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Direct numerical simulation and Reynolds-averaged Navier-Stokes modeling of

the sudden viscous dissipation for multicomponent turbulence

Alejandro Campos® and Brandon E. Morgan
Lawrence Livermore National Laboratory, Livermore, California 94550, USA
(Dated:)

Simulations of a turbulent multicomponent fluid mixture undergoing isotropic deformations are
carried out to investigate the sudden viscous dissipation. This dissipative mechanism was originally
demonstrated using simulations of an incompressible single-component fluid [Davidovits and Fisch,
Phys. Rev. Lett. 116, 105004(2016)]. By accounting for the convective and diffusive transfer
of various species, the current work aims to increase the physical fidelity of previous simulations
and their relevance to inertial confinement fusion applications. Direct numerical simulations of
the compressed fluid show that the sudden viscous dissipation of turbulent kinetic energy is un-
changed from the single-component scenario. More importantly, the simulations demonstrate that
the mass fraction variance and covariance for the various species also exhibit a sudden viscous decay.
Reynolds-averaged Navier-Stokes simulations were carried out using the k-l model to assess its abil-
ity to reproduce the sudden viscous dissipation. Results show that the standard k-l formulation does
not capture the sudden decay of turbulent kinetic energy, mass-fraction variance, and mass-fraction
covariance for simulations with various compression and expansion rates, or different exponents for
the power-law model of viscosity. A new formulation of the k-l model that is based on previous
improvements to the k-e family of models is proposed, which leads to consistently good agreement

with the direct numerical simulations for all the isotropic deformations under consideration.

I. INTRODUCTION

Numerical simulations were used by Ref. [1] to
demonstrate that the isotropic compression of a tur-
bulent flow field leads to a rapid and sudden viscous
dissipation of turbulent kinetic energy (TKE). The
dissipated TKE is transformed into heat, which can
then be used to enhance ignition conditions in ei-
ther laser-driven or Z-pinch-driven inertial confine-
ment fusion (ICF). This sudden viscous dissipative
mechanism occurs for substances whose viscosity has
a strong scaling on temperature, as is the case for
some plasmas (pu ~ T°/? [2]) rather than traditional
fluids (p ~ T%/4 [3]).

The original simulations of Ref. [1] relied on a sim-
plified formulation in which the plasma is treated
as an incompressible fluid with a temperature-
dependent power law for the viscosity and a fixed
time history for the temperature. Subsequent work
has focused on increasing the fidelity of these sim-
ulations. For example, Ref. [4] modifies the vis-
cosity power law by accounting for the ionization
state Z of the plasma. Expressing the viscosity
as pu ~ T"/Z™ ~ T8, where 3 depends on the
the model used for the plasma charge state, it was
shown that the sudden viscous dissipation occurs for
B > 1 only. Additionally, Ref. [5] simulated the com-
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pression of an imploding spherical turbulence layer,
rather than a homogeneous turbulent flow. The sud-
den viscous dissipation was shown to occur for this
new scenario as well. Finally, Ref. [6] relaxes the as-
sumption of low-Mach number turbulence, and ac-
counts for finite Mach number effects in the sudden
viscous dissipation of TKE. Results indicate that for
subsonic turbulent Mach numbers, the available en-
ergy in the turbulent fluctuations is not sufficient to
significantly alter the temperature evolution of the
fluid.

As stated in Ref. [6], although previous research
on the sudden viscous dissipation has increasingly
included more relevant physics, simulations carried
out so far are not yet truly representative of ICF sce-
narios, which are characterized by additional physi-
cal phenomena such as mass transfer, radiative heat
transfer, complex equations of state, and multicom-
ponent plasma viscosity models, among others. The
aim of the current study is thus to further increase
the fidelity of simulations used to predict the sud-
den viscous dissipation by accounting for the con-
vective and diffusive mass transfer in a multicompo-
nent fluid. Given that mixing of various components
in ICF degrades capsule performance [7], multicom-
ponent simulations should eventually be used to ac-
count for the detrimental effect of turbulent mix-
ing when assessing the favorable effect of the sudden
viscous dissipation. Additionally, a multicomponent
formulation paves the way forward for simulations
that account for multicomponent plasma viscosities
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models [8] and nuclear reactions.

In this paper, results from Direct Numerical Sim-
ulations (DNS) are reported to determine differences
between the TKE evolution of a five-component
mixture and that of a single-component fluid. Of
even more interest, however, is the evolution of the
mass-fraction variance and covariance for the vari-
ous species, since the species diffusivity, which be-
haves similarly to the fluid viscosity, can also lead
to sudden dissipative phenomena. It is important
to accurately predict the mass-fraction variance and
covariance since these quantities are used as inputs
to reaction-rate models [9]. In addition to direct
numerical simulations, the current work focuses on
the formulation of an improved Reynolds-averaged
Navier-Stokes (RANS) model to capture the sud-
den viscous dissipation. This proposed new model is
based on the variable-density k-l family of closures
that are commonly used to simulate phenomena of
relevance to ICF, such as buoyancy-, shock-, and
shear-driven instabilities [10]. Thus, by using tra-
ditional k-l models to improve the prediction of the
sudden viscous dissipation, it is hoped that the final
formulation will have a broader range of applicabil-
ity than models tailored specifically to capture the
sudden viscous dissipation of TKE, such as that pro-
posed in [11]. Predictions obtained with the original
and modified RANS models are compared against
DNS results for the isotropic compressions, as well
as DNS results for an isotropic expansion, so as to
again ensure a broad range of applicability.

