulating liquids [47–49], and ionic liquids
[33] are all qualitatively similar on this branch.
Higuera [31] has modeled the shapes and evaporation

properties of ionic liquid sessile droplets on the stable
branch using time-resolved techniques. Axisymmetric
droplets are attached to a conductive plate with constant
wetting radius r0 and volume V . The liquid medium is
relatively polar (ǫ = 50) but permits evaporation of ions
with very high specific charge when the applied electric
field is sufficiently strong. Droplet volumes include V =
0.5, 1, 1.5, and 2 with B = 0.25, where the latter im-
plies meniscus sizes of order r∗. The liquid properties
are ǫ = 50, χ = 4.12 × 10−4, ψ = 20, and Ca = Kc =
Λ = We = Gz = H = 0. Figure 3 presents a comparison
of select results from the reference with those attained by
the model described in this work. These are represented
by dashed and solid curves, respectively. Figure 3a de-
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(a) (b)
V

V

FIG. 3. Comparison of evaporation results for ionic liquid
droplets of constant volume. The findings of Higuera [31] for
volumes V = 0.5, 1, 1.5, and 2 (dashed curves) are shown next
to those computed with the present model. (a) Elongation of
the droplets, Ze = h(r = 0), as a function of applied electric
field. The droplet volume is increasing in the direction of
increasing elongation. (b) Surface charge σ at the tip of the
meniscus. The droplet volume increases from right to left.

lineates the elongation Ze of the meniscus in response to
E0, showing that the stationary meniscus extends weakly
in response to low electric fields before terminating at a
turning point. Figure 3b delineates the surface charge
computed at the meniscus tip. Depletion of charge at
the surface beyond a threshold field (decreasing σ) is in-
dicative of emission and a symptom of the inability of
electrical conduction (limited K) to keep pace with the
rate of ion extraction at the interface.

The model confirms the results of the Higuera [31]
and suggests that small menisci with B of order unity
are capable of supporting emission for fields E0 below
that of the turning point. When B is small, however,
they imply that emission is not likely to take place since
the surface field is unable to reach sufficient strength.
This can be appreciated by considering that, at the null
field, the meniscus is subject to a simplified mechanical
balance p = ∇ · n/2 that produces a spherical section
for which r0κt may be small depending on the size of
the contact line and the drop volume. Here, κ−1

t is the
radius of curvature of the meniscus tip. Although he
meniscus elongates and sharpens as the field is increased,
r0κt is at most of order unity as the turning point is
reached. The electric field acting at the tip is therefore
Ev

n = O(Ec). Since the scale Ec is related to the char-
acteristic evaporation field E∗ through the size parame-
ter B, i.e., Ec/E

∗ = B1/2, this indicates that the ratio
Ev

n/E
∗ ∼ B1/2 is of a low magnitude when the meniscus

is large, precluding meaningful emission. Coupled with
the fact that the turning point typically coincides with
the highest field for which stationary solutions, this pro-
vides strong evidence to suggest that the low-field regime
does not correspond to the emission observed in practice
[47].
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FIG. 4. Select characteristics of solutions in the low field
regime for pr = -0.50, -0.25, 0, 0.25, 0.50, 0.75, and 0.90.
(a) Limiting meniscus shapes at the end of the stable so-
lution branch (turning point) in the low field regime with
electric field E0 = 0.72, 0.61, 0.52, 0.42, 0.33, 0.23, and 0.14,
respectively. The reservoir pressure increases in the direc-
tion of increasing elongation. (b) Electric field Ev

n at the
tip of the meniscus. The maximum field corresponds to the
turning point (maximum curvature) but remains limited to
Ev

n = O(1), precluding emission from a large meniscus. The
reservoir pressure decreases from left to right.

B. Meniscus with feeding flow

Solutions to the generalized problem with a feeding ar-
chitecture (p = pr−ICR) in the low-field regime are qual-
itatively similar to those of the constant-volume drop.
Figure 4a depicts meniscus shapes at the turning point
for various pr. These exhibit the limiting (highest) tip
curvature in this regime. Figure 4b depicts the corre-
sponding tip field. Note that the electric field at the
turning point is in general a function of the reservoir pres-
sure, decreasing in the direction of increasing pr. This is
similar to the sessile droplet case in which the turning
point field decreases in inverse proportion to the droplet
volume — see Fig. 3a. Owing to the lack of emission
when B ≪ 1, these results are independent of the feed-
ing impedance CR.

