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Simulations of a turbulent multicomponent fluid mixture undergoing isotropic deformations are
carried out to investigate the sudden viscous dissipation. This dissipative mechanism was originally
demonstrated using simulations of an incompressible single-component fluid [Davidovits and Fisch,
Phys. Rev. Lett. 116, 105004(2016)]. By accounting for the convective and diffusive transfer
of various species, the current work aims to increase the physical fidelity of previous simulations
and their relevance to inertial confinement fusion applications. Direct numerical simulations of
the compressed fluid show that the sudden viscous dissipation of turbulent kinetic energy is un-
changed from the single-component scenario. More importantly, the simulations demonstrate that
the mass fraction variance and covariance for the various species also exhibit a sudden viscous decay.
Reynolds-averaged Navier-Stokes simulations were carried out using the k-l model to assess its abil-
ity to reproduce the sudden viscous dissipation. Results show that the standard k-l formulation does
not capture the sudden decay of turbulent kinetic energy, mass-fraction variance, and mass-fraction
covariance for simulations with various compression and expansion rates, or different exponents for
the power-law model of viscosity. A new formulation of the k-l model that is based on previous
improvements to the k-ε family of models is proposed, which leads to consistently good agreement
with the direct numerical simulations for all the isotropic deformations under consideration.

I. INTRODUCTION6

Numerical simulations were used by Ref. [1] to7

demonstrate that the isotropic compression of a tur-8

bulent flow field leads to a rapid and sudden viscous9

dissipation of turbulent kinetic energy (TKE). The10

dissipated TKE is transformed into heat, which can11

then be used to enhance ignition conditions in ei-12

ther laser-driven or Z-pinch-driven inertial confine-13

ment fusion (ICF). This sudden viscous dissipative14

mechanism occurs for substances whose viscosity has15

a strong scaling on temperature, as is the case for16

some plasmas (µ ∼ T 5/2 [2]) rather than traditional17

fluids (µ ∼ T 3/4 [3]).18

The original simulations of Ref. [1] relied on a sim-19

plified formulation in which the plasma is treated20

as an incompressible fluid with a temperature-21

dependent power law for the viscosity and a fixed22

time history for the temperature. Subsequent work23

has focused on increasing the fidelity of these sim-24

ulations. For example, Ref. [4] modifies the vis-25

cosity power law by accounting for the ionization26

state Z of the plasma. Expressing the viscosity27

as µ ∼ Tn/Zm ∼ T β , where β depends on the28

the model used for the plasma charge state, it was29

shown that the sudden viscous dissipation occurs for30

β > 1 only. Additionally, Ref. [5] simulated the com-31
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pression of an imploding spherical turbulence layer,32

rather than a homogeneous turbulent flow. The sud-33

den viscous dissipation was shown to occur for this34

new scenario as well. Finally, Ref. [6] relaxes the as-35

sumption of low-Mach number turbulence, and ac-36

counts for finite Mach number effects in the sudden37

viscous dissipation of TKE. Results indicate that for38

subsonic turbulent Mach numbers, the available en-39

ergy in the turbulent fluctuations is not sufficient to40

significantly alter the temperature evolution of the41

fluid.42

As stated in Ref. [6], although previous research43

on the sudden viscous dissipation has increasingly44

included more relevant physics, simulations carried45

out so far are not yet truly representative of ICF sce-46

narios, which are characterized by additional physi-47

cal phenomena such as mass transfer, radiative heat48

transfer, complex equations of state, and multicom-49

ponent plasma viscosity models, among others. The50

aim of the current study is thus to further increase51

the fidelity of simulations used to predict the sud-52

den viscous dissipation by accounting for the con-53

vective and diffusive mass transfer in a multicompo-54

nent fluid. Given that mixing of various components55

in ICF degrades capsule performance [7], multicom-56

ponent simulations should eventually be used to ac-57

count for the detrimental effect of turbulent mix-58

ing when assessing the favorable effect of the sudden59

viscous dissipation. Additionally, a multicomponent60

formulation paves the way forward for simulations61

that account for multicomponent plasma viscosities62



models [8] and nuclear reactions.63

In this paper, results from Direct Numerical Sim-64

ulations (DNS) are reported to determine differences65

between the TKE evolution of a five-component66

mixture and that of a single-component fluid. Of67

even more interest, however, is the evolution of the68

mass-fraction variance and covariance for the vari-69

ous species, since the species diffusivity, which be-70

haves similarly to the fluid viscosity, can also lead71

to sudden dissipative phenomena. It is important72

to accurately predict the mass-fraction variance and73

covariance since these quantities are used as inputs74

to reaction-rate models [9]. In addition to direct75

numerical simulations, the current work focuses on76

the formulation of an improved Reynolds-averaged77

Navier-Stokes (RANS) model to capture the sud-78

den viscous dissipation. This proposed new model is79

based on the variable-density k-l family of closures80

that are commonly used to simulate phenomena of81

relevance to ICF, such as buoyancy-, shock-, and82

shear-driven instabilities [10]. Thus, by using tra-83

ditional k-l models to improve the prediction of the84

sudden viscous dissipation, it is hoped that the final85

formulation will have a broader range of applicabil-86

ity than models tailored specifically to capture the87

sudden viscous dissipation of TKE, such as that pro-88

posed in [11]. Predictions obtained with the original89

and modified RANS models are compared against90

DNS results for the isotropic compressions, as well91

as DNS results for an isotropic expansion, so as to92

again ensure a broad range of applicability.93

The outline of the paper is as follows. Section94

II describes the direct numerical simulations of the95

multicomponent fluid mixture. This section in-96

cludes the governing equations in Sec. II A, trans-97

formed equations suitable for computational simu-98

lations in Sec. II B, details of the numerical frame-99

work in Sec. II C, a description of the initial condi-100

tions in Sec. II D, and profiles for the TKE, mass-101

fraction variance, and mass-fraction covariance in102

Sec. II E. The RANS framework is the focus of Sec.103

III. The Reynolds-averaged governing equations for104

homogeneous multicomponent turbulence undergo-105

ing isotropic mean-flow deformations are given in106

Sec. III A, the derivation of the new formulation of107

the k-l model is given in Sec. III B, and results for108

the TKE, mass-fraction variance, and mass-fraction109

covariance obtained with the original and modified110

k-l models are given in Sec. III C. Finally, the pa-111

per ends with conclusions and a discussion of future112

work in Sec. IV.113

II. DIRECT NUMERICAL SIMULATIONS114

A. Multicomponent Navier-Stokes equations115

The governing equations for the direct numerical116

simulations are the multicomponent Navier-Stokes117

equations. The transport partial differential equa-118

tions for the density ρ, velocity ui, total energy E,119

and species mass fraction Yα are120

∂ρ

∂t
+
∂ρui
∂xi

= 0, (1)