The outline of the paper is as follows. Section
IT describes the direct numerical simulations of the
multicomponent fluid mixture. This section in-
cludes the governing equations in Sec. IT A, trans-
formed equations suitable for computational simu-
lations in Sec. II B, details of the numerical frame-
work in Sec. IIC, a description of the initial condi-
tions in Sec. IID, and profiles for the TKE, mass-
fraction variance, and mass-fraction covariance in
Sec. ITE. The RANS framework is the focus of Sec.
III. The Reynolds-averaged governing equations for
homogeneous multicomponent turbulence undergo-
ing isotropic mean-flow deformations are given in
Sec. IIT A, the derivation of the new formulation of
the k-l model is given in Sec. III B, and results for
the TKE, mass-fraction variance, and mass-fraction
covariance obtained with the original and modified
k-l models are given in Sec. III C. Finally, the pa-
per ends with conclusions and a discussion of future
work in Sec. I'V.

II. DIRECT NUMERICAL SIMULATIONS

114

s A. Multicomponent Navier-Stokes equations

The governing equations for the direct numerical
ur simulations are the multicomponent Navier-Stokes
us equations. The transport partial differential equa-
no tions for the density p, velocity u;, total energy FE,
120 and species mass fraction Y, are

116

dp = Opu;
“F — 1
ot or; — Ox; Oxy’
122
OpE 0 p Ouiti;  0g;
e o e e
ot * 0x; {p ( * p) u} Ox; 0x; ®)
123
0pYs | OpYou; _(‘3Ja,i ()

124 In the above, the pressure is denoted by p. The
125 shear-stress tensor ¢;;, the heat flux ¢;, and the dif-
s fusive flux J, ; of each species a are

- 2 auk
tij = 2uS;; + (/B - 3,“) aixk ijs (5)
127
oT
P = ha a,ts
q K@xi + za: Ja, (6)
128
Y,
wi = —pD .
Ja, Do, (7)

10 S;; is the rate-of-strain tensor, 1" the temperature,
10 and h, the enthalpy of species . Four transport
coefficients appear in the equations above, namely
122 the dynamic viscosity p, the bulk viscosity 3, the
133 thermal conductivity k, and the diffusivity D. The
13¢ diffusivity is assumed to be equal for all species. Ex-
135 pressions for the transport coefficients are

. (TY
,LL—/J,O TO 9

131
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136

B =0, (9)
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19 i and Ty are the reference viscosity and tempera-
uo ture, respectively, n is the power-law exponent, C),
the specific heat at constant pressure, Pr the Prandtl
number, and Sc the Schmidt number. Each species
is treated as an ideal gas, and thus the following
relationships hold

141

142

143

144

Pa = paRaT; (12)
145
R,
a = S5 1
Ro= (13)
146
ea = CyoT, (14)
147
ha = CyoT. (15)

us P, is the species pressure, p, the species density,
u R, the universal gas constant, M, the species mo-
150 lar mass, e, the species internal energy, C, , the
151 species specific heat at constant volume, and Cp o
152 the species specific heat at constant pressure. The
mixture properties are obtained from the species
variables using

e= ZYaea

153
154

Cy = YaCya,  (16)

155

h=>Y Yaha

Cp=> YaCpa, (17)
156
_ PYa

Va T

Pa (18)

p= Zvapa
a

where e, h, and C, are, respectively, the internal en-
ergy, the enthalpy, and the specific heat at constant
volume, for the entire mixture. V, is the volume
fraction of species a. Finally, the following equa-
161 tions are required to complete the system

157

158

159

160

E=c+K, (19)
K = Yuu (20)
= 2Uzuza
. 1 8’(1,1 8uj
SZ o 5 <8x3 + 8.131) ’ (21)

B. Transformed multicomponent
Navier-Stokes equations

164
165

s Rather than solving the equations described in the
17 previous section, one can extend the derivations of
s Ref. [1] for incompressible single-species flow, or the
169 derivations in Ref. [6] for compressible single-species
o flow, so as to obtain the corresponding transformed
1 equations for a compressible multi-species mixture.
12 This new set of equations are formulated with re-
3 spect to a moving reference frame that shrinks as
s the flow is compressed, or grows as the flow is ex-
s panded. Thus, these set of equations are preferred
we for direct numerical simulations since they allow for
a fixed grid with periodic boundary conditions. The
resulting equations are identical to those in Sec. IT A,
except that the total velocity u; is replaced by the
Favre-fluctuating velocity u). This fluctuating ve-
locity is defined as ] = w; — @;, where u; is the
Favre-averaged velocity. In addition, each of Egs.
(1) to (4) is augmented with forcing terms that ac-
count for the effect of the mean flow. Thus, the
transformed transport equations are
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The forcing terms above are defined as follows
f®) = —2pL, (26)
;Y = =3pul'L, (27)
fE = —[20E + puju} +3p] L, (28)
) = —2pY, L. (29)