Stationary solutions of the low field regime cease to ex-
ist as the electric field is increased infinitesimally at the
turning point. This is generically true in the large menis-
cus limit, the properties of the liquid notwithstanding. A
second family of solutions may however exist in a region
of high electric field under special conditions [32, 33].
The extent of this region is finite and does not overlap
that of the low field regime. Unlike the blunt “egg-like”
structures that typify the low field regime, the meniscus
in this regime is “cone-like”, supporting emission from a
sharp tip.

Figure 5 presents salient properties of a high-field pro-
totype solution calculated at E0 = 1.0, B = 1/20,
CR = 103, and pr = 0. Figure 5a depicts the shape of
the meniscus while Figs. 5b-5d show the stress distribu-

tion, the electric potential, and the surface charge of the
interface, respectively. Here, the potential is normalized
by the characteristic loss through the tip Φ∗ = E∗r∗/ǫ
and the surface charge by ǫ0E

v
n, the value corresponding

to the condition of full electrical relaxation. Figs. 5e
and 5f depict components of the flow field at the inter-
face and its temperature distribution. The temperature
scale ∆T ∗ = K0Φ

∗2/kT follows from a balance of Ohmic
dissipation and thermal conduction.

Figure 5a reveals the cone-like nature of the menis-
cus in this regime but highlights a substantial deviation
from the Taylor archetype. The idealized Taylor cone is
predicated upon a simple mechanical interaction in which
electrical traction and surface tension globally equilibrate
along a surface that is of uniform potential [15]. The elec-
tric field Ev

n in this case varies generically as r−1/2, where
r is the cylindrical radius, admitting a discrete spectrum
of spherical harmonics. Only the Legendre function P1/2

is permitted on the surface. Owing to the location of the
corresponding zero, classical Taylor cones exhibit a uni-
versal 49◦ half-angle that is insensitive to the intrinsic
properties of the liquid. Deviation from this cone rep-
resents a fundamental finding but should perhaps come
as no surprise since the mechanical balance is evidently
more complex. In addition to electrostatic traction and
surface tension, hydraulic pressure is seen to play a mean-
ingful role over much of the meniscus, particularly away
from the tip (Fig. 5b). This is so much so that the
balance in this specific case essentially excludes surface
tension near the base, resulting in a liquid surface that
is almost coplanar with the plate.

Morphological deviations from Taylor notwithstand-
ing, depletion of charge from the tip (Fig. 5d) and a
corresponding potential drop (Fig. 5c) indicate that the
meniscus is sharp enough under the given conditions to
emit meaningful charge. The current is approximately
160 nA for the test liquid. In providing this charge
the meniscus is found to be hydrostatic and conduction-
controlled. Notice that the tip is encircled by a curve C
on which the electric field coincides with the character-
istic value E∗. Since the field varies smoothly over the
meniscus the exponent from the kinetic law, Eq. 1, is
of very dissimilar magnitudes on either side of this line.
Towards the tip its growth outpaces transport in the liq-
uid and results in a reduction of the local surface charge
from its equilibrium value ǫ0E

v
n. The flow upstream of

this region is primarily tangent to the interface but turns
orthogonal (out of the meniscus) upon crossing the line
C. The maximum flow speed is of order u∗ from Figure
5e, ensuring both the Stokesian hydrostatic character of
the meniscus and the governance of conduction. The for-
mer is further evidenced by the stress distribution across
the interface (Fig. 5b), which implies that the effects of
flow through the meniscus are relatively insignificant and
that the interplay of electrical traction and surface ten-
sion dominates at the tip. Away from the tip, only the
pressure of the liquid on the plate −ICR is a factor.