121

∂ρui
∂t

+
∂ρuiuj
∂xj

= − ∂p

∂xi
+
∂tij
∂xj

, (2)

122

∂ρE

∂t
+

∂

∂xi

[
ρ

(
E +

p

ρ

)
ui

]
=
∂uitij
∂xj

− ∂qi
∂xi

, (3)

123

∂ρYα
∂t

+
∂ρYαui
∂xi

= −∂Jα,i
∂xi

. (4)

In the above, the pressure is denoted by p. The124

shear-stress tensor tij , the heat flux qi, and the dif-125

fusive flux Jα,i of each species α are126

tij = 2µSij +

(
β − 2

3
µ

)
∂uk
∂xk

δij , (5)

127

qi = −κ ∂T
∂xi

+
∑
α

hαJα,i, (6)

128

Jα,i = −ρD∂Yα
∂xi

. (7)

Sij is the rate-of-strain tensor, T the temperature,129

and hα the enthalpy of species α. Four transport130

coefficients appear in the equations above, namely131

the dynamic viscosity µ, the bulk viscosity β, the132

thermal conductivity κ, and the diffusivity D. The133

diffusivity is assumed to be equal for all species. Ex-134

pressions for the transport coefficients are135

µ = µ0

(
T

T0

)n
, (8)

136

β = 0, (9)
137

κ =
µCp
Pr

, (10)
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138

D =
µ

ρSc
. (11)

µ0 and T0 are the reference viscosity and tempera-139

ture, respectively, n is the power-law exponent, Cp140

the specific heat at constant pressure, Pr the Prandtl141

number, and Sc the Schmidt number. Each species142

is treated as an ideal gas, and thus the following143

relationships hold144

pα = ραRαT, (12)
145

Rα =
Ru
Mα

, (13)

146

eα = Cv,αT, (14)
147

hα = Cp,αT. (15)

pα is the species pressure, ρα the species density,148

Ru the universal gas constant, Mα the species mo-149

lar mass, eα the species internal energy, Cv,α the150

species specific heat at constant volume, and Cp,α151

the species specific heat at constant pressure. The152

mixture properties are obtained from the species153

variables using154

e =
∑
α

Yαeα Cv =
∑
α

YαCv,α, (16)

155

h =
∑
α

Yαhα Cp =
∑
α

YαCp,α, (17)

156

p =
∑
α

Vαpα Vα =
ρYα
ρα

, (18)

where e, h, and Cv are, respectively, the internal en-157

ergy, the enthalpy, and the specific heat at constant158

volume, for the entire mixture. Vα is the volume159

fraction of species α. Finally, the following equa-160

tions are required to complete the system161

E = e+K, (19)
162

K =
1

2
uiui, (20)

163

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (21)

B. Transformed multicomponent164

Navier-Stokes equations165

Rather than solving the equations described in the166

previous section, one can extend the derivations of167

Ref. [1] for incompressible single-species flow, or the168

derivations in Ref. [6] for compressible single-species169

flow, so as to obtain the corresponding transformed170

equations for a compressible multi-species mixture.171

This new set of equations are formulated with re-172

spect to a moving reference frame that shrinks as173

the flow is compressed, or grows as the flow is ex-174

panded. Thus, these set of equations are preferred175

for direct numerical simulations since they allow for176

a fixed grid with periodic boundary conditions. The177

resulting equations are identical to those in Sec. II A,178

except that the total velocity ui is replaced by the179

Favre-fluctuating velocity u′′i . This fluctuating ve-180

locity is defined as u′′i = ui − ũi, where ũi is the181

Favre-averaged velocity. In addition, each of Eqs.182

(1) to (4) is augmented with forcing terms that ac-183

count for the effect of the mean flow. Thus, the184

transformed transport equations are185

∂ρ

∂t
+
∂ρu′′i
∂xi

= f (ρ), (22)

186

∂ρu′′i
∂t

+
∂ρu′′i u

′′
j

∂xj
= − ∂p

∂xi
+
∂tij
∂xj

+ f
(u)
i , (23)

187

∂ρE

∂t
+

∂

∂xi

[
ρ

(
E +

p

ρ

)
u′′i

]
=
∂u′′i tij
∂xj

− ∂qi
∂xi

+f (E),

(24)188

∂ρYα
∂t

+
∂ρYαu

′′
i

∂xi
= −∂Jα,i

∂xi
+ f (Y )

α . (25)

The forcing terms above are defined as follows

f (ρ) = −2ρL̇, (26)

f
(u)
i = −3ρu′′i L̇, (27)

f (E) = − [2ρE + ρu′′i u
′′
i + 3p] L̇, (28)

f (Y )
α = −2ρYαL̇. (29)

L is the characteristic length of the domain, which189

decreases as time advances for flow compressions and190

increases for flow expansions. L̇ is the constant time-191

rate-of-change of L.192

C. Numerical details193

The same numerical approach as that of Ref. [6]194

is used for the current study, and further details195
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can be encountered in this reference. Direct numer-196

ical simulations are performed using the Miranda197

solver, which discretizes the multispecies Navier-198

Stokes equations using a tenth-order Padé scheme199

and a fourth-order Runge-Kutta integrator. Filter-200

ing of the flow variables is performed using an eight-201

order operator for the purposes of stability. An ar-202

tificial bulk viscosity β∗, thermal conductivity κ∗,203

and species diffusivity D∗α are added to the corre-204

sponding physical transport coefficients, in a similar205

manner to [9, 12]. The expressions for these artificial206

fluid properties are207

β∗ = cβρD(d), (30)
208

κ∗ = cκρ
Cv
T∆t

D(T ), (31)

D∗α = ρ
1

∆t
max [cdD(Yα),

cy(|Yα| − 1.0 + |1.0− Yα|)∆2]. (32)