L is the characteristic length of the domain, which
decreases as time advances for flow compressions and
increases for flow expansions. L is the constant time-
rate-of-change of L.
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103 C. Numerical details

e The same numerical approach as that of Ref. [6]

105 is used for the current study, and further details
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can be encountered in this reference. Direct numer-
ical simulations are performed using the Miranda
solver, which discretizes the multispecies Navier-
Stokes equations using a tenth-order Padé scheme
and a fourth-order Runge-Kutta integrator. Filter-
ing of the flow variables is performed using an eight-
order operator for the purposes of stability. An ar-
tificial bulk viscosity *, thermal conductivity k*,
and species diffusivity D7 are added to the corre-
sponding physical transport coefficients, in a similar
manner to [9, 12]. The expressions for these artificial
fluid properties are

B* = cppD(d), (30)

* CU
K= c,ngAtD(T)7 (31)

D! = Pz Tex [caD(Yy),
cy([Yal = 1.0+ [1.0 = Yo])A2].  (32)

In the above d is the dilatation, At is the time step,
A = (AzAyAz)'/3 is the local grid spacing, and the
overline denotes a truncated-Gaussian filter. The
operator D(+) is given by
AZIO)
(33)

8.

Ox8
which strongly biases the artificial properties to-
wards high wave numbers. The values of the coeffi-
cients in Egs. (30)-(32) are ¢g = 0.07, ¢,, = 0.001,
cg = 0.0002, and ¢, = 100, which have been cal-
ibrated using simulations relevant to ICF—see, for
example, Refs. [13-15].

A cubic grid with 2563 uniformly spaced grid
points and periodic boundary conditions at all of its
faces is used for the simulations. So as to be of rele-
vance to ICF, the species chosen for the fluid mixture
are hydrogen (H), deuterium (D), tritium (T), car-
bon (C), and oxygen (O). These species, for exam-
ple, would be present in a capsule with DT fuel at its
core and CRF low-density foams as the ablator [16].
The molar masses used for each of these species are

g = 1.00798, Mp = 2.014102, My = 3.016050,
Mo = 12.0111 and Mo = 15.994915. All species
have the same constant Schmidt number, namely
Sc = 1.0. As shown in Ref. [17], the viscosity has a
5/2 power-law temperature scaling if other parame-
ters such as the ionization state and the collision in-
tegrals are assumed constant. Under these assump-
tions, pD also exhibits a 5/2 power-law dependence

o8-
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on temperature, which motivated the use of a con-
stant Schmidt number. Simulations that account
for differential diffusion, where a different Schmidt
number is used for each species, did not show quali-
tatively different behavior even up to Schmidt num-
bers that differed by two orders of magnitude. Addi-
tional parameters of the simulation are the Prandtl
number Pr = 1.0, the ratio of specific heats v = 5/3,
and the universal gas constant R, = 8.314474 x 107
(cgs units).

D. Initial conditions

The initial condition for the velocity field was ex-
tracted from linearly-forced simulations, which have
previously been shown to produce realistic fluctuat-
ing velocities [18]. Details on the implementation of
this forcing mechanism, as well as the strength of
the linear forcing functions that lead to DNS reso-
lution, are included in Refs. [6, 19]. As stated in
Ref. [6], compression of the initial flow field dis-
sipates the smallest scales first, and thus an ini-
tial condition with DNS-like resolution guarantees
that all of the turbulent scales are well resolved
throughout the subsequent compression. The ve-
locity field extracted from the linearly forced sim-
ulations is characterized by a turbulent Mach num-
ber M; =~ 0.4 and a Taylor-scale Reynolds number
Re), 50. The TKE for this velocity field has a
value of kg = 2.2 x 10** cm/s.

Forcing functions for the mass fractions are also
used in the simulations that generate the initial
conditions. Rather than relying on traditional ap-
proaches based on mean scalar gradients [20, 21] or
low-wavenumber forcing [22, 23], a linear scalar forc-
ing function is used. This forcing function leads to a

~
~

flow field with an averaged mass-fraction Y, that is
constant in time and uniform in space, and a fluctu-
ating field Y that is statistically homogeneous. The
linear forcing function is of the form féy) = peo Y,
and it is added to the right-hand side of the trans-
port equation for the mass fraction of species . The
coefficient ¢, is given by

1 €qa
Cq= 22 34
C T 2040 (34)
where vos = Y'Yy is the mass-fraction variance

and €yp, given in Eq.(A7), is the dissipation of the
mass-fraction variance. It is noted that this forcing
procedure results in an initial field in which mass-
fraction fluctuations of separate species are nomi-
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FIG. 1: Dissipation of the mass-fraction variance
for the five different species simulated, compared
against the target values used by the linear forcing
mechanism. ¢ is time and 7 is the eddy-turn-over
time.

nally uncorrelated, as is the case for non-premixed
materials.

The scalar forcing function used is equivalent to
the second term in the forcing function introduced
by Ref. [24]. The first term in the forcing function
of Ref. [24], which specifies a target mass-fraction
variance that the simulations ought to reach, is ne-
glected in the current forcing scheme for the sake
of simplicity. Additionally, rather than computing
€aa and v,o after each time step to obtain c,, as
is done in Ref. [24], only v4q is computed in be-
tween time steps and a constant target value is used
for €no. Thus, the forcing function leads to a fluc-
tuating mass-fraction field with a variance dissipa-
tion that ought to match the predetermined target
value. The agreement between the computed and
target variance dissipations for the current linearly
forced simulations is shown in Fig. 1.