The potential drop through the meniscus has impor-
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FIG. 5. Select properties of the steadily evaporating meniscus residing at the point E0 = 1, 1/B = 20, Pr = 0, and CR = 103 in
parameter space. (a) The meniscus shape (solid curve) plotted alongside a classical Taylor cone (dashed curve) for comparison.
(b) The distribution of stresses across the liquid-vacuum interface. The viscous stress accumulated in the meniscus itself,
(−n · τ · n)m, is separated from the pressure drop in the feeding line, −ICR, for clarity. (c) The distribution of electric
potential across the liquid-vacuum interface, normalized by the characteristic Φ∗ = E∗r∗/ǫr. (d) The distribution of surface
charge across the liquid-vacuum interface, normalized by the normal component of the displacement field in vacuum. (e)
Normal (solid curve) and tangential (dashed curve) components of the fluid flow at the liquid-vacuum interface, normalized by
the characteristic u∗. (f) The temperature of the liquid-vacuum interface normalized by ∆T ∗.

tant implications insofar as the energy of the emanating
beam is concerned. Charge must be conducted through
the tip region by a potential drop of order Φ∗ (Fig. 5c)
since the convected current ǫ0E

∗u∗/r∗ is nominal. The
speed u∗ is small in comparison to the velocity of an ion
after electrostatic free-fall through the same potential,
(qΦ∗/m)1/2, and so the resistivity of the liquid is seen
to reduce the kinetic energy of emitted ions from the
theoretical maximum by an amount — several volts for
common ILs — that is discernible on the scale of typical
driving voltages (0.1-1 kV). This could be one explana-
tion for the energy deficits observed in ionic liquid ion
sources [24, 28].

Figure 6 delineates the dependence of the meniscus
morphology and the current on the meniscus size, the
applied electric field, and the feed impedance. Figure 6a
depicts a sequence of meniscus shapes for E0 = 0.7 and
CR = 103 as the size is increased from B−1 = 3.19 to
100. Note that the upper limit of this size range is a com-
putational threshold beyond which calculations typically
lose affordability on account of stiffness. While station-
ary solutions may exist for larger menisci, the findings

of Coffman et al. [32] suggest that a limit of tenability
may exist as B → 0. The corresponding tip sharpness is
presented in Figure 6d. Here, the curvature of the menis-
cus at the tip is κt = 1/rt = (∇ · n)t/2, and thus the
relationship to the characteristic emission scale becomes
rt/r

∗ = 2/B(∇ · n)t. Figure 6b shows variations in the
shape of the meniscus forB−1 = 106 and CR = 103 as the
field is varied from E0 = 0.585 to E0 = 0.685. Experience
with the model suggests that these fields approximately
represent the range of feasible E0 for a meniscus of this
size. Notice that the low end of this range is somewhat
larger than the field corresponding to the turning point
for the meniscus with pr = 0, i.e., E0 ≈ 0.52, but not
dramatically so. Figure 6e depicts the emitted current
over the same range normalized by I∗, where I∗ = 477
nA for the prototype liquid, while Fig. 6c shows the re-
lationship between the normalized current I/I∗ and the
feed impedance with E0 = 0.62 and B−1 = 106. Values
of CR used to generate this data span several orders of
magnitude between CR = 3.3×106 (arbitrary cutoff) and
a value CR = 670 below which stationary solutions could
not be computed. Figure 6d elucidates the dependence
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meniscus tip for E0 = 0.62 and 1/B = 106 over a range of impedance.

of the tip morphology on CR.

These suggest that the meniscus shape regularizes as
B becomes increasingly small and then varies only as a
function of the applied electric field while emitting a cur-
rent of order I∗ that may be the maximum which the
source is capable of supporting. The meniscus is initially
blunt when B = O(1) but begins to adopt a conic pro-
file as the size is progressively increased, to the point
at which the shapes are essentially indistinguishable on
the macroscopic scale of the base for all B & 25 (Fig.
6a). This is accompanied by an asymptotic reduction of
the tip to a radius of order r∗ (Fig. 6d) and current of
order I∗. Conduction ensures that subsequent changes
to the field are met with linear variations of the latter
(Fig. 6e), congruent with many empirical observations
[10, 11]. The pressure relationship p = pr − ICR requires
that these result in a change to the liquid pressure on
the plate. As the field and the current both increase,
this is manifested as a decrease is in the elongation of
the meniscus which makes it appear as though it is be-
ing slowly “sucked” back in the direction of the plane
z = 0 (Fig. 6b). Unlike the field, the feed impedance

