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In this work we quantify the effects of surfactant transport on the deformation of a viscous
drop under a DC electric field. We study how convective and diffusive transport of surfactants at
drop surfaces influence the equilibrium and dynamic deformation of a leaky dielectric drop and a
conducting drop. Focusing on the prolate drop shape (elongates along the electric field), we show
the differences in equilibrium deformation and flow circulation between a leaky dielectric drop and
a conducting drop. We quantify the drop electrodeformation via its dependence on the interior
flow circulation and the dominant surfactant transport regime (characterized by the surface Péclet
number Pes). For a leaky dielectric drop with dominant surfactant diffusion (Pes � 1), equator-
to-pole (pole-to-equator) circulation yields smaller (larger) equilibrium deformation with increasing
surfactant coverage, compared to a clean drop. On the other hand, when convection dominates
(Pes � 1), the equilibrium drop deformation increases (decreases) with larger surfactant coverage
for equator-to-pole (pole-to-equator) circulation. Larger equilibrium drop deformation is found for
a leaky dielectric drop than a conducting drop when the interior flow is from equator to pole. For
an interior flow from pole to equator, we identify cases where larger deformation is found for a
conducting interior fluid. Finally, we study the effect of the surfactant transport on the dynamic
evolution of drop shape. We found the drop undergoes an overshoot in the early deformation phase,
before settling to its equilibrium shape –similar to the overshoot observed for unsteady Stokes flow.
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I. INTRODUCTION

Electric field is widely utilized to deform a viscous drop in microfluidics and many petroleum engineering applica-
tions. For a leaky dielectric drop freely suspended in another leaky dielectric fluid, the bulk charge neutralizes on a
fast time scale while free charges accumulate on the drop surface under an electric field. Analytical investigation of the
electro-deformation of a viscous drop has been conducted [1, 2], and the electrohydrodynamic (EHD) leaky dielectric
model [3] has been developed to explain the deformation of conducting drops suspended in a conducting medium.
Results show that the electrostatic stresses on the drop surface lead to interior toroidal circulations. Consequently the
drop deforms to either a prolate or an oblate spheroid shape depending on the specific electrical properties of fluids
[4]. With different electrical properties the effects of the electrostatic and hydrodynamic stresses on drop deformation
also behaves distinctively [5]. Under a small electric field, a steady equilibrium drop shape exists due to the balance
between the electric and hydrodynamic stresses [6–8]. Under a sufficiently large electric field, no steady equilibrium
drop shape is stable and the drop keeps deforming until the eventual break-up into smaller drops [9, 10].

Analytical treatments of the electro-deformation in the leaky dielectric framework assume either small deformations
or specific spheroidal (oblate or prolate) shapes. These results predict the dependence of the equilibrium drop shape
on the electric capillary number (ratio of electric stress to surface tension). Such dependence was first derived by
Taylor [3] for small deformation of a spherical drop in a weak uniform electric field. A comprehensive review of the
theoretical developments in this area can be found in Melcher and Taylor [4] and Saville [5]. Bentenitis and Krause [11]
extended Taylor’s leaky dielectric model for large deformation of a non-charged viscous drop in a dielectric fluid by a
strong electric field. Their large deformation analysis assumes spheroidal shapes and gives reasonable agreement with
most experiments for the prolate drops, while discrepancies are observed for oblate drops. Zabarankin reformulated
the stress boundary condition on a spheroidal drop and used a non-Stokes stream function to calculate the steady
flow around a spheroidal drop under a DC electric field [12, 13]. In this new formulation Zabarankin predicted large
steady prolate spheroidal drop deformation consistent with results from both experiments and previous spheroidal
models.

Direct numerical simulations of an axisymmetric or two-dimensional drop in an electric field have been conducted
to investigate strong electro-deformation in the framework of the leaky dielectric model [8, 14–19]. Under strong
electric forces conical points may form at the end of the viscous drop [20], from where small drops may be streaming
as a result of the instability (tip streaming). The viscous drop may also undergo large deformation with undulation,
and eventually break up into several drops of comparable sizes. While both phenomena require special numerical
treatment to capture the topological changes due to the instability, tip streaming requires numerical resolution for
the structures and dynamics at the conical points [15, 16].

Recent studies have reported the effects of charge relaxation and convection on the dynamics of drop deformation
within the leaky dielectric framework [21–23]. In the absence of charge convection, relaxation affects the transient
dynamic of the prolate (oblate) drop by causing a short-lived shape transition at the early phase of drop evolution, but
it does not alter the equilibrium deformation. On the other hand, without relaxation, charge convection gives rise to
monotonic deformation dynamics that asymptotes to an equilibrium with shape-dependent differences: Equilibrium
deformation is enhanced for a prolate drop [24], and reduced for an oblate drop (completely stabilized for an otherwise
unstable oblate drop) [22]. Lanauze et al. [21] also considered inertial effects by solving the unsteady Stokes equation.
They show inertia leads to an overshoot in the transient evolution of the drop at the later phase of the dynamic prior
to reaching equilibrium; this result is consistent with existing numerical simulations [8, 25].

Surfactants are extensively used to reduce drop size by lowering surface tension in many engineering applications
that involve drop deformation and breakup [26, 27]. Surface tension reduction by surfactant can substantially alter
interfacial evolution and the flow: A striking example is the surfactant-induced tip streaming of small drops from a
thin viscous thread extended from a bubble deformed by an imposed shear or strain [28]. Experiments and analyses
show that surfactant has a significant effect on the stability of a viscous jet surrounded by another viscous fluid.
Linear stability of a surfactant-laden cylindrical jet shows that surfactant affects the growth rate of disturbances via
a combination of reduced surface tension and the immobilizing (surface stiffening) effect of the Marangoni stress.
The equilibrium electro-deformation of a surfactant-laden viscous drop has been investigated experimentally by Ha
and Yang [29, 30] (small-deformation analysis and experiments), and later numerically by Teigen and Munkejord
[31] (axisymmetric numerical simulations) and semi-analytically by Nganguia et al. [32] (large deformation analysis).
While Ha and Yang concluded that surfactant leads to enhanced electro-deformation for a prolate drop, Teigen and
Munkejord found that smaller deformation may be caused by surfactant if the surfactant concentration is small,
leading to an opposite circulation inside the viscous drop. These phenomena have been captured and explained by
an analytical spheroidal model for a surfactant-laden viscous drop in the limit of weak surfactant diffusivity [32].