An iteration for the target values of the mass-
fraction-variance dissipation was performed until
VVaa, /Yo = 40% for each species. The values for the
constant Favre-averaged mass fractions were com-
puted using the molar fractions Xy = 0.03, Xp =
0.455, X7 = 0.455, X¢ = 0.03, Xp = 0.03, which
aims to roughly mimic ICF fuel contaminated by
ablator components. The deuterium mass-fraction
variance and the tritium-oxygen mass-fraction co-
variance that followed from this initialization scheme
are upp,o = 1.6 X 102 and vro,0 = —3.6 X 1072, re-
spectively. Since the Schmidt number used for all of
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the species is unity, the Batchelor scale ¢ = 17/S(:1/2

[25], which describes the smallest length scales of
fluctuations in scalar concentration, is equal to the
Kolmogorov scale . Thus, the grid resolution cho-
sen to capture all the relevant velocity scales is also
appropriate for the mass-fraction field.

E. Results

The time evolution of TKE, mass-fraction vari-
ance of deuterium, and mass-fraction covariance of
tritium and oxygen is shown in Fig. 2, for various
compression speeds. These compression speeds are
denoted by the initial value of the shear parameter
S* = Sk/e, where S = L/L. As in Ref. [1], the evo-
lution of the flow variables is plotted as a function
of the length of the domain L, instead of time, and
thus the plots in Figs. 2 are to be read from right to
left. Only the mass-fraction variance of deuterium
is depicted in this study, since the variances of the
other four components in the fluid mixture behave
in a qualitatively similar manner. Similarly, only
one mass-fraction covariance is shown since the evo-
lution of the ten covariances is qualitatively similar
for the cases under consideration.

Figure 2 (a) is to be compared with Fig. 1 in
[1] and Fig. 3 in [6], which show the evolution
of TKE for a single-component incompressible flow
and a single-component compressible flow, respec-
tively. We note that the parameters for the single-
component compressible flow (M; ~ 0.65, Rey ~ 70)
are relatively similar to those of the current multi-
component compressible flow (M; =~ 0.4, Rey =~ 50).
The comparison between these three flows shows
that accounting for multiple species with molecular
weights that differ by up to an order of magnitude
does not lead to qualitatively different TKE behav-
ior. The sudden viscous dissipation still occurs for
the multicomponent fluid mixture, and this dissipa-
tion still becomes more rapid as S§ is increased, in
accordance to the single-component results. An ex-
tensive examination of TKE growth vs. decay for
different S, as well as the critical value that demar-
cates these two regimes, has been previously given
in the literature; see for example Sec. IT B of Ref.
[5] and Sec. IV A 1 of Ref. [6]. Oscillations in the
TKE for the slowest compression speed, which were
attributed to oscillations in the pressure-dilatation
in Ref. [6], are still observed.

Of more relevance to the current study, however,
is the demonstration that the mass-fraction vari-
ance also exhibits a sudden viscous dissipation, as
shown in Fig. 2(b). The sudden viscous dissipa-
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363 tion of variance and TKE occurs at similar values
e Of L. Additionally, in accord with the TKE, the
s sudden viscous dissipation of the mass-fraction vari-
16 ance becomes more pronounced as the compression
se7 speed is increased. Figure 2(c) shows that the mass-
w8 fraction covariance of tritium and oxygen behaves in
30 & similar manner to the mass-fraction variance, and
s hence also exhibits the sudden viscous dissipation.
s It is noted, however, that whereas the mass-fraction
a2 variance is positive throughout the compression, the
w3 mass-fraction covariance is negative. This is not re-
s vealed by Figs. 2 (b) and 2 (c¢) since quantities have
a5 been normalized by their initial value.

w  Equation (A4) derived in the appendix shows that
577 the evolution of the mass-fraction variance is af-



s fected by its dissipation only. Using Eq. (11) in Eq.
a0 (A7), the dissipation of mass-fraction variance for
30 deuterium can be expressed as

2 0Y}, Y},

pepD = St Ox; Ox; (35)

s On the other hand, the dissipation of TKE for a
s22 homogeneous incompressible flow field [27] simplifies
383 tO

e O

s« Due to the similarity of Eqgs. (35) and (36), it is
35 thus not surprising that the sudden viscous dissi-
ses pation mechanism first demonstrated in Ref. [1] for
37 homogeneous incompressible turbulence also applies
38 to the mass-fraction variance. Indeed, as shown in
0 Fig. 3, the dissipation of the mass-fraction variance
a0 behaves in a similar manner to the TKE dissipation,
301 which for the current compressible flow is given by

— T 4ﬁ

pe = pwiw; + g,ud d'. (37)
32 In the above, w) = €;;10u) /0x; is the fluctuating
33 vorticity vector, and d’ = du}/Ox; is the fluctuating
su dilatation. For the covariance of tritium and oxygen,
ss the dissipation is given by

_ 2 oYy oYy,
PETO = g/’(‘ 3%1 axl )

(38)

s which also entails a product of gradients similar to
so7 those in Eq. (37).