In the above d is the dilatation, ∆t is the time step,209

∆ = (∆x∆y∆z)1/3 is the local grid spacing, and the210

overline denotes a truncated-Gaussian filter. The211

operator D(·) is given by212

D(·) = max

(∣∣∣∣ ∂8·∂x8

∣∣∣∣∆x10, ∣∣∣∣ ∂8·∂y8

∣∣∣∣∆y10, ∣∣∣∣ ∂8·∂z8

∣∣∣∣∆z10) ,
(33)

which strongly biases the artificial properties to-213

wards high wave numbers. The values of the coeffi-214

cients in Eqs. (30)–(32) are cβ = 0.07, cκ = 0.001,215

cd = 0.0002, and cy = 100, which have been cal-216

ibrated using simulations relevant to ICF—see, for217

example, Refs. [13–15].218

A cubic grid with 2563 uniformly spaced grid219

points and periodic boundary conditions at all of its220

faces is used for the simulations. So as to be of rele-221

vance to ICF, the species chosen for the fluid mixture222

are hydrogen (H), deuterium (D), tritium (T), car-223

bon (C), and oxygen (O). These species, for exam-224

ple, would be present in a capsule with DT fuel at its225

core and CRF low-density foams as the ablator [16].226

The molar masses used for each of these species are227

MH = 1.00798, MD = 2.014102, MT = 3.016050,228

MC = 12.0111 and MO = 15.994915. All species229

have the same constant Schmidt number, namely230

Sc = 1.0. As shown in Ref. [17], the viscosity has a231

5/2 power-law temperature scaling if other parame-232

ters such as the ionization state and the collision in-233

tegrals are assumed constant. Under these assump-234

tions, ρD also exhibits a 5/2 power-law dependence235

on temperature, which motivated the use of a con-236

stant Schmidt number. Simulations that account237

for differential diffusion, where a different Schmidt238

number is used for each species, did not show quali-239

tatively different behavior even up to Schmidt num-240

bers that differed by two orders of magnitude. Addi-241

tional parameters of the simulation are the Prandtl242

number Pr = 1.0, the ratio of specific heats γ = 5/3,243

and the universal gas constant Ru = 8.314474× 107244

(cgs units).245

D. Initial conditions246

The initial condition for the velocity field was ex-247

tracted from linearly-forced simulations, which have248

previously been shown to produce realistic fluctuat-249

ing velocities [18]. Details on the implementation of250

this forcing mechanism, as well as the strength of251

the linear forcing functions that lead to DNS reso-252

lution, are included in Refs. [6, 19]. As stated in253

Ref. [6], compression of the initial flow field dis-254

sipates the smallest scales first, and thus an ini-255

tial condition with DNS-like resolution guarantees256

that all of the turbulent scales are well resolved257

throughout the subsequent compression. The ve-258

locity field extracted from the linearly forced sim-259

ulations is characterized by a turbulent Mach num-260

ber Mt ≈ 0.4 and a Taylor-scale Reynolds number261

Reλ ≈ 50. The TKE for this velocity field has a262

value of k0 = 2.2× 1014 cm/s.263

Forcing functions for the mass fractions are also264

used in the simulations that generate the initial265

conditions. Rather than relying on traditional ap-266

proaches based on mean scalar gradients [20, 21] or267

low-wavenumber forcing [22, 23], a linear scalar forc-268

ing function is used. This forcing function leads to a269

flow field with an averaged mass-fraction Ỹα that is270

constant in time and uniform in space, and a fluctu-271

ating field Y ′′α that is statistically homogeneous. The272

linear forcing function is of the form f
(Y )
α = ρcαY

′′
α ,273

and it is added to the right-hand side of the trans-274

port equation for the mass fraction of species α. The275

coefficient cα is given by276

cα =
1

2

εαα
υαα

, (34)

where υαβ = Ỹ ′′α Y
′′
β is the mass-fraction variance277

and εαβ , given in Eq.(A7), is the dissipation of the278

mass-fraction variance. It is noted that this forcing279

procedure results in an initial field in which mass-280

fraction fluctuations of separate species are nomi-281
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FIG. 1: Dissipation of the mass-fraction variance
for the five different species simulated, compared

against the target values used by the linear forcing
mechanism. t is time and τ0 is the eddy-turn-over

time.

nally uncorrelated, as is the case for non-premixed282

materials.283

The scalar forcing function used is equivalent to284

the second term in the forcing function introduced285

by Ref. [24]. The first term in the forcing function286

of Ref. [24], which specifies a target mass-fraction287

variance that the simulations ought to reach, is ne-288

glected in the current forcing scheme for the sake289

of simplicity. Additionally, rather than computing290

εαα and υαα after each time step to obtain cα, as291

is done in Ref. [24], only υαα is computed in be-292

tween time steps and a constant target value is used293

for εαα. Thus, the forcing function leads to a fluc-294

tuating mass-fraction field with a variance dissipa-295

tion that ought to match the predetermined target296

value. The agreement between the computed and297

target variance dissipations for the current linearly298

forced simulations is shown in Fig. 1.299

An iteration for the target values of the mass-300

fraction-variance dissipation was performed until301 √
υαα/Ỹα ≈ 40% for each species. The values for the302