The Marangoni stress depends on the surfactant transport characterized by the surface Péclet number Pes, the
ratio of convective to diffusive transport. To our knowledge, studies on the effects of surfactants on the deformation
of drops subject to electric fields [31, 32] have focused on transport dominated by convection, where Pes � 1.
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FIG. 1. A viscous drop, subject to a DC electric field E0ez and covered with insoluble surfactant (bead-rod particles),
separates two immiscible fluids, with physical parameters εj , σj , µj , where j = i denotes the interior of the drop, and j = e its
exterior. Application of the electric field induces flow inside and outside the drop which deforms into a prolate-shaped spheroid
at equilibrium. Deformation depends on the type of drops (leaky dielectric or conducting), and on the surfactant transport
mechanism (diffusive transport for Pes � 1 and convective transport for Pes →∞). The drop shape parameter ξ0 is a function
of the aspect ratio between the major (b) and minor (a) axes.

While these studies have enhanced our understanding of the combined effects of electric fields and surfactants on
the electrohydrodynamics of drops, the influence of diffusive surfactant transport on equilibrium deformation, and on
the transient evolution of drops remain unexplored. Here we investigate the effects of surfactants on drop electro-
deformation from diffusion-dominant to moderate convective transport (Pes ≤ 10). To this end, we present a semi-
analytical method to simulate drops electrohydrodynamics over a range of surface Péclet numbers.

The paper is organized as follows. In §II we first formulate the leaky dielectric model. We then present the
analytical solution in the spheroidal coordinates (§II A 1), and the resulting shape equation for surfactant-laden drops
(§II A 2). Finally, we introduce the modified equations for a conducting drop (§II B), before discussing the dependence
of surface tension on surfactant concentration in § II C. In §III we validate our spheroidal model against experimental
data for a clean conducting drop (§III A), and against numerical simulations for a leaky dielectric, surfactant-laden
drop (§III B). We then utilize the model to analyze the effects of surfactant transport on the equilibrium deformation
of leaky dielectric and conducting drops (§ IV), and on the transient dynamic (§ V). Finally in §VI we draw conclusion
on our findings and discuss future research direction.

II. PROBLEM FORMULATION

A. Leaky dielectric drops

We consider a viscous drop immersed in a leaky dielectric fluid as shown in figure 1. Each fluid is characterized by
the fluid viscosity µ, dielectric permittivity ε, and conductivity σ with the subscript denoting interior (i) or exterior (e)
fluid. In this work the subscript “r” denotes the ratio between exterior and interior quantities: µr = µe/µi, εr = εe/εi,
and σr = σe/σi. Typical applications of leaky dielectric fluids involve drops of mm size under an electric field strength
of kV/cm. Hence we can safely assume that the fluid flow in this system is in the creeping flow regime with negligible
inertia.

The interior and exterior fluids are governed by the incompressible Stokes equations

µj∇2uj = ∇pj , (1)

∇ · uj = 0, (2)



4

where the subscript j denotes interior (j = i) or exterior (j = e) fluids. In the far-field the flow is quiescent,

ue(x→∞) = 0. (3)

The drop shape evolves according to

∂X

∂t
= vn, (4)

where X is a point on the drop surface and v = u · n is the interfacial velocity along the normal direction n.
The stress balance at the drop surface gives

J
(
TH + TE

)
· nK = γ (∇ · n)n−∇sγ · t, (5)

where JfK ≡ fe − fi denotes the difference across the drop surface; γ is the surface tension that depends on the
surfactant distribution on the surface; t and n are the unit tangential and normal vectors, respectively, on the drop

surface; the hydrodynamic stress TH = −pI + µ
[
(∇u)

T
+ ∇u

]
, and the Maxwell stress TE = εEE − 1

2ε (E ·E) I,

with ε the permittivity of the fluid. We can write the Maxwell stress for a leaky dielectric drop in terms of the
permittivity and conductivity ratios,

JTEK = εe

{
1

2

[
E2
n

(
1− σ2

r

εr

)
− E2

t

]
n + EnEt

(
1− σr

εr

)
t

}
. (6)

The electric field E = −∇φ, where φ is the electric potential that satisfies the Laplace equation both inside and
outside the drop in the extended leaky dielectric model

∇2φj = 0. (7)

Far away from the drop surface the electric field is the imposed electric field

−∇φe = E0z. (8)

At the drop surface the tangential electric field is continuous while the normal electric field has a jump due to the
displacement current:

J∇φ · tK = 0, Jσ∇φ · nK =
∂q

∂t
, (9)

where q ≡ J−ε∇φ · nK is the surface charge density with σ the conductivity of the fluid. While charge relaxation
(∂q/∂t) may be significant for large drops (such as mm sized Tween-laden drops in silicone oil), here we assume that
charge relaxation is negligible (∂q/∂t ≈ 0) for smaller drops as a first approximation. In this case, the conservation
of current Eq. 9 reduces to the continuity of Ohmic current, Jσ∇φ · nK = 0.

The surfactant transport on the drop surface in the Lagrangian framework is described by the following equation

∂Γ

∂t
+ ∇s · (usΓ) + κu · nΓ = Ds∇2

sΓ, (10)

where Γ is the surfactant concentration, ∇s ≡ (I−nn)·∇ is the gradient projected on the drop surface, us ≡ (I−nn)·u
is the tangential velocity on the surface, κ is the mean curvature, and Ds is the diffusion constant of the surfactant
on the drop surface.

1. Analytical solution

The spheroidal coordinates system has been used successfully to analyze the electrohydrodynamics of clean [11,
33, 34] and surfactant-laden [32] leaky dielectric drops. The large deformation analysis, to contrast with the oft-used
small-deformation theory, rests on assumptions that naturally constrain its validity. We expand on these limitations
in Appendix B 1. However we note that in the case of surfactant-laden drops, provided the drop remains spheroidal,
our model agrees well with experimental and numerical data for moderate and large Péclet numbers [35]. Here we
only provide a general outline of the method used to derive the shape equation §II A 2. Focusing on the axisymmetric
flow, the prolate spheroidal coordinates (ξ, η) can be expressed in the cylindrical coordinates (r, z) as

z = cξη, r = c
√

(ξ2 − 1)(1− η2), (11)
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with c ≡
√
a2 − b2 is the semi-focal length, and a and b are the major and minor semi-axis, respectively. Defined as

such, ξ ∈ [1,∞), η ∈ [−1, 1], and surfaces of constant ξ are spheroids while surfaces of constant η are hyperboloids.
Therefore the prolate drop surface is simply given by ξ = ξ0(t) ≡ a/c. Volume conservation of the drop relates a and

b to ξ0(t) as a(t) = r0/
3
√

1− ξ0(t)−2 and b(t) = r0
6
√

1− ξ0(t)−2. In the following we use hξ, hη and hζ to denote
the metric coefficients in the prolate spheroidal coordinates. The hydrodynamic and electric potential problems can
be solved separately. The potential φ is obtained by solving Eq. 7 for both φi and φe with boundary and matching
conditions at the drop surface [34]:

φe = [−E0cξ + α(t)Q1(ξ)] η, (12)

φi = β(t)ξη, (13)

with

α(t) =
ξ0β(t) + E0cξ0

Q1(ξ0)
, (14)

and Q1(ξ) the first-degree Legendre polynomial of the second kind. In the absence of charge relaxation, the boundary
condition in the normal direction given by Eq. 9 reduces to the widely used interfacial boundary condition

Jσ∇φK = σe
∂φe
∂ξ
− σi

∂φi
∂ξ

= 0 at ξ = ξ0. (15)

With this simplified interfacial condition, the electric potential coefficients, α(t), β(t) are given by

α(t) =
cξ0 (σr − 1)

ξ0σrQ′1 −Q1
, β(t) =

cσr (Q1 − ξ0Q′1)

ξ0σrQ′1 −Q1
, (16)

where the primes denote derivatives with respect to ξ.
Next we focus on the hydrodynamic problem. The axisymmetric two-dimensional incompressible fluid velocity is

related to a stream function ψ both inside and outside the drop via

uj = − 1

hξhζ

∂ψj
∂ξ

, vj =
1

hηhζ

∂ψj
∂η

, (17)

where u and v are the tangential and normal components (relative to the drop surface) of the fluid velocity. The
stream function satisfies the equation

(∇2)2ψ = 0, (18)

with

∇2 =
1

c2(ξ2 − η2)

[
∂

∂ξ

(
ξ2 − 1

) ∂
∂ξ

+
∂

∂η

(
1− η2

) ∂
∂η

]
.

The general solution to Eq. 18 can be expressed using the method of semi-decomposition

ψ = g0(ξ)G0(η) + g1(ξ)G1(η) +

∞∑

n=2

gn(ξ)Gn(η) + hn(ξ)Hn(η), (19)

where Gn and Hn are Gegenbauer functions of the first and second kinds, respectively. gn and hn are linear combina-
tions of Gn and Hn. Interested readers are referred to Dassios et al. [36] for detailed expressions of Gn, Hn, gn and
hn. Following the approaches in Bentenitis and Krause [11] and Zhang et al. [34], we seek an approximate solution

ψe =
[
A1

3H1(ξ) +A3
3H3(ξ)

]
G3(η), (20)

ψi =
[
B3

3G3(ξ) +B5
3G5(ξ)

]
G3(η). (21)

The tangential velocity is continuous across the drop surface and has to be determined consistently through the stress
balance, while the normal component of the interface velocity can be computed explicitly as

v(ξ0) =
r0(1− ξ−20 )−5/6

3ξ20

(1− 3η2)√
ξ20 − η2

dξ0
dt
.
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The coefficients A1
3, B3

3 , and B5
3 are determined from the continuity of velocities at the drop surface together with

the kinematic condition u ·n = v(ξ0). The remaining coefficient A3
3 and the rate of deformation of drop shape dξ0/dt

are computed from the stress balance equation (Eq. 6) averaged over the drop surface in the energetic fashion as
done by Zhang et al. [34]. In spheroidal coordinates, the tangential and normal components of the averaged stress,
respectively, are

∫

ξ=ξ0(t)

u

[
JTHξηK + JTEξηK +

1

hη

∂γ

∂η

]
ds = 0, (22)

∫

ξ=ξ0(t)

v
[
JTHξξ K + JTEξξK− γ (∇ · n)

]
ds = 0. (23)

It is straightforward to show A1
3 = A3

3H3 −Mdξ0/dt, B
3
3 = (−A3

3G5H
′
3 + MG′5dξ0/dt)/N , and B5

3 = (A3
3G3H

′
3 −

MG′3dξ0/dt)/N , where M = 2c3/3 and N = G3G
′
5 −G5G

′
3. At steady state (dξ0/dt = 0), all coefficients in Eqs. 20

and 21 can be expressed in terms of A3
3, which therefore represents the strength of the flow field inside and outside

the drop.

2. Shape equation

We non-dimensionalize lengths using the drop radius r0, and time using the EHD flow time scale τEHD = r0/U ,
where U is a characteristic velocity. The electric potential is scaled using E0r0, and surface tension using γ∗ of the
convection-free case. In terms of the variables we have α = E0r0α̃, β = E0r0β̃, and c = r0c̃. Hereafter we drop the
tildes for simplicity and refer to only dimensionless quantities unless otherwise stated.

The coefficient A3
3 is determined from the stress balance as

A3
3 =
−CaEc3QT ξ0f11 + Ec2f17 − CaE [(µr − 1) f12 + f13]M

dξ0
dt

− (µrf14 + f15)
, (24)

where CaE = E2
0r0εe/γ

∗ is the electric capillary number, E = Eχ/[1 + E ln(1 − χ)], and the elasticity number
E = RTΓ∞/γ0 is a measure of the sensitivity of surface tension to changes in the concentration of adsorbed surfactant
on the drop surface, expressed in terms of the gas constant R, temperature T and the surface tension of a clean drop
γ0. The system is closed with the evolution equation for the prolate drop shape ξ0

dξ0
dt

=
3

2

fQN
+ fQT

+ fMa + fγ
(µrf25 + f26)

, (25)

where

fQN
= QNf21, (26a)

fQT
= QT

ξ0f11 (µrf22 + f23)

µrf14 + f15
, (26b)

fMa = − Eχ

CaEc[1 + E ln(1− χ)]

f17 (µrf22 + f23)

µrf14 + f15
, (26c)

fγ = − f24
CaE

, (26d)

QN =
1

c2

[
(−c+ α(t)Q′1)2 +

(
−c+ α(t)

Q1

ξ0

)2

− 2
β2(t)

εr

]
, (26e)

QT =
1

c2

[
(−c+ α(t)Q′1)(−c+ α(t)

Q1

ξ0
)− β2(t)

εr

]
. (26f)

fQN
, fQT

, fMa and fγ represent, respectively, the contributions of the Maxwell stresses, Marangoni stress and surface
tension to the shape of the drop. The shape-dependent functions f11, f12, f13, f14, f15, f17, f21, f22, f23, f24, f25,
and f26 are provided in Appendix A. In the absence of charge relaxation, contributions from the Maxwell stresses
fQN

given by Eq. 26a and fQT
given by Eq. 26b reduce to

fQN
= −K2

(
2
σ2
r

εr
− σ2

r − 1

)
f21, fQT

= K2σr

(
1− σr

εr

)
ξ0f11 (µrf22 + f23)