An alternate approach for visualization of the sud-
den viscous dissipation of TKE and mass-fraction
variance is to plot the evolution of the profiles as
a function of the shear parameter, which is done
in Fig. 4. As shown in Ref. [6], Figs. 4 (a) and 4
(b) divide the compression history into two regions,
one dominated by TKE production to the right of
w05 the dashed vertical line, and the other dominated
ws by TKE dissipation to the left. This vertical line
w7 denotes the point in time at which TKE production
ws equals TKE dissipation. As shown in Fig. 4 (b),
w9 1o production of mass-fraction variance is present
a0 to the right of the vertical dashed line, whereas the
an dissipative decay does occur on the left-hand side.
a2 These two figures also include fiducials as diagonal
a3 dashed black lines, with a slope of 2.8 in Fig. 4 (a)
s and 3.3 in Fig. 4 (b). These fiducials are used to
a5 gauge the rate of decay as a function of S* of both
a6 k and UDD-
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FIG. 4: Evolution of (a) turbulent kinetic energy k
and (b) mass-fraction variance of deuterium vpp,
for direct numerical simulations of isotropic
compressions. The vertical dashed line corresponds
to the point in time at which production and
dissipation of turbulent kinetic energy are equal.
The diagonal dashed lines serve as fiducials, with a
slope of 2.8 in (a) and 3.3 in (b). The subscript o
indicates initial value.

Additional direct numerical simulations of
isotropic compressions were carried out using
different values for the power-law coefficient, as was
done in Ref. [4]. Results from these simulations
are given in Fig. 5, which shows again that the
TKE, mass-fraction variance, and mass-fraction
covariance exhibit the sudden viscous dissipation.
Additionally, direct numerical simulations of an
isotropic expansion were carried out for multiple
values of the initial shear parameter, and results
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vTo, for direct numerical simulations of isotropic
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The 1/L? scaling in (a) follows from Rapid
Distortion Theory (RDT) [26].

FIG. 5: Evolution of (a) turbulent kinetic energy k,
(b) mass-fraction variance of deuterium vpp, and
(¢) mass-fraction covariance of tritium and oxygen
vTo, for direct numerical simulations of isotropic

compressions. n is the power-law exponent, and
the subscript ¢ indicates initial value.
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are given in Fig. 6. For this new case, the sudden
viscous dissipation mechanism is inactive, since
the expansion leads to a continuous decrease of
temperature and thus the viscosity does not reach
sufficiently large values to suddenly precipitate the
dissipative decay. As is the case for simulations of
compressed turbulence with various values of S§,
the variance and covariance for these two new cases
are of opposite sign, and their normalized magni-
tudes evolve in an equal manner. All three sets of
simulations (compression with varying S§, compres-
sion with varying n, and expansion with varying
S§) are used in the following section to validate the
original and modified RANS formulations.

III. REYNOLDS-AVERAGED
NAVIER-STOKES MODELING

A. Governing equations for isotropic
deformations

The Reynolds-averaged Navier-Stokes equations,
which are summarized in Appendix B for a generic
flow, simplify significantly for homogeneous turbu-
lence with isotropic deformations. For the mean
flow, the density is given by p = p,L~3, where

Do is the initial averaged density, and the averaged

velocity is determined from the deformation tensor
Gij = Ou;/0z;. For isotropic compressions and ex-
pansions this tensor takes the form Gy; = (L/L)d;;.
The evolution of the internal energy is given by

e oul . _(2k)*?
pa = pG“ P (97331 + CDP ld ) (39)

which follows from Eq. (B3). Since a uniform distri-
bution for the averaged mass fraction }70, is used as
an initial condition, Y, remains constant and uni-
form across time and space, as can be deduced from
Eq. (B4). Additional relations for the mean flow
given in Sec. B 1 still hold.

Due to the isotropy of G;j, the Reynolds stresses
are modeled simply as 7,; = (2/3)kd;;. Moreover,
since both T and ?a are uniform, the internal-energy
turbulent flux given by Eq. (B23) and the species
turbulent flux given by Eq. (B24) are both zero.

The transport equations for the turbulent vari-
ables also simplify significantly for homogeneous
turbulence with isotropic mean-flow deformations.
Foremost, only the dissipative length scale [; is
needed since the transport length scale [; is used
exclusively for the modeling of the deviatoric com-
ponent of the Reynolds stresses, which is zero for this

473

case. Additionally, due to the spatial uniformity of

w P, and the fact that ¢;; is equal to zero, the mass-
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weighted velocity fluctuation does not appear in the
internal energy equation, and thus the equation for
a; is not required. As a result, the transport equa-
tions needed to simulate the isotropic compression
and expansion are

dk 2 (2Kk)3/2
_ 2 _ 4
or = ~3kGrx — Cp L (40)
dl 2
d—: =COpV2k — gCl2dldeka (41)
duvg, V2k
dtﬁ - _CUQTUO‘B ' “2)

Out of the entire set of coefficients given in Eq.
(B33), only the following are now required

Cp =0.354 (13 =0.283

Clog =0272  Cyy = 0.849. (43)

B. Modifications to the k-l; model

The changes in the original k-l; model are based
on previous modifications to the k-e model that led
to improved prediction of compressed turbulence.
The first modification introduces an alternate form
of the production term in the transport equation for
the dissipative length scale. We start by noting that
the traditional model for the TKE dissipation € [28-
30] contains the following production term

de _c e Ou;