is found to influence the current of the source but not
its macroscopic shape. Closer inspection reveals this in-
teresting finding to be a byproduct of subtle changes to
the microscopic morphology of the tip. The tip sharp-
ens or dulls as needed to supply the necessary charge,
and this apparently provide a mechanism for controlling
the total current with minimal effect on the overall shape
(Fig. 6f). The macroscopic invariance implies that the
pressure of the liquid emerging from the tube p = −ICR

is fixed over the range of CR considered and it follows
that the current must vary in inverse proportion to the
impedance (Fig. 6c). This is potentially a useful tool
for regulating the brightness of the source. There may
however be limits on the extent to which it is feasible
since stationary solutions could not be computed as CR

approached a threshold value for which the current was
not much larger than I∗. A possible explanation is that
this is symptomatic of a tip which can be no smaller than
r∗. Insofar as a droplet with B ∼ 1 can be taken as a
proxy for the tip of a much larger meniscus, the findings
of Higuera strongly support this notion [31]. Given that
the pressure of the liquid on the plate p is of order unity,
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if this is indeed the case it would imply that stationary
solutions necessarily require CR = O(ǫB−3/2) to ensure
that the current remains within feasible limits, i.e., of
order I∗ or smaller.

VI. CONCLUSIONS

A mathematical model has been formulated to describe
the behavior of an electrified ionic liquid meniscus under-
going evaporation of ions. The meniscus is attached to
a liquid feed system that serves as a proxy for the nee-
dles and capillary tubes commonly used in electrospray
practice. The amenability of the ionic liquid 1-ethyl-3-
methylimidazolium tetrafluoroborate to pure ion evapo-
ration is well-established. The model is used to study
the stationary properties of a prototype liquid of similar
character over a range of empirically relevant conditions.
These include the size of the meniscus, the applied elec-
tric field, and the impedance of the feed system. Two
distinct solution families are identified when the menis-
cus is large in comparison to a characteristic length scale
for emission. The first belongs to a regime of low electric
field and is typified by a relatively blunt “egg-like” menis-
cus that does not emit charge. The second belongs to a
regime of high electric field in which a sharp meniscus
supports ion evaporation from its tip. This meniscus is
“cone-like” but still deviates substantially from a perfect
49.2◦ Taylor cone. In this regime the results indicate that
the meniscus is hydrostatic and that only a small portion
of the tip is active in the emission of charge. The sur-
face of the meniscus is electrically shielded outside of the
active region and depleted of interfacial charge within
it, such that the local behavior is analogous to that of
a dielectric. The effects of convection are tenuous and

conduction dominates. Variations in electric current are
therefore linear with respect to the applied field. In-
creases to the field increase the current and reduce the
hydrostatic pressure of the meniscus, leading to a reduc-
tion of its elongation (height). Unlike the field, the feed
impedance influences the current but does not control the
macroscopic shape of the meniscus. Microscopic changes
to the morphology of the tip are instead responsibly for
regulating the outflow of charge. The sharpness of the
tip and therefore the current are inversely related to the
impedance in a way that ensures invariance of the liquid
pressure, indicating that the meniscus shape is a func-
tion of only the applied electric field. The current can be
increased by modulating the feed impedance only until
it is of the maximum characteristic order, corresponding
to the minimum characteristic tip size, at which point
stationary solutions begin to lose tenability.
Future work should strive to incorporate dynamics in

the model and investigate various instabilities to iden-
tify solutions that are physical. The effects of space
charge, albeit tenuous, should also be investigated to bet-
ter quantify their significance in relation to other impor-
tant facets of the source. Empirical corroboration is also
of critical importance and direct meniscus visualizations
are expected to be indispensable in this regard. Efforts to
obatain these will however necessitate very careful exper-
imental planning and execution since µm-scale menisci
and their sub-µm-scale features present inherent imag-
ing challenges.
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