µrf14 + f15
, (27)

where K ≡ [Q1(ξ0)− ξ0Q′1(ξ0)] / [Q1(ξ0)− σrξ0Q′1(ξ0)].
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B. Conducting drops

For a conducting drop the conductivity ratio σr � 1, and consequently there is no tangential electric field on the
interface (Et = E · t → 0)[33, 37, 38]. The general formulation for the bulk follows that of leaky dielectric drops:
the fluids in the exterior and interior are governed by the incompressible Stokes Eq. 1-2 with prescribed far-field and
kinematic boundary conditions. The main difference is in the boundary conditions that are related to the Maxwell
stress TE : For a conducting drop, Eq. 6 reduces to

JTEK =
εe
2
E2
nn. (28)

In terms of spheroidal coordinates for a conducting drop, Eq. 22 reduces to

∫

ξ=ξ0(t)

u

(
JTHξηK +

1

hη

∂γ

∂η

)
ds = 0. (29)

In the absence of tangential electric stresses, Eq. 29 informs us that the hydrodynamic flow is instead balanced by
Marangoni stresses. In this case the velocity U scales as γ∗/µe, giving t = τγ t̃ where τγ = r0µeγ

∗ is the hydrodynamic
time scale. We obtain the flow strength

A3
3 =
Ec2f17 − [(µr − 1) f12 + f13]M

dξ0
dt

− (µrf14 + f15)
, (30)

and the shape equation

dξ0
dt

=
3

2

fQN
+ fMa + fγ

(µrf25 + f26)
, (31)

where fQT
= 0 and fQN

now takes the form

fQN
=
CaE
c2

[
(−c+ α(t)Q′1)2 − 2

β2(t)

εr

]
f21. (32)

C. Surface tension and surfactant transport

We adopt the Langmuir equation of state for the surface tension γ of the surfactant-laden drop surface

γ = γ0 [1 + E ln(1− Γ)] . (33)

The Langmuir equation of state is not valid for surfactant concentration above the maximum packing concentration,
beyond which the integrity of the surfactant monolayer is compromised by micelle formation. This is often observed
during tip streaming [39–41] and thread formation [42, 43]. Here, we only consider equilibrium drop shape for low to
moderate surfactant concentration, below the maximum packing concentration.

The equation for the surfactant concentration is non-dimensionalized by scaling the surfactant by Γ = Γ∗Γ̃, where
Γ∗ is the surfactant distribution in the convection-free case (Ds → ∞), and the surface tension γ = γ∗γ̃, where
γ∗ = γ0[1 + E ln(1− χ)]. Again dropping the tildes, the equation of state becomes

γ (Γ) =
1 + E ln (1− χΓ)

1 + E ln (1− χ)
, (34)

where χ = Γ∗/Γ∞ is the surfactant coverage.
The dimensionless surfactant transport equation

Pes

[
∂Γ

∂t
+ ∇s · (Γus) + (u · n)κΓ

]
= ∇2

sΓ, (35)

where Pes = Ur0/Ds is the dimensionless Péclet number (a measure of the relative importance of convective transport
to diffusive transport), and U is a characteristic velocity.
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For electrically driven flow U scales as εeE
2
0r0/µ, and the Péclet number is proportional to the square of the electric

field strength. We can then estimate the Péclet number by considering typical values for a Tween-laden drop in
silicone oil. The oil phase has viscosity µ ≈ 10 Pa · s and dielectric constant εe/ε0 = 2.2− 2.9, where ε0 is the vacuum
permittivity [44]. In experiments [2, 44–46], typical values of the electric field are in the order of kV/cm. For a drop of
size one millimeter [45], the velocity U is estimated of order 10−3 mm/s. With surfactant diffusivity Ds ≈ 10−10 m2/s
[47], we obtain Péclet number of order 10. For smaller drops with size of order tens of microns [2, 46], the Péclet
number could be as small as 10−3. Thus we can expect diffusive transport to contribute significantly to the dynamics.

In the axisymmetric spheroidal coordinates, Eq. 35 takes the following form

Pes

[
∂Γ

∂t
+

u

hη

∂Γ

∂η
+

(
1

hη

∂u

∂η
+ κv

)
Γ

]
=

1

hη

∂

∂η

(
1

hη

∂Γ

∂η

)
. (36)

The large deformation spheroidal analysis provides an efficient tool to determine the drop shape and the corresponding
flow field compared to direct numerical simulations of the full system. The nonlinear surfactant transport equation
(Eq. 36) however may not be tractable analytically except for some asymptotic limits in Péclet number. To investigate
the dynamics for a range of intermediate Péclet number, we develop a hybrid, semi-analytical approach to solve the full
set of equations. The spheroidal representation of the drop shape is combined with a numerical collocation method for
determining the surfactant concentration profile on the spheroidal surface. Details of the numerical implementation
can be found in Appendix B 2.
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FIG. 2. Equilibrium deformation Deq as a function of electric capillary number for a clean conducting drop. The parameters
µr = 1/0.00126, σr = 10−8, εr = 1/31.1. The symbols denote experiments [6, 48]; the curves represent predictions using
the boundary integral method (dashed) [48], Taylor’s first order theory (dotted), and Ajayi’s second order approximation
(dash-dotted). The present model is shown in solid line.

III. MODEL VALIDATION

Conducting drops can only achieve prolate shapes at equilibrium due to the absence of electric field-induced tangen-
tial flows. Since our main focus is to contrast the effects of surfactant transport on leaky dielectric versus conducting
drops, extension to oblate shapes is beyond the scope of this paper and is deferred to future studies. Furthermore
we consider identical viscosity between the continuous phase and the drop (µr = 1), and the surfactant elasticity
E = 0.2. We characterize drop deformation via the deformation number D ≡ (a− b)/(a+ b).

A. Equilibrium deformation of clean conducting drop

The large deformation analysis of a viscous drop has garnered increasing interest in recent years. In the absence
of surfactants (the surface tension γ is a constant and fMa = 0 in Eq. 31), large-deformation studies have shown
excellent agreements with both numerical simulations [10] and experiments [6] for a leaky dielectric drop under a DC
electric field. The main reason for the growing popularity of the large-deformation analysis is that without too much
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more work than the small-deformation analysis, the spheroidal model for a clean drop in a DC field gives excellent
agreement with experimental data over a wide range of capillary number and deformation as long as the drop shape
remains spheroidal (see appendix in [32]).