.
% O,

i + ... (44)

The coefficient C¢; is typically set to 1.44. Given
the relationship Iy = Cp(2k)3/2 /e, one can use the
transport equations for k and e to derive an equation

for the length scale [31]. The corresponding produc-
tion term in the l4 equation would be as follows

()

This is the form of the production term that is used
in Refs. [9, 10, 31, 32], albeit with different coeffi-
cients. The exact transport equation for € [33] con-
tains both an explicit dilatational term and a devi-
atoric production term—this deviatoric product%o)n
d

Tii -

dly _
dt

lg Ouy

depends solely on the deviatoric Reynolds stress
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Thus, Ref. [33] suggested the use of the following in-
stead of the original production in Eq. (44)

de

ae € (d) 8ﬂl 2 6ﬂk
dt

—LagTi oz, 3 63687%+~-~

(46)

For the above, C.3 = 2.0 so as to match the di-
latational term in the exact transport equation for
dissipation. This replacement of the traditional pro-
duction then leads to the following in the [; equation
T,
Yk Ox;

-3
(20

The decomposition of the production into isotropic
and deviatoric components as shown above allows
for greater flexibility in the k-l family of models.
As shown in Ref. [10], a production term of the
form 7;;(lq/k)0u;/0x; in the lg equation is crit-
ical for the appropriate representation of Kelvin-
Helmholtz mixing layers. Instead of using the co-
efficient —(3/2 — C¢1) as shown in Eq. (45), the co-
efficient Cjaq = 0.272 was used in Ref. [10] to obtain
self-similar solutions. However, a single production
term with a coefficient Cjpq for the I equation as
in Eq. (45) does not allow for the accurate predic-
tion of mean-flow compression and expansion. With
the decomposition of production into deviatoric and
isotropic components, the coefficient Cjoyq can still
be used for the first term on the right-hand-side of
Eq. (47), and the coefficient C3 can be used in the
second-term on the right-hand side of Eq. (47). That
lag=— + ...

1S
2
- <1 - 3C53> 8xk
(48)

dla

dt
Thus, the first term on the right-hand-side above
allows for the self-similar solutions of the Kelvin-
Helmholtz mixing layer described in [10], and the
second term on the right-hand-side above allows for
accurate predictions of mean-flow compressions and
expansions.

The second modification to the k-lz model is the
addition of a variable-viscosity term in the [; equa-
tion. To improve predictions of isotropic rapid com-
pressions, Ref. [34] suggested the addition of the
term (e/v)dv/dt to the dissipation evolution equa-
tion, where v = p/p. This approach led to time-
evolutions of the dissipation in agreement with a
low-Mach-number DNS, and is simpler than the
three-equation model formulated by Ref. [3]. Given

dlg

dla () la Oi_
dt

1, 2y

0, (47)

(@ la 9 i,

' k 6$j
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an evolution equation for dissipation that includes
the variable-viscosity term, the corresponding evo-
lution equation for l; obtained from the relation-
ship lg = Cp(2k)3/?/e includes the additional term
—(lg/v)dv/dt.

Using the two modifications described above, the
original I; Eq. (41) is replaced by

dlg

dt

Zd dv

DT (49)

=COpV2k — (1 - ?2)053> 1,Grr —

Note the difference between the coefficients in front
of the second term on the right-hand side of Egs. (41)
and (49), namely, (2/3)Ciaq vs. [1—(2/3)Ces]. These
two terms differ not only in value but also in sign,
i.e. 0.181 vs. —1/3. Again, it is noted that for a more
general case in which shear is also present, both Cjoq
and C.3 are used to model production, according to
Eq. (48). Additionally, we note that the two modifi-
cations implemented in the [; evolution equation fol-
low from modifications to the evolution equation for
the solenoidal dissipation pe = pwlw;, where w} is
the fluctuating vorticity vector. For flows with large
Mach numbers, the dilatational dissipation [33, 35]
cannot be neglected. However, as stated in [33], a
simple model for the dilatational dissipation is M7e.
Since for the current simulations M} a 0.15, it is ex-
pected that the dilatational dissipation would play
a small role on the overall statistics.

C. Results

Equations (39), (40), (41) and (42) constitute the
original k-l formulation. For the modified k-l model,
Eq. (41) is replaced by Eq. (49). These ordinary dif-
ferential equations are integrated forward in time us-
ing a second-order Runge Kutta scheme, with initial
conditions that are extracted from the DNS.