constant Favre-averaged mass fractions were com-303

puted using the molar fractions XH = 0.03, XD =304

0.455, XT = 0.455, XC = 0.03, XO = 0.03, which305

aims to roughly mimic ICF fuel contaminated by306

ablator components. The deuterium mass-fraction307

variance and the tritium-oxygen mass-fraction co-308

variance that followed from this initialization scheme309

are υDD,0 = 1.6×10−2 and υTO,0 = −3.6×10−2, re-310

spectively. Since the Schmidt number used for all of311

the species is unity, the Batchelor scale φ = η/Sc1/2312

[25], which describes the smallest length scales of313

fluctuations in scalar concentration, is equal to the314

Kolmogorov scale η. Thus, the grid resolution cho-315

sen to capture all the relevant velocity scales is also316

appropriate for the mass-fraction field.317

E. Results318

The time evolution of TKE, mass-fraction vari-319

ance of deuterium, and mass-fraction covariance of320

tritium and oxygen is shown in Fig. 2, for various321

compression speeds. These compression speeds are322

denoted by the initial value of the shear parameter323

S∗ = Sk/ε, where S = L̇/L. As in Ref. [1], the evo-324

lution of the flow variables is plotted as a function325

of the length of the domain L, instead of time, and326

thus the plots in Figs. 2 are to be read from right to327

left. Only the mass-fraction variance of deuterium328

is depicted in this study, since the variances of the329

other four components in the fluid mixture behave330

in a qualitatively similar manner. Similarly, only331

one mass-fraction covariance is shown since the evo-332

lution of the ten covariances is qualitatively similar333

for the cases under consideration.334

Figure 2 (a) is to be compared with Fig. 1 in335

[1] and Fig. 3 in [6], which show the evolution336

of TKE for a single-component incompressible flow337

and a single-component compressible flow, respec-338

tively. We note that the parameters for the single-339

component compressible flow (Mt ≈ 0.65, Reλ ≈ 70)340

are relatively similar to those of the current multi-341

component compressible flow (Mt ≈ 0.4, Reλ ≈ 50).342

The comparison between these three flows shows343

that accounting for multiple species with molecular344

weights that differ by up to an order of magnitude345

does not lead to qualitatively different TKE behav-346

ior. The sudden viscous dissipation still occurs for347

the multicomponent fluid mixture, and this dissipa-348

tion still becomes more rapid as S∗0 is increased, in349

accordance to the single-component results. An ex-350

tensive examination of TKE growth vs. decay for351

different S∗0 , as well as the critical value that demar-352

cates these two regimes, has been previously given353

in the literature; see for example Sec. II B of Ref.354

[5] and Sec. IV A 1 of Ref. [6]. Oscillations in the355

TKE for the slowest compression speed, which were356

attributed to oscillations in the pressure-dilatation357

in Ref. [6], are still observed.358

Of more relevance to the current study, however,359

is the demonstration that the mass-fraction vari-360

ance also exhibits a sudden viscous dissipation, as361

shown in Fig. 2(b). The sudden viscous dissipa-362
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FIG. 2: Evolution of (a) turbulent kinetic energy k,
(b) mass-fraction variance of deuterium υDD, and
(c) mass-fraction covariance of tritium and oxygen
υTO, for direct numerical simulations of isotropic

compressions. The subscript 0 indicates initial
value. The 1/L2 scaling in (a) follows from Rapid

Distortion Theory (RDT) [26].
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FIG. 3: Evolution of (a) TKE dissipation and (b)
mass-fraction-variance dissipation, for direct

numerical simulations of isotropic compressions.
The subscript 0 indicates initial value.

tion of variance and TKE occurs at similar values363

of L. Additionally, in accord with the TKE, the364

sudden viscous dissipation of the mass-fraction vari-365

ance becomes more pronounced as the compression366

speed is increased. Figure 2(c) shows that the mass-367

fraction covariance of tritium and oxygen behaves in368

a similar manner to the mass-fraction variance, and369

hence also exhibits the sudden viscous dissipation.370

It is noted, however, that whereas the mass-fraction371

variance is positive throughout the compression, the372

mass-fraction covariance is negative. This is not re-373

vealed by Figs. 2 (b) and 2 (c) since quantities have374

been normalized by their initial value.375

Equation (A4) derived in the appendix shows that376

the evolution of the mass-fraction variance is af-377

6



fected by its dissipation only. Using Eq. (11) in Eq.378

(A7), the dissipation of mass-fraction variance for379

deuterium can be expressed as380

ρεDD =
2

Sc
µ
∂Y ′D
∂xi

∂Y ′D
∂xi

. (35)

On the other hand, the dissipation of TKE for a381

homogeneous incompressible flow field [27] simplifies382

to383

ρε = µ
∂u′k
∂xi

∂u′k
∂xi

. (36)

Due to the similarity of Eqs. (35) and (36), it is384

thus not surprising that the sudden viscous dissi-385

pation mechanism first demonstrated in Ref. [1] for386

homogeneous incompressible turbulence also applies387

to the mass-fraction variance. Indeed, as shown in388

Fig. 3, the dissipation of the mass-fraction variance389

behaves in a similar manner to the TKE dissipation,390

which for the current compressible flow is given by391

ρε = µw′iw
′
i +

4

3
µd′d′. (37)

In the above, w′i = εijk∂u
′
k/∂xj is the fluctuating392

vorticity vector, and d′ = ∂u′i/∂xi is the fluctuating393

dilatation. For the covariance of tritium and oxygen,394

the dissipation is given by395

ρεTO =
2

Sc
µ
∂Y ′T
∂xi

∂Y ′O
∂xi

, (38)

which also entails a product of gradients similar to396

those in Eq. (37).397

An alternate approach for visualization of the sud-398

den viscous dissipation of TKE and mass-fraction399

variance is to plot the evolution of the profiles as400

a function of the shear parameter, which is done401

in Fig. 4. As shown in Ref. [6], Figs. 4 (a) and 4402

(b) divide the compression history into two regions,403

one dominated by TKE production to the right of404

the dashed vertical line, and the other dominated405

by TKE dissipation to the left. This vertical line406

denotes the point in time at which TKE production407

equals TKE dissipation. As shown in Fig. 4 (b),408

no production of mass-fraction variance is present409

to the right of the vertical dashed line, whereas the410

dissipative decay does occur on the left-hand side.411

These two figures also include fiducials as diagonal412

dashed black lines, with a slope of 2.8 in Fig. 4 (a)413

and 3.3 in Fig. 4 (b). These fiducials are used to414

gauge the rate of decay as a function of S∗ of both415

k and υDD.416
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D
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(b)

FIG. 4: Evolution of (a) turbulent kinetic energy k
and (b) mass-fraction variance of deuterium υDD,

for direct numerical simulations of isotropic
compressions. The vertical dashed line corresponds

to the point in time at which production and
dissipation of turbulent kinetic energy are equal.

The diagonal dashed lines serve as fiducials, with a
slope of 2.8 in (a) and 3.3 in (b). The subscript 0

indicates initial value.

Additional direct numerical simulations of417

isotropic compressions were carried out using418

different values for the power-law coefficient, as was419

done in Ref. [4]. Results from these simulations420

are given in Fig. 5, which shows again that the421

TKE, mass-fraction variance, and mass-fraction422

covariance exhibit the sudden viscous dissipation.423

Additionally, direct numerical simulations of an424

isotropic expansion were carried out for multiple425

values of the initial shear parameter, and results426
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FIG. 5: Evolution of (a) turbulent kinetic energy k,
(b) mass-fraction variance of deuterium υDD, and
(c) mass-fraction covariance of tritium and oxygen
υTO, for direct numerical simulations of isotropic
compressions. n is the power-law exponent, and

the subscript 0 indicates initial value.
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FIG. 6: Evolution of (a) turbulent kinetic energy k,
(b) mass-fraction variance of deuterium υDD, and
(c) mass-fraction covariance of tritium and oxygen
υTO, for direct numerical simulations of isotropic

expansions. The subscript 0 indicates initial value.
The 1/L2 scaling in (a) follows from Rapid