Here we show the accuracy of the large-deformation analysis for the case of clean spheroidal conducting drops. At
the steady equilibrium dξ0/dt = 0 in Eq. 31, giving QNf21 = f24, where QN is given by Eq. 26e. This equation
is nonlinear in the drop shape coordinate ξ0. Alternatively, we can consider the inverse problem of determining the
electric capillary number CaE for a given drop shape ξ0. Figure 2 shows the comparison between the results obtained
from solving for ξ0 from Eq. III A and numerical simulations [48] and experiments (triangle and circle symbols)
[6, 48] of electrohydrodynamics of a conducting drop. We also plot results for the first- [3] and second-order [49]
small-deformation theory. At small values of the electric capillary number (CaE ≤ 0.1) all analytical and numerical
models are in excellent agreement with the experimental data. The first-order small deformation approximation
underestimates the equilibrium drop deformation around CaE ≈ 0.1, while predictions from the second-order small
deformation model hold up to CaE ≈ 0.15. For this problem, the spheroidal model captures the full range of
experimental observations as well as numerical simulations.

B. Effects of surfactant coverage on drops deformation

In this section, and in the rest of the analysis, we focus our attention on two distinct modes of deformation: prolate
‘A’ drop that exhibits counter-clockwise (equator to pole) circulation; and prolate ‘B’ drop with clockwise circulation
(pole to equator). For comparison we use the same values for the dimensionless parameters as in [31]: εr = 1, σr = 1/3
for prolate ‘A’, and εr = 1/3.5, σr = 1/3 for prolate ‘B’. In particular, these two cases have been found to demonstrate
very interesting dynamics in direct numerical simulations [31]: For a prolate ‘A’ drop with (εr, σr) = (1, 1/3) addition
of surfactant produces larger deformation than the clean drop case. Moreover, increasing surfactant coverage yields
more pronounced drop deformation.

For small to moderate surfactant coverage, previous direct numerical simulations with finite Péclet number (Pes =
10) [31] and spheroidal model with non-diffusive surfactant (Pes →∞) [32] showed that increasing surfactant coverage
gives rise to larger drop deformation regardless of electric field strength. This phenomenon is related to tip-stretching
(for a detailed explanation see [32]), where the average surface tension is small and surfactant concentration gradient
(and hence Marangoni stress) is large.

In contrast, for high surfactant coverage, the equilibrium drop deformation depends on the electric field strength
[39]: the deformation, larger at low to moderate values of electric field strength compared to the clean drop case, is
subsequently suppressed as the electric capillary number increases. This phenomenon is known as surface dilution.
In this paper we focus on surfactant coverages χ ≤ 0.5, and on the range of electric capillary number CaE where
tip-stretching is expected to dominate.

Figure 3(a) illustrates the excellent agreement in equilibrium deformation between the current model (solid curves),
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FIG. 3. Equilibrium deformation Deq as a function of electric capillary number for a surfactant-laden, leaky dielectric drop.
The electric parameters are (a) for a prolate ‘A’ (counterclockwise circulation) drop with εr = 1, σr = 1/3; and (b) for a
prolate ‘B’ (clockwise) drop with εr = 1/3.5, σr = 1/3. Symbols are from numerical simulations using a regularized level-set
method [31] (green diamond), and a boundary integral equation method (blue circle) [35]; the current semi-analytical approach
is represented by the solid line.
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numerical simulations using regularized method (diamonds) [31] and boundary integral simulations (circles) [35].
Figure 3(b) shows the comparison between our model and numerical simulations for the prolate ‘B’ drop. While our
predictions agree very well with boundary integral simulations, we observe some discrepancies with results from [31]
as CaE increases. These discrepancies may be attributed to the weak inertial effect in the regularized level-set method
[31], which is absent in the results by the boundary integral method and the current semi-analytical model. We note
that, for prolate ‘A’ drops, the fluid stress combines with the electric stress to deform a drop along the direction of the
electric field, while the opposite holds for prolate ‘B’ drops. We thus speculate that inertial effects (which influences
the fluid stress [50, 51]) may cause the discrepancies observed in figure 3(b). Nevertheless, the overall relative errors
between the boundary integral simulations and the current model are less than 10% in all cases studied.

IV. EFFECTS OF SURFACTANT TRANSPORT ON EQUILIBRIUM DEFORMATION

In this section we perform a systematic investigation of the effect of Pes on equilibrium drop deformation Deq,
exploring how surfactant transport and coverage combine to affect equilibrium drop shapes under a dc electric field.

A. Leaky dielectric drop
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FIG. 4. Effects of Péclet number on the deformation number (Deq) and flow strength (A3
3) for a leaky dielectric prolate ‘A’

drop with εr = 1, σr = 1/3. In (a) Deq shows dependence on both surfactant coverage and Pes. For Pes / 5, Deq decreases
with increasing χ; above that threshold, the opposite holds: Deq increases with higher surfactant coverage. No such transition
is observed in A3

3. In (b), A3
3 monotonically decreases with increasing Pes, and higher surfactant coverage yields stronger flow.

In (c) the Marangoni stress (∇sγ) and surface tension (γ, in inset) are plotted as a function of θ = cos−1(η) for Pes = 0.1.
The electric capillary number CaE = 0.67

Figure 4 shows equilibrium drop deformation Deq in panel (a) and flow strength A3
3 in panel (b) for a prolate ‘A’

leaky dielectric drop with CaE = 0.67. Panel (c) shows the Marangoni stress and surface tension (inset) at different
values of χ for Pes = 0.1. For small Pes (diffusion dominated regime) the equilibrium drop deformation Deq decreases
with surfactant coverage χ while A3

3 increases with χ. The corresponding dependencies of the Marangoni stress and
surface tension are consistent with such trend: As χ increases, both surface tension and Marangoni stress increase in
magnitude, consistent with the decreasing trend of Deq and the increasing trend of A3

3. Our simulation results show
that such trend in Deq is reversed for Pes ≥ 6: Deq increases with χ while A3

3 still increases with χ. The dependence
of equilibrium drop deformation on the surface Péclet number is also observed for a viscous drop under an external
flow [52].

For Pes � 6, convection dominates; surfactant is swept, and accumulates, near the pole where it reduces the surface
tension locally. In this process, known as tip stretching, the electric, hydrodynamic and Marangoni forces combine
to deform the drop in the direction of the electric field. The deformation is consistent with previous works and
experiments: it increases with χ, and larger degree of deformation is accompanied with stronger convective transport.
For large but finite Péclet numbers A3

3 decreases with increasing Pes but is not completely suppressed, unlike the
case of non-diffusive surfactants (Pes →∞) where the drop surface is completely immobilized by surfactants and the
flow strength A3

3 → 0 [32].
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FIG. 5. Streamlines for the leaky dielectric prolate ‘A’ drop with εr = 1, σr = 1/3, and χ = 0.5: (a) Pes = 0.01; (b) Pes = 10;
and (c) Pes → ∞ (the non-diffusive case from [32]). As the Péclet number Pes increases from (a) to (c), we observe larger
deformation. In the non-diffusive limit the flow is completely suppressed as shown in (c).