Figure 7 shows predictions of TKE, mass-fraction
variance, and mass-fraction covariance obtained
with the original (left column) and modified (right
column) k-l models, for isotropic compressions with
various initial values of §*. This figure is thus meant
to be compared against the DNS results of Fig. 2.
Figs. 7(a), 7(c) and 7(e) demonstrate the poor pre-
diction of the original k-l model given in Sec. IIT A.
This formulation predicts increasing values of TKE
at all domain lengths and for all compression speeds,
and is thus unable to reproduce the sudden viscous
dissipation exhibited by the DNS results. For the
mass-fraction variance and covariance, the original
model predicts rates of decay that are not as strong
or rapid as those obtained with DNS. On the other
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ses hand, the new version of the k-l model from Sec.
sss 111 B gives significantly improved predictions com-
ss7 pared to the original formulation. This new model
is able to capture the sudden viscous dissipation
of TKE, mass-fraction variance, and mass-fraction
covariance, for all compression speeds. A perfect
agreement with DNS is not achieved, since the sud-
den dissipation is slightly sharper for the DNS than
the model. Nonetheless, the evolution of each k,
vpp, and vre profile, as well as the overall trend ex-
hibited as the compression speed is varied, are both
adequately reproduced. We do emphasize that Eq.
(42) is based on the k-l model of Ref. [9], which is in-
tended for binary mixing and thus has neither been
designed nor formulated to capture covariances. As
can be deduced from Eq. (42), the same temporal
evolution is obtained for normalized variances and
covariances vog/vap,0. For this specific case, the
model is in agreement with the DNS since the evo-
lutions of the normalized variance and covariance
extracted from the DNS are, although not exactly
equal to each other, almost identical.

Figure 8 shows TKE, mass-fraction variance, and
mass-fraction covariance predicted by the original
(left column) and modified (right column) k-l mod-
els, for isotropic compressions with various values
of the viscosity power-law exponent n. This figure
is thus meant to be compared against the DNS re-
sults of Fig. 5. As for the previous case, the evolu-
tion of k, vpp, and vpe predicted by the original
k-l model does not exhibit the sudden viscous dis-
sipation mechanism; instead all TKE profiles grow
indefinitely at an equal rate and the variance and
covariance remain constant. On the other hand, the
the modified k-l model is able to capture the sudden
decay in k, vpp, vrc. As was the case for the sim-
ulations in which the compression rate was varied,
the k-l models predict the same evolution for nor-
malized variance and covariance. We note that the
RANS simulations using the original and modified
k-l models were both carried out up to the smallest
values of L that could be reached before encounter-
ing numerical instabilities. This value of L for the
n = 1.5 case is L ~ 1.8 x 1073, which is about an or-
der of magnitude larger than that reached with the
DNS, namely, L ~ 9.4x107°. This, in part, explains
why by this last instance in time the TKE predicted
by the new k-l formulation for the n = 1.5 case has
not yet started to decay, as is the case for the DNS
shown in Fig. 5. Additionally, as previously stated,
the sudden viscous dissipation predicted by DNS is
still slightly sharper, or more abrupt, than that ob-
637 tained with the new k-l model. Nonetheless, the
e3s trend exhibited by k, vpp, and vreo as the power-
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630 law-exponent is varied is appropriately captured by
s the new model, and is entirely missed by the original
k-l formulation.

Figure 9 shows predictions of TKE, mass-fraction
variance, and mass-fraction covariance, obtained
with the original (left column) and modified (right
column) k-l models, for isotropic expansions with
various initial values of S*. This figure is thus meant
to be compared against the DNS results of Fig. 6.
As for previous cases, the new model provides im-
proved predictions for k, vpp, and vpre compared to
the original k-I formulation. The DNS results of Fig.
6 show that, for each flow variable, the three fastest
expansion speeds lead to the same profile evolution,
and it is only the profile for the slowest expansion
that differs from the other three. This behavior is re-
produced with the new k-l model, as shown in Figs.
9 (b), 9 (d), and 9 (f). On the other hand, Figs. 9
(a), 9 (c), and 9 (e) show that the original k-I for-
mulation gives dissimilar decay rates for each of the
expansion speeds, and these decay rates are too fast
compared to the DNS results. A shortcoming of the
new k-l model for this case is that it does not pre-
dict as large of a decay of vpp and vye compared to
the DNS, for the slowest expansion. Similar to the
results shown in Figs. 7 and 8, the models predict
the same evolution for the variance and covariance.
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IV. CONCLUSIONS