Distortion Theory (RDT) [26].
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are given in Fig. 6. For this new case, the sudden427

viscous dissipation mechanism is inactive, since428

the expansion leads to a continuous decrease of429

temperature and thus the viscosity does not reach430

sufficiently large values to suddenly precipitate the431

dissipative decay. As is the case for simulations of432

compressed turbulence with various values of S∗0 ,433

the variance and covariance for these two new cases434

are of opposite sign, and their normalized magni-435

tudes evolve in an equal manner. All three sets of436

simulations (compression with varying S∗0 , compres-437

sion with varying n, and expansion with varying438

S∗0 ) are used in the following section to validate the439

original and modified RANS formulations.440

III. REYNOLDS-AVERAGED441

NAVIER-STOKES MODELING442

A. Governing equations for isotropic443

deformations444

The Reynolds-averaged Navier-Stokes equations,445

which are summarized in Appendix B for a generic446

flow, simplify significantly for homogeneous turbu-447

lence with isotropic deformations. For the mean448

flow, the density is given by ρ = ρ0L
−3, where449

ρ0 is the initial averaged density, and the averaged450

velocity is determined from the deformation tensor451

Gij = ∂ũi/∂xj . For isotropic compressions and ex-452

pansions this tensor takes the form Gij = (L̇/L)δij .453

The evolution of the internal energy is given by454

ρ
∂ẽ

∂t
= −pGii − p′

∂u′i
∂xi

+ CDρ
(2k)3/2

ld
, (39)

which follows from Eq. (B3). Since a uniform distri-455

bution for the averaged mass fraction Ỹα is used as456

an initial condition, Ỹα remains constant and uni-457

form across time and space, as can be deduced from458

Eq. (B4). Additional relations for the mean flow459

given in Sec. B 1 still hold.460

Due to the isotropy of Gij , the Reynolds stresses461

are modeled simply as τij = (2/3)kδij . Moreover,462

since both T̃ and Ỹα are uniform, the internal-energy463

turbulent flux given by Eq. (B23) and the species464

turbulent flux given by Eq. (B24) are both zero.465

The transport equations for the turbulent vari-466

ables also simplify significantly for homogeneous467

turbulence with isotropic mean-flow deformations.468

Foremost, only the dissipative length scale ld is469

needed since the transport length scale lt is used470

exclusively for the modeling of the deviatoric com-471

ponent of the Reynolds stresses, which is zero for this472

case. Additionally, due to the spatial uniformity of473

p, and the fact that tij is equal to zero, the mass-474

weighted velocity fluctuation does not appear in the475

internal energy equation, and thus the equation for476

ai is not required. As a result, the transport equa-477

tions needed to simulate the isotropic compression478

and expansion are479

dk

dt
= −2

3
kGkk − CD

(2k)3/2

ld
, (40)

480

dld
dt

= Cl1
√

2k − 2

3
Cl2dldGkk, (41)

481

dυαβ
dt

= −Cυ2
√

2k

ld
υαβ . (42)

Out of the entire set of coefficients given in Eq.
(B33), only the following are now required

CD = 0.354 Cl1 = 0.283

Cl2d = 0.272 Cυ2 = 0.849. (43)

B. Modifications to the k-ld model482

The changes in the original k-ld model are based483

on previous modifications to the k-ε model that led484

to improved prediction of compressed turbulence.485

The first modification introduces an alternate form486

of the production term in the transport equation for487

the dissipative length scale. We start by noting that488

the traditional model for the TKE dissipation ε [28–489

30] contains the following production term490

dε

dt
= −Cε1

ε

k
τij

∂ũi
∂xj

+ ... (44)

The coefficient Cε1 is typically set to 1.44. Given491

the relationship ld = CD(2k)3/2/ε, one can use the492

transport equations for k and ε to derive an equation493

for the length scale [31]. The corresponding produc-494

tion term in the ld equation would be as follows495

dld
dt

= −
(

3

2
− Cε1

)
τij
ld
k

∂ũi
∂xj

+ ... (45)

This is the form of the production term that is used496

in Refs. [9, 10, 31, 32], albeit with different coeffi-497

cients. The exact transport equation for ε [33] con-498

tains both an explicit dilatational term and a devi-499

atoric production term—this deviatoric production500

depends solely on the deviatoric Reynolds stress τ
(d)
ij .501
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Thus, Ref. [33] suggested the use of the following in-502

stead of the original production in Eq. (44)503

dε

dt
= −Cε1

ε

k
τ
(d)
ij

∂ũi
∂xj
− 2

3
Cε3ε

∂ũk
∂xk

+ ... (46)

For the above, Cε3 = 2.0 so as to match the di-
latational term in the exact transport equation for
dissipation. This replacement of the traditional pro-
duction then leads to the following in the ld equation

dld
dt

= −
(

3

2
− Cε1

)
τ
(d)
ij

ld
k

∂ũi
∂xj
−(

1− 2

3
Cε3

)
ld
∂ũk
∂xk

+ ... (47)

The decomposition of the production into isotropic504

and deviatoric components as shown above allows505

for greater flexibility in the k-l family of models.506

As shown in Ref. [10], a production term of the507

form τij(ld/k)∂ũi/∂xj in the ld equation is crit-508

ical for the appropriate representation of Kelvin-509

Helmholtz mixing layers. Instead of using the co-510

efficient −(3/2− Cε1) as shown in Eq. (45), the co-511

efficient Cl2d = 0.272 was used in Ref. [10] to obtain512

self-similar solutions. However, a single production513

term with a coefficient Cl2d for the ld equation as514

in Eq. (45) does not allow for the accurate predic-515

tion of mean-flow compression and expansion. With516

the decomposition of production into deviatoric and517

isotropic components, the coefficient Cl2d can still518

be used for the first term on the right-hand-side of519

Eq. (47), and the coefficient Cε3 can be used in the520

second-term on the right-hand side of Eq. (47). That521

is522

dld
dt

= −Cl2dτ (d)ij

ld
k

∂ũi
∂xj
−
(

1− 2

3
Cε3

)
ld
∂ũk
∂xk

+ ...