Surfactants have a two-fold effect on drop electrohydrodynamics. On one end, for a given transport regime (fixed
Pes), the velocity field around a surfactant-covered drop is greatly reduced by surfactant coverage [31, 32]. On
the other end, surfactant transport also affects drop electrohydrodynamics. In figure 5, we plot the streamlines for
various values of Péclet number: Pes = 0.01 (figure 5(a)), Pes = 10 (figure 5(b)), and the non-diffusive case in [32]
(Pes → ∞, figure 5(c)). As Pes increases from (a) to (c), we observe increasing deformation and decreasing flow
strength (consistent with A3

3 in figure 4(b)).
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FIG. 6. Effects of Péclet number on the deformation number (Deq) and flow strength (A3
3) for a leaky dielectric prolate ‘B’ drop

with εr = 1/3.5, σr = 1/3. The transition from diffusion- to convection-dominated dynamics occurs around Pes ≈ 10−1. In
the diffusion-dominated regime, higher surfactant coverage yields larger deformation (and stronger flow), though the difference
between these is minimal. In the convection-dominated regime, we observe that Deq decreases with Pes while the magnitude
of flow strength (|A3

3|) increases with Pes. The electric capillary number CaE = 1.4.

Figures 6(a) and 6(b) show the equilibrium deformation Deq and flow strength A3
3 for a leaky dielectric prolate ‘B’

drop with CaE = 1.4. For this prolate shape, increasing the surfactant coverage leads to equilibrium drop deformation
smaller than a clean drop [31, 32] as captured by our model in figure 6(a) for Pes ' 0.1. For such a prolate ‘B’ drop
the surfactant is swept from the pole to the equator, yielding smaller surface tension at the equator than at the poles.
Thus, the deformation along the direction of the electric field (prolate ‘A’) is suppressed and the equilibrium drop
shape is nearly spherical.

For diffusion-dominant surfactant transport (Pes < 0.1), Deq is nearly independent of surfactant coverage χ.
However, closer inspection (see insets in figure 6) reveals that higher surfactant coverage yields larger deformation.
Dominated by diffusion, surfactants distribute evenly over the surface of the drop. Electric stresses that drive prolate
‘A’ shape result in slightly larger surfactant concentration near the poles, where the reduction in surface tension leads
to higher deformation number. In this case, the smaller change in deformation number compared to the prolate ‘A’
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case is ascribed to the clockwise circulation opposing deformation along the direction of the electric field.
The flow strength, represented by A3

3 in figure 6(b), varies with Pes in a similar fashion as drop deformation.
Slightly stronger flow correlates with higher surfactant coverage for Pes < 0.1, and weaker flow dominates with lower
surfactant concentration for Pes ' 0.1. Furthermore, the large magnitudes in figure 6(b) relative to figure 4(b) are
consistent with stronger hydrodynamic stresses that are necessary to resist deformation along the direction of the
electric field.

B. Conducting drop
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FIG. 7. Equilibrium deformation number as a function of Péclet number for a conducting drop. The effects of surfactant
transport is shown for various values of surfactant coverage at CaE = 0.112. The electric parameters are σr = 10−3, εr = 1.

At steady equilibrium ∂Γ/∂t = 0 and u·n = 0, thus we deduce from the surfactant transport equation (Eq. 10) that
usΓ ∝ ∇sΓ. In the surfactant diffusion dominant regime, the surfactant distribution is rendered nearly uniform by
strong diffusion, and thus ∇sΓ ≈ 0 and the tangential hydrodynamic stress also has to vanish at steady equilibrium. In
the case of a conducting drop, there is no tangential Maxwell stress and therefore the flow strength (A3

3) depends only
the average surfactant concentration gradient (f17 in Eq. 30). Thus we conclude that on a conducting drop, both the
tangential velocity (us ≈ 0) and the Marangoni stress (∇sγ ≈ 0) vanish in the diffusion-dominant regime of surfactant
transport. This implies that the conducting drop covered with surfactant is immobilized when the surfactant diffusion
is strong. Moreover we expect the equilibrium deformation to be dependent on surfactant coverage and insensitive to
Péclet number in the diffusion-dominant regime.

We consider the case of a prolate drop with σr = 10−3 and εr = 1. In figure 7, we plot the deformation number as a
function of the Péclet. The result shows that surfactant transport does not seem to affect the dynamics of a conducting
drop, and the deformation number is essentially independent of Pes. Moreover, increasing the surfactant coverage χ
yields smaller deformation, although the change in deformation from χ = 0.1 to χ = 0.5 is less than 2%. The inverse
relation between surfactant coverage and drop deformation suggests the surface dilution dominates the surfactant
dynamic for a conducting drop over a wide range of Péclet numbers. We also note that unlike leaky dielectric drops,
there is no distinction between prolate ‘A’ and ‘B’ shapes, since tangential electric stresses are non-existent.

V. EFFECTS OF SURFACTANT TRANSPORT ON TRANSIENT DYNAMIC

Studies of drops in electric field, and unsteady flow field (∂u/∂t) [8, 21] or surface charge relaxation ∂q/∂t [21]
revealed non-monotonic time evolution of the deformation. Time-dependent flow produces an overshoot in the un-
steady deformation of the drop prior to reaching equilibrium, while ∂q/∂t, characterized by the Saville number Sa
[21], displays a shape transition at the early stage of transient deformation.

In the case of surfactant, the unsteady transport equation (Eq. 35) shows that the influence of ∂Γ/∂t and ∇s ·(Γus)
grows significantly with Pes. While the effects of surfactant convection on the equilibrium electro-deformation have
been investigated [31, 32], changes in drop dynamics due to unsteady surfactant transport (∂Γ/∂t) remain to be
determined. Figure 8(a) shows the transient deformation of a leaky dielectric prolate ‘A’ drop under an electric
field. We vary Pes ∈ [10, 20, 100] with CaE = 0.5 and χ = 0.3. As expected from §IV, the equilibrium deformation
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Pes. The electric capillary number CaE = 0.5 and surfactant coverage χ = 0.3; the electric parameters εr = 1, σr = 1/3,
corresponding to the prolate ‘A’ shape. The steady state curve for the clean drop case (CD) is denoted by the dotted line.
(b) Snapshot of the drop shape at various times for D in (a) with Pes = 100. The dashed shape denotes the maximum shape
achieved at peak overshoot.
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FIG. 9. The surfactant profile (a) and Marangoni stress (b) corresponding to Pes = 100 in figure 8 are plotted as a function
of θ = cos−1(η). Each curve denotes a fixed time, with the peak overshoot occurring at T ≈ 115.

number depends on the surface Péclet number: stronger surfactant transport leads to larger deformation number.
Furthermore, for these parameters, all curves display a transient overshoot, although negligible for Pes ≤ 1. The
feature becomes more pronounced for Pes > 1: it reaches around 1% of the equilibrium shape when Pes = 10, and
around 36% when Pes = 100. In figure 8(b) we show snapshots of the drop shape at various times with Pes = 100.
The dashed curve denotes the maximum deformed shape achieved by the drop, at the peak of the overshoot. The
maximum shape is reached around T ≈ 115. From that point, the drop shape settles to its equilibrium.