666

An extension of previous work is carried out by
simulating the sudden viscous dissipation mecha-
nism of a multicomponent, rather than a single com-
ponent, fluid. Direct numerical simulations of a five
component mixture have shown that the sudden vis-
cous dissipation of TKE is essentially unchanged for
&3 the multicomponent case when compared against
o the single-species results reported in Refs. [1, 6]. The
es DNS data also shows that the mass-fraction variance
o6 and covariance do exhibit a sudden viscous dissipa-
o7 tive decay in a similar fashion to that of the TKE.
es  The latest iteration in the family of k-l RANS
oo models, which reproduces self-similar solutions of
0 buoyancy-, shock-, and shear-driven instabilities of
ea1 relevance to ICF, has been used as the baseline
2 to be modified so as to improve predictions of the
63 sudden viscous dissipation. Thus, it is hoped that
ess these modified closures can eventually be used to
ess perform simulations of ICF capsules that simulta-
sss neously account for fluid instabilities and the sud-
7 den viscous dissipation. The modifications to the
s model developed in this paper consist of an alter-
sso nate length-scale production and the addition of a
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variable-viscosity term. The modified length-scale
production results from splitting the original pro-
duction into two terms, one that depends on the
anisotropy of the Reynolds stresses rather than the
full tensor, and another that follows from the di-
latational term present in the exact equation of the
TKE dissipation. The variable viscosity term, on the
other hand, is required so that the modeled trans-
port equations can directly capture unexpected vis-
cous effects that result from non-standard viscosity
models. Whereas the original baseline k-l model per-
forms quite poorly at predicting the sudden viscous
dissipation of TKE and mass-fraction variance and
covariance, significantly improved agreement with
DNS data is obtained when both of the modifications
previously described are implemented. The RANS
models also show that the simple closure used for
the dissipation of variance and covariance leads to
the same dynamical behavior for these two quanti-
ties. Although for this case this is in agreement with
DNS, for other flow scenarios with alternate initial
conditions dissimilar models for the variance and co-
variance may be needed.
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As stated in Refs. [1] and [6], additional physi-
cal phenomena such as alternate compression his-
tories, complex transport coefficients, nuclear reac-
tions, and the dissipation of non-turbulent motions
still need to be explored to reliably gauge the util-
ity of the sudden viscous dissipation mechanism for
ICF. For example, tabular equations of state for
high-energy-density regimes are needed to replace
the currently used ideal equations of state. A sub-
set of simulations previously carried out for a deu-
terium tritium mixture with the LEOS equation
of state (https://wecillnl.gov/simulation/support-
libraries) did not show notable differences for the
sudden viscous dissipation. Still, further simulations
with complex equations of state need to be carried
out. Similarly, it is yet unknown what effect a real-
plasma model for the diffusive flux that accounts for
the Soret effect, Barodiffusion, isotopic separation,
etc. would have on the sudden viscous dissipation
mechanism. Nonetheless, the current work serves
as a further step in increasing the physical fidelity of
simulations, so as to continually build on the original
work of Ref. [1] for incompressible single-species tur-
bulence. The inclusion of multiple species now paves
the way forward for future simulations with multi-
component transport coefficients and thermonuclear
139 fusion reactions.
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Appendix A: Exact transport equation for
mass-fraction variance

745

746

The exact transport equation for the mass-

fraction variance vas = Y'Yy is

87 [e% ai o 7 aJ Jt 7ajai
pgtﬁ + pg;u = Vi Vi
J ) i
e 0V OY] oYy
_ Y// // Y// 1 J/ J/
PYeY g U g, Ty, T iy,
—8‘9 (p YaYFul +YIT5,+V3Th,) (A1)
z;

77 The dissipation €, of the mass-fraction variance is
ns defined as

ay, 2
Peap = —Jh . —=—J . . A2
P€ap i O i axz ( )
no  For homogeneous turbulence and spatially-

70 uniform values of 570“ which is the case under con-
751 sideration, Eq. (Al) becomes

— ) YII
Pt S Rl
72 Given the model for the averaged diffusive flux in

753 Eq. (BT), the first and second terms in Eq. (A3) are
4 equal to zero, and thus

— PEag- (A3)

dvag
= —€ .
dt of
(/x,i = Ja,i —

(A4)

75 Since J 7a,i, the mass-fraction variance
76 dissipation can be written as
oYy Y}
— a2
8 €T ’ (91‘z
757 Using the definition of the scalar diffusive flux in Eq.
s (7), the above becomes

Peap = —Jp, (A5)

aiyﬁ Y]

a o /H
})ea — /)D D

Oz; Ox;

(A6)

79 Given the spatial uniformity of ffa, the mass-fraction

w0 dissipation is finally expressed as
Y, 9Yj
=2pD—*= B

Peap (A7)
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71 Appendix B: Reynolds-averaged Navier-Stokes
762 equations for a generic flow

763 1. The mean flow

e In this section we summarize the equations that
s result from averaging the multicomponent Navier-
6 Stokes equations described in Sec. ITA. The trans-
w7 port partial differential equations for the averaged
s density, velocity, internal energy, and species mass
9 fraction are

dp | Opu;
— =0 B1
770
ot 8$j 8$Z (933]' 8mj
o | ome, _ om0
ot 8£Ej - 8952 * 8(Ej
v op _ﬁaﬂj B ,8u; /611,;
"0z, ' O0x; ox; Y 0
0 R — - _
4’5;;'(ﬁe”uy‘+1ﬂ%ﬁ**lﬂﬁtU‘+@y), (B3)
771
8ﬁYa 8ﬁYaﬂi _ 8j(,71 B aﬁyolélug‘l . (B 4)
ot ox; o0x; Oz

72 For the above, 7;; = uj/u/ represents the Reynolds

3 stresses. The averaged fluxes are computed as fol-
774 lows

2 ouy,

Eij = 2M§ij + (5 — 3M> 7axk (Sij, (B5)
T
g = — B
QI K’axi’ ( 6)
- A
JOtJ p axl ( 7)

7 Fluctuations of the transport coefficients are ne-
s glected. These coefficients are computed using

H = Ko T, ’

_uGy
e Pr’

(B8)

779

(B9Y)

780

781

782

783

784
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786

787

7

®

8

789

790

7

©

1

792

793

794

796

16

I

D=—.
pSc

(B10)

Each species is treated as an ideal gas, and thus it

is assumed that averaged quantities satisfy

Po = PaRaT,
p, - e

o =CyoT,
ha = CpoT.

(B11)

(B12)

(B13)

(B14)

From the averaged properties of the individual
species one can obtain averaged quantities for the

entire mixture using

€= Z}F}aga 5’0 = Z?acv,aa
h = Z?O‘EO‘ Cp - i;—oz(jp ay

— — oY,