(48)
Thus, the first term on the right-hand-side above523

allows for the self-similar solutions of the Kelvin-524

Helmholtz mixing layer described in [10], and the525

second term on the right-hand-side above allows for526

accurate predictions of mean-flow compressions and527

expansions.528

The second modification to the k-ld model is the529

addition of a variable-viscosity term in the ld equa-530

tion. To improve predictions of isotropic rapid com-531

pressions, Ref. [34] suggested the addition of the532

term (ε/ν)dν/dt to the dissipation evolution equa-533

tion, where ν = µ/ρ. This approach led to time-534

evolutions of the dissipation in agreement with a535

low-Mach-number DNS, and is simpler than the536

three-equation model formulated by Ref. [3]. Given537

an evolution equation for dissipation that includes538

the variable-viscosity term, the corresponding evo-539

lution equation for ld obtained from the relation-540

ship ld = CD(2k)3/2/ε includes the additional term541

−(ld/ν)dν/dt.542

Using the two modifications described above, the543

original ld Eq. (41) is replaced by544

dld
dt

= Cl1
√

2k −
(

1− 2

3
Cε3

)
ldGkk −

ld
ν

dν

dt
. (49)

Note the difference between the coefficients in front545

of the second term on the right-hand side of Eqs. (41)546

and (49), namely, (2/3)Cl2d vs. [1−(2/3)Cε3]. These547

two terms differ not only in value but also in sign,548

i.e. 0.181 vs. −1/3. Again, it is noted that for a more549

general case in which shear is also present, both Cl2d550

and Cε3 are used to model production, according to551

Eq. (48). Additionally, we note that the two modifi-552

cations implemented in the ld evolution equation fol-553

low from modifications to the evolution equation for554

the solenoidal dissipation ρε = µw′iw
′
i, where w′i is555

the fluctuating vorticity vector. For flows with large556

Mach numbers, the dilatational dissipation [33, 35]557

cannot be neglected. However, as stated in [33], a558

simple model for the dilatational dissipation is M2
t ε.559

Since for the current simulations M2
t ≈ 0.15, it is ex-560

pected that the dilatational dissipation would play561

a small role on the overall statistics.562

C. Results563

Equations (39), (40), (41) and (42) constitute the564

original k-l formulation. For the modified k-l model,565

Eq. (41) is replaced by Eq. (49). These ordinary dif-566

ferential equations are integrated forward in time us-567

ing a second-order Runge Kutta scheme, with initial568

conditions that are extracted from the DNS.569

Figure 7 shows predictions of TKE, mass-fraction570

variance, and mass-fraction covariance obtained571

with the original (left column) and modified (right572

column) k-l models, for isotropic compressions with573

various initial values of S∗. This figure is thus meant574

to be compared against the DNS results of Fig. 2.575

Figs. 7(a), 7(c) and 7(e) demonstrate the poor pre-576

diction of the original k-l model given in Sec. III A.577

This formulation predicts increasing values of TKE578

at all domain lengths and for all compression speeds,579

and is thus unable to reproduce the sudden viscous580

dissipation exhibited by the DNS results. For the581

mass-fraction variance and covariance, the original582

model predicts rates of decay that are not as strong583

or rapid as those obtained with DNS. On the other584
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FIG. 7: Evolution of turbulent kinetic energy k on the top row, mass-fraction variance of deuterium υDD
on the middle row, and mass-fraction covariance of tritium and oxygen υTO on the bottom row, for RANS
simulations of isotropic compressions. Left column, original k-ld; right column, modified k-ld. The subscript

0 indicates initial value. The 1/L2 scaling in (a) and (b) follows from Rapid Distortion Theory (RDT) [26].
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FIG. 8: Evolution of turbulent kinetic energy k on the top row, mass-fraction variance of deuterium υDD
on the middle row, and mass-fraction covariance of tritium and oxygen υTO on the bottom row, for RANS

simulations of isotropic compressions. Left column, original k-ld; right column, modified k-ld. n is the
power-law exponent, and the subscript 0 indicates initial value.
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FIG. 9: Evolution of turbulent kinetic energy k on the top row, mass-fraction variance of deuterium υDD
on the middle row, and mass-fraction covariance of tritium and oxygen υTO on the bottom row, for RANS
simulations of isotropic expansions. Left column, original k-ld; right column, modified k-ld. The subscript 0

indicates initial value. The 1/L2 scaling in (a) and (b) follows from Rapid Distortion Theory (RDT) [26].
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hand, the new version of the k-l model from Sec.585