Figure 9 shows the corresponding distributions of surfactant concentration (figure 9(a)) and Marangoni stress (figure
9(b)) as a function of the surface parameter θ = arccos(η) at various time instances. Transient overshoots of surfactant
concentration and Marangoni stress near the poles are observed at T ≈ 115. However, the causal relationship of these
correlations with the transient overshoot in deformation is not obvious and will be investigated in the future; here we
only report these correlations.

The deformation of a leaky dielectric drop under an electric field is the result of induced (creeping) flow caused by
tangential Maxwell stresses. However, these tangential stresses do not exist in perfectly conducting drops. We ran
simulations for the perfectly conducting drop (keeping all parameters unchanged from the prolate ‘A’ case in figure 8)
and observed only monotonic behaviors of the unsteady deformation, suggesting the importance of tangential flows
in leaky dielectric drops and the transient overshoot due to surfactant.
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VI. CONCLUSION

We investigate the effect of surfactant transport on the electro-deformation of a viscous drop under a DC electric
field. Extending previous work on non-diffusive surfactant [32] here we focus on two surfactant transport regimes
characterized by the surface Péclet number (Pes). The advantage of our modal approach over direct numerical
simulations is that we can identify salient features of surfactant-laden drop electrodynamics by efficiently examining the
deformation dynamics for different combinations of parameter values. We derived analytical equations describing the
electro-deformation of surfactant-laden leaky dielectric and conducting drops (both clean and surfactant-laden) in the
presence of insoluble surfactants. We validate our model by comparing against published results from both experiments
and numerical simulations, and found good agreement for the clean conducting drops [6, 48], and the surfactant-laden
drops [31]. We then perform a systematic study of the effects of surfactant transport on the equilibrium drop
deformation.

In this study we focus on two modes of prolate deformation: one with counter-clockwise circulation (‘A’), and
another with clockwise circulation (‘B’). Depending on the surfactant transport regime, we observe different behaviors
of deformation for leaky dielectric drops: when surfactant diffusion dominates (Pes � 1), prolate ‘A’ (‘B’) yields
smaller (larger) equilibrium deformation with increasing surfactant coverage, compared to a clean drop. On the
other hand, when convection dominates (Pes � 1), the equilibrium drop deformation increases (decreases) with
larger surfactant coverage on a prolate ‘A’ (‘B’) drop. We also contrast leaky dielectric versus conducting drops in
Appendix C. For a prolate ‘A’ drop we find consistently larger equilibrium drop deformation for a leaky dielectric
drop compared to a conducting drop, while for prolate ‘B’ we identify cases where larger deformation is found for a
conducting drop compared to a leaky dielectric drop. Finally, we study the effect of the surfactant transport on the
evolution of drop shape. We found the drop undergoes an overshoot in the early deformation phase, before settling to
its equilibrium shape –a dynamic similar to the overshoot observed for electrohydrodynamic governed by the unsteady
Stokes equation [21].

Another important aspect of surfactant-laden drop electrohydrodynamics is surfactant solubility, known to lead to
drastically different drop dynamics in the absence of an external electric field [43]. Recent experiments with soluble
surfactants have revealed rich dynamics of drops electrohydrodynamics under a strong electric field [53]. Future
theoretical investigations will attempt to provide insights into how surfactant solubility and electrohydrodynamics
may combine to affect the drop deformation and dynamics. Specifically, we ponder whether the flow is still suppressed
when sorption kinetics are accounted for, or if surfactant solubility can be used to control the electro-deformation of
drops, and/or alter the dynamics in the various transport regimes. We are now expanding our model to incorporate
the exchange of surfactant between the drop surface and the bulk under an electric field.

Finally, we remark that charge relaxation, which is not accounted for in this work, may become important for
systems with small drops or large interfacial surface. It has been shown recently that finite charge relaxation can lead
to interesting dynamics for clean drops [21]. Its influences on the transient behavior of surfactant-laden drops may
be more prominent when the drop is undergoing extreme deformation such as breakup.

Appendix A: Integrals in the prolate spheroidal model

The functions f11(ξ0)− f15(ξ0) in Eq. 25 are given by

f11 =

∫
ηG3(η)

ξ20 − η2
dη, (A1)

f12 =
1

ξ20 − 1

∫
G3(η)

[
2ηG′3(η)

(ξ20 − η2)2
+

G′′3(η)

ξ20 − η2
]
dη, (A2)

f13 =
G′3G

′′
5 −G′5G′′3
2N

f11, (A3)

f14 = −ξ0H ′3
∫

ηG3(η)

(ξ20 − η2)2
dη +

H ′′3
2
f11, (A4)

f15 = ξ0H
′
3

∫
ηG3(η)

(ξ20 − η2)2
dη − (G3G

′′
5 −G5G

′′
3)H ′3

2N
f11, (A5)

f17 =
1√
ξ20 − 1

∫ 1

−1

G3(η)Γ′(η)√
ξ20 − η2(1− χΓ)

dη. (A6)
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FIG. 10. The semi-analytical algorithm: At tn the drop shape ξ0 and flow field u is computed using the large deformation
spheroidal analysis. This information is then used as input to the surfactant transport, in order to determine the surfactant
profile Γ numerically with a collocation method. With the surfactant concentration at hand, we determine the change in surface
tension, the drop shape and the flow field at time tn+1. This process is repeated until a steady-state is reached.