III B gives significantly improved predictions com-586

pared to the original formulation. This new model587

is able to capture the sudden viscous dissipation588

of TKE, mass-fraction variance, and mass-fraction589

covariance, for all compression speeds. A perfect590

agreement with DNS is not achieved, since the sud-591

den dissipation is slightly sharper for the DNS than592

the model. Nonetheless, the evolution of each k,593

υDD, and υTC profile, as well as the overall trend ex-594

hibited as the compression speed is varied, are both595

adequately reproduced. We do emphasize that Eq.596

(42) is based on the k-l model of Ref. [9], which is in-597

tended for binary mixing and thus has neither been598

designed nor formulated to capture covariances. As599

can be deduced from Eq. (42), the same temporal600

evolution is obtained for normalized variances and601

covariances υαβ/υαβ,0. For this specific case, the602

model is in agreement with the DNS since the evo-603

lutions of the normalized variance and covariance604

extracted from the DNS are, although not exactly605

equal to each other, almost identical.606

Figure 8 shows TKE, mass-fraction variance, and607

mass-fraction covariance predicted by the original608

(left column) and modified (right column) k-l mod-609

els, for isotropic compressions with various values610

of the viscosity power-law exponent n. This figure611

is thus meant to be compared against the DNS re-612

sults of Fig. 5. As for the previous case, the evolu-613

tion of k, υDD, and υTC predicted by the original614

k-l model does not exhibit the sudden viscous dis-615

sipation mechanism; instead all TKE profiles grow616

indefinitely at an equal rate and the variance and617

covariance remain constant. On the other hand, the618

the modified k-l model is able to capture the sudden619

decay in k, υDD, υTC . As was the case for the sim-620

ulations in which the compression rate was varied,621

the k-l models predict the same evolution for nor-622

malized variance and covariance. We note that the623

RANS simulations using the original and modified624

k-l models were both carried out up to the smallest625

values of L that could be reached before encounter-626

ing numerical instabilities. This value of L for the627

n = 1.5 case is L ≈ 1.8×10−3, which is about an or-628

der of magnitude larger than that reached with the629

DNS, namely, L ≈ 9.4×10−5. This, in part, explains630

why by this last instance in time the TKE predicted631

by the new k-l formulation for the n = 1.5 case has632

not yet started to decay, as is the case for the DNS633

shown in Fig. 5. Additionally, as previously stated,634

the sudden viscous dissipation predicted by DNS is635

still slightly sharper, or more abrupt, than that ob-636

tained with the new k-l model. Nonetheless, the637

trend exhibited by k, υDD, and υTC as the power-638

law-exponent is varied is appropriately captured by639

the new model, and is entirely missed by the original640

k-l formulation.641

Figure 9 shows predictions of TKE, mass-fraction642

variance, and mass-fraction covariance, obtained643

with the original (left column) and modified (right644

column) k-l models, for isotropic expansions with645

various initial values of S∗. This figure is thus meant646

to be compared against the DNS results of Fig. 6.647

As for previous cases, the new model provides im-648

proved predictions for k, υDD, and υTC compared to649

the original k-l formulation. The DNS results of Fig.650

6 show that, for each flow variable, the three fastest651

expansion speeds lead to the same profile evolution,652

and it is only the profile for the slowest expansion653

that differs from the other three. This behavior is re-654

produced with the new k-l model, as shown in Figs.655

9 (b), 9 (d), and 9 (f). On the other hand, Figs. 9656

(a), 9 (c), and 9 (e) show that the original k-l for-657

mulation gives dissimilar decay rates for each of the658

expansion speeds, and these decay rates are too fast659

compared to the DNS results. A shortcoming of the660

new k-l model for this case is that it does not pre-661

dict as large of a decay of υDD and υTC compared to662

the DNS, for the slowest expansion. Similar to the663

results shown in Figs. 7 and 8, the models predict664

the same evolution for the variance and covariance.665

IV. CONCLUSIONS666

An extension of previous work is carried out by667

simulating the sudden viscous dissipation mecha-668

nism of a multicomponent, rather than a single com-669

ponent, fluid. Direct numerical simulations of a five670

component mixture have shown that the sudden vis-671

cous dissipation of TKE is essentially unchanged for672

the multicomponent case when compared against673

the single-species results reported in Refs. [1, 6]. The674

DNS data also shows that the mass-fraction variance675

and covariance do exhibit a sudden viscous dissipa-676

tive decay in a similar fashion to that of the TKE.677

The latest iteration in the family of k-l RANS678

models, which reproduces self-similar solutions of679

buoyancy-, shock-, and shear-driven instabilities of680

relevance to ICF, has been used as the baseline681

to be modified so as to improve predictions of the682

sudden viscous dissipation. Thus, it is hoped that683

these modified closures can eventually be used to684

perform simulations of ICF capsules that simulta-685

neously account for fluid instabilities and the sud-686

den viscous dissipation. The modifications to the687

model developed in this paper consist of an alter-688

nate length-scale production and the addition of a689
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variable-viscosity term. The modified length-scale690

production results from splitting the original pro-691

duction into two terms, one that depends on the692

anisotropy of the Reynolds stresses rather than the693

full tensor, and another that follows from the di-694

latational term present in the exact equation of the695

TKE dissipation. The variable viscosity term, on the696

other hand, is required so that the modeled trans-697

port equations can directly capture unexpected vis-698

cous effects that result from non-standard viscosity699

models. Whereas the original baseline k-l model per-700

forms quite poorly at predicting the sudden viscous701

dissipation of TKE and mass-fraction variance and702

covariance, significantly improved agreement with703

DNS data is obtained when both of the modifications704

previously described are implemented. The RANS705

models also show that the simple closure used for706

the dissipation of variance and covariance leads to707

the same dynamical behavior for these two quanti-708

ties. Although for this case this is in agreement with709

DNS, for other flow scenarios with alternate initial710

conditions dissimilar models for the variance and co-711

variance may be needed.712

As stated in Refs. [1] and [6], additional physi-713

cal phenomena such as alternate compression his-714

tories, complex transport coefficients, nuclear reac-715

tions, and the dissipation of non-turbulent motions716

still need to be explored to reliably gauge the util-717

ity of the sudden viscous dissipation mechanism for718

ICF. For example, tabular equations of state for719

high-energy-density regimes are needed to replace720

the currently used ideal equations of state. A sub-721

set of simulations previously carried out for a deu-722

terium tritium mixture with the LEOS equation723

of state (https://wci.llnl.gov/simulation/support-724

libraries) did not show notable differences for the725

sudden viscous dissipation. Still, further simulations726

with complex equations of state need to be carried727

out. Similarly, it is yet unknown what effect a real-728

plasma model for the diffusive flux that accounts for729

the Soret effect, Barodiffusion, isotopic separation,730

etc. would have on the sudden viscous dissipation731

mechanism. Nonetheless, the current work serves732

as a further step in increasing the physical fidelity of733

simulations, so as to continually build on the original734

work of Ref. [1] for incompressible single-species tur-735

bulence. The inclusion of multiple species now paves736

the way forward for future simulations with multi-737

component transport coefficients and thermonuclear738

fusion reactions.739
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Appendix A: Exact transport equation for745

mass-fraction variance746

The exact transport equation for the mass-

fraction variance υαβ = Ỹ ′′α Y
′′
β is

∂ρυαβ
∂t

+
∂ρυαβ ũi
∂xj

= −Y ′′α
∂Jβ,i
∂xi

− Y ′′β
∂Jα,i
∂xi

− ρỸ ′′β u′′i
∂Ỹα
∂xi
− ρỸ ′′α u′′i

∂Ỹβ
∂xi

+ J ′β,i
∂Y ′α
∂xi

+ J ′α,i
∂Y ′β
∂xi

− ∂

∂xi

(
ρ Y ′′α Y

′′
β u
′′
ĩ + Y ′αJ

′
β,i + Y ′βJ

′
α,i

)
(A1)

The dissipation εαβ of the mass-fraction variance is747

defined as748

ρεαβ = −J ′β,i
∂Y ′α
∂xi
− J ′α,i

∂Y ′β
∂xi

. (A2)

For homogeneous turbulence and spatially-749

uniform values of Ỹα, which is the case under con-750

sideration, Eq. (A1) becomes751

ρ
dυαβ
dt

= −Y ′′α
∂Jβ,i
∂xi

− Y ′′β
∂Jα,i
∂xi

− ρεαβ . (A3)

Given the model for the averaged diffusive flux in752

Eq. (B7), the first and second terms in Eq. (A3) are753

equal to zero, and thus754

dυαβ
dt

= −εαβ . (A4)

Since J ′α,i = Jα,i − Jα,i, the mass-fraction variance755

dissipation can be written as756

ρεαβ = −Jβ,i
∂Y ′α
∂xi
− Jα,i

∂Y ′β
∂xi

. (A5)

Using the definition of the scalar diffusive flux in Eq.757

(7), the above becomes758

ρεαβ = ρD
∂Yβ
∂xi

∂Y ′α
∂xi

+ ρD
∂Yα
∂xi

∂Y ′β
∂xi

. (A6)

Given the spatial uniformity of Ỹα, the mass-fraction759

dissipation is finally expressed as760

ρεαβ = 2ρD
∂Y ′α
∂xi

∂Y ′β
∂xi

. (A7)
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Appendix B: Reynolds-averaged Navier-Stokes761

equations for a generic flow762

1. The mean flow763

In this section we summarize the equations that764

result from averaging the multicomponent Navier-765

Stokes equations described in Sec. II A. The trans-766

port partial differential equations for the averaged767

density, velocity, internal energy, and species mass768

fraction are769

∂ρ

∂t
+
∂ρũi
∂xi

= 0, (B1)

770

∂ρũi
∂t

+
∂ρũiũj
∂xj

= − ∂p

∂xi
+
∂tij
∂xj
− ∂ρτij

∂xj
, (B2)

∂ρẽ

∂t
+
∂ρẽũj
∂xj

= −p∂ũi
∂xi

+ tij
∂ũi
∂xj

+ u′′i
∂p

∂xi
− u′′i

∂tij
∂xj
− p′ ∂u

′
i

∂xi
+ t′ij

∂u′i
∂xj

− ∂

∂xj

(
ρẽ′′u′′j + u′′jp− u′′itij + qj

)
, (B3)

771

∂ρỸα
∂t

+
∂ρỸαũi
∂xi

= −∂Jα,i
∂xi

−
∂ρỸ ′′α u

′′
j

∂xj
. (B4)

For the above, τij = ũ′′i u
′′
j represents the Reynolds772

stresses. The averaged fluxes are computed as fol-773

lows774

tij = 2µS̃ij +

(
β − 2

3
µ

)
∂ũk
∂xk

δij , (B5)

775

qi = −κ ∂T̃
∂xi

, (B6)

776

Jα,i = −ρD∂Ỹα
∂xi

. (B7)

Fluctuations of the transport coefficients are ne-777

glected. These coefficients are computed using778

µ = µ0

(
T̃

T0

)n
, (B8)

779

κ =
µC̃p
Pr

, (B9)

780

D =
µ

ρSc
. (B10)

Each species is treated as an ideal gas, and thus it781

is assumed that averaged quantities satisfy782

pα = ραRαT̃ , (B11)
783

Rα =
Ru
Mα

, (B12)

784

ẽα = Cv,αT̃ , (B13)

785

h̃α = Cp,αT̃ . (B14)

From the averaged properties of the individual786

species one can obtain averaged quantities for the787

entire mixture using788

ẽ =
∑
α

Ỹαẽα C̃v =
∑
α

ỸαCv,α, (B15)

789

h̃ =
∑
α

Ỹαh̃α C̃p =
∑
α

ỸαCp,α, (B16)

790

p =
∑
α

V αpα V α =
ρỸα
ρα

. (B17)

Finally, additional relationships are791

Ẽ = ẽ+ K̄ + k, (B18)
792

K̄ =
1

2
ũiũi, (B19)

793

k =
1

2
ũ′′i u

′′
i , (B20)

794

S̃ij =
1

2

(
∂ũi
∂xj

+
∂ũj
∂xi

)
. (B21)

2. The k-2l-a-υ model795

Due to the lack of closure in the mean flow equa-796

tions of Sec. B 1, a turbulence model is required.797

The latest iteration in the family [9, 10, 36, 37] of798
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k-l models is used in this study, namely the k-2l-a-υ799

model.800

The turbulent fluxes are modeled using801

ρτij =
2

3
ρkδij − Cdev2µt

(
S̃ij −

1

3
S̃kkδij

)
, (B22)

802

ρẽ′′u′′j = −κt
γ̃

∂T̃

∂xj
, (B23)

803

ρỸ ′′α u
′′
j = −ρDt

∂Ỹα
∂xj

. (B24)

Note that for the above, γ̃ = C̃p/C̃v. The modeled804

turbulent fluxes above depend on eddy transport co-805

efficients, which are given below806

µt = Cµρ
√

2klt, (B25)

807

κt =
µtC̃p
Prt

, (B26)

808

Dt =
µt
ρSct

. (B27)

The transport equations of the model are

∂ρk

∂t
+
∂ρkũi
∂xi

= −ρτij
∂ũi
∂xj
− CDρ

(2k)3/2

ld

+
∂

∂xi

[(
µ+

µt
Nk

)
∂k

∂xi

]
, (B28)

∂ρlt
∂t

+
∂ρltũi
∂xi

= Cl1ρ
√

2k − Cl2tρτij
lt
k

∂ũi
∂xj

+
∂

∂xi

[(
µ+

µt
Nlt

)
∂lt
∂xi

]
, (B29)

∂ρld
∂t

+
∂ρldũi
∂xi

= Cl1ρ
√

2k − Cl2dρτij
ld
k

∂ũi
∂xj

+
∂

∂xi

[(
µ+

µt
Nld

)
∂ld
∂xi

]
, (B30)

∂ρai
∂t

+
∂ρaiũi
∂xi

= C2
Bb

∂p

∂xi
−Caρai

√
2k

ld
−ρτij

∂ρ

∂xj

+
∂

∂xj

[(
µ+

µt
Na

)
∂ai
∂xj

]
, (B31)

∂ρυαβ
∂t

+
∂ρυαβ ũi
∂xi

= Cυ1µt
∂Ỹα
∂xi

∂Ỹβ
∂xi
−Cυ2ρ

√
2k

ld
υαβ

+
∂

∂xi

[(
µ+

µt
Nυ

)
∂υαβ
∂xi

]
. (B32)

Finally, the model’s coefficients have the following
values,

Cdev = 16.67 Cµ = 0.204 Prt = 0.060

Sct = 0.060 CD = 0.354 Cl1 = 0.283

Cl2t = −22.96 Cl2d = 0.272 CB = 0.857

Ca = 0.339 Cυ1 = 46.67 Cυ2 = 0.849

Nk = 0.060 Nlt = 0.030 Nld = 0.030

Nυ = 0.060. (B33)

The vector ai is used to model the mass-weighted809

velocity fluctuation −u′′i in the internal energy equa-810

tion. Additionally, the dissipative term in this equa-811

tion is modeled as812

t′ij
∂u′i
∂xj

= CDρ
(2k)3/2

ld
, (B34)

so as to be consistent with the dissipative term in Eq.813

(B28). The pressure dilatation term in the internal814

energy and TKE equations is neglected. A model815

for b, which represents the density–specific-volume816

covariance, is still needed—the reader is referred to817

Refs. [9, 10, 37] for various closures.818
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