Furthermore, the functions f21(ξ0)− f26(ξ0) in Eq. 25 and Eq. 31 are given by

f21 =
ξ20
2

∫
(3η2 − 1)(η2 − 1)

ξ20 − η2
dη, (A7)

f22 = −H ′3
∫

(1− 3η2)(2η4 + ξ20 − 3ξ20η
2)

(ξ20 − η2)2
dη + 3H3ξ0

∫
1− 3η2

ξ20 − η2
dη, (A8)

f23 = − 49

30N
G3H

′
3(1− 3ξ20) +H ′3

∫
(1− 3η2)(2η4 + ξ20 − 3ξ20η

2)

(ξ20 − η2)2
dη, (A9)

f24 =
1

c

[
ξ0(ξ20 − 1)1/2

∫
γ
(
3η2 − 1

)

(ξ20 − η2)3/2
dη +

ξ0
(ξ20 − 1)1/2

∫
γ
(
3η2 − 1

)

(ξ20 − η2)1/2
dη

]
, (A10)

f25 = − ξ0
ξ20 − 1

∫
(1− 3η2)(2ξ20 − η2 − 1)G′3(η)

(ξ20 − η2)2
dη + 3ξ0

∫
1− 3η2

ξ20 − η2
dη

− (µr − 1)f12 + f13
µrf14 + f15

f22, (A11)

f26 =
ξ0

ξ20 − 1

∫
(1− 3η2)(2ξ20 − η2 − 1)G′3(η)

(ξ20 − η2)2
dη − 49

30N
(1− 3ξ20)G′3

− (µr − 1)f12 + f13
µrf14 + f15

f23. (A12)

γ is the dimensionless surface tension given by Eq. 34, and N = G3G
′
5 −G5G

′
3.

Appendix B: Numerical algorithm details

1. Model limitations

We made some assumptions in order to arrive at the shape equations 25 and 31 . Here we discuss how these
assumptions affect predictions using our model. First, based on experimental findings, we assume the drop remains
spheroidal in shape. However, other subtle shape variations may be at play during the drop dynamics, and these may
account for discrepancies in the electro-deformation at moderate to high values of electric capillary number. Second,
only the first spheroidal harmonics mode is considered in this study. The truncation error, coupled with averaging
the stress balances, influences the flow circulation and, by extension, surfactant dynamics.
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Moreover, for a surfactant-covered drop, once the surfactant concentration reaches the maximum packing at a
location on the drop surface, the fluid flow and the interface deformation there conspire to immobilize the drop
surface so that no more surfactant can flux into that location [39, 54–56]. Such suppression of interfacial flow can
only be approximated in our modal analysis with a single mode.

2. Numerical implementation

The steps we take to simulate the dynamic of a surfactant-laden drop in an electric field are illustrated in figure 10.
At time tn, the governing equation for the drop shape ξ0 and the surfactant transport equation are solved numerically
using various algorithms. The integrals involving the Marangoni stress (f17) and the surface tension (f24) are resolved
by Gauss-Legendre quadrature with n nodes that are used to discretize the drop spatial distribution η. We then use
the integrals to solve the ordinary differential Eq. 25 and Eq. 31 using a fourth-order Runge-Kutta method. Once the
drop shape, and consequently the flow field, are obtained, the information is used to obtain the surfactant distribution
profile. The surfactant concentration Γ is obtained by solving the transport equation (Eq. 36). This is a nonlinear
equation that does not admit analytical solutions, except in special limits [32, 57]. To consider the full range of Péclet
number, we treat the surfactant transport as a boundary value problem and solve the equation using MATLAB’s
built-in bvp4c function, a finite difference code that implements the three-stage Lobatto Illa collocation method [58].
The boundary value problem is set up as a system of two ordinary differential equations with variables y1 = Γ for the
surfactant concentration and y2 = dΓ/dη. Surfactant conservation is enforced by augmenting the system {y1, y2} with
a third variable y3 ≡

∫ η
−1 Γhηhζdη, with boundary condition y3(1) = total amount of surfactant. Once the surfactant

concentration Γ is obtained, we determine the change in the surface tension γ, and feed the result back into Eq. 25
and Eq. 31 to determine the drop shapes and flow fields at the next time step tn+1. This process is repeated until
either a steady-state is reached, when the change in successive ξ0 iterates |∆ξ0| ≤ 10−6, or the simulation stops,
signaling that a spheroidal shape is not attainable.

Appendix C: Comparison between Leaky Dielectric and Conducting Drops
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FIG. 11. Effects of Péclet number on the deformation number (Deq) for (a) a conducting prolate ‘A’ drop with εr = 1, σr = 1/3
and CaE = 0.67, and (b) a conducting prolate ‘B’ drop with εr = 1/3.5, σr = 1/3 and CaE = 1.4. In both cases the
deformation remains relatively constant across Pes / 1, then shows small increases as convection starts dominating. Moreover,
higher surfactant coverage yields smaller deformation.

To facilitate comparison with the leaky dielectric drop in the previous section, we now consider the leaky drop with
σr = 1/3. We note this is strictly for comparison purpose since for a conducting drop it is necessary σr � 1. However,
we point out that even in this case, the dependence of the deformation number on surfactant transport and surfactant
coverage is qualitatively the same. Figure 11(a) shows the deformation number for a prolate ‘A’ conducting drop with
CaE = 0.67, while figure 11(b) shows the deformation number for a prolate ‘B’ conducting drop with CaE = 1.4.
Here as well, as shown in figure 11(a), deformation remains independent of Pes. Also, the change in deformation
between χ = 0.1 and χ = 0.5 is less than 2%.

The importance of electric tangential stresses and the induced flow in surfactant transport is evident when we
contrast the flow strength A3

3 for leaky dielectric drops (of order 10−1 [figure 4(b)]), to a vanishingly small flow
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strength A3
3 in conducting drops. The deformation in figure 11(b) for a prolate ‘B’ drop is also independent of

Pes, with an increase in the surfactant coverage yielding a negligible enhancement in deformation. We attribute the
similarities between figures 11(a) and 11(b) to the lack of tangential flows in a conducting viscous drop.

When contrasting leaky dielectric and conducting drops, both laden with insoluble surfactant with Pes � 1, we
generally expect a leaky dielectric drop would undergo larger deformation than a conducting drop (see figure 6(a) versus
figure 11(b)). This is because the additional tangential flows in leaky dielectric drops contribute significantly to overall
deformation. However, we found that when conditions are such that moderate surfactant concentration is combined
with strong convection and clockwise flow circulation, conducting drops can actually yield larger deformation than a
leaky dielectric drop at equilibrium. Closer analysis of figures 6(a) and 11(b) reveals that for Pes = 10, Deq = 0.0532
for a leaky dielectric drop, while Deq = 0.0671 for a conducting drop, or 26% larger. Note that while the change in
deformation is significant, it may prove difficult to observe in experiments since Deq is of order 10−2. For experimental
validation, it is more helpful to compare the flow field via A3

3 with clear variations in order of magnitude. Indeed, for
a prolate ‘B’ leaky dielectric drop A3

3 ≈ −4.5 [figure 6(b)] compared to a vanishingly small A3
3 for a conducting drop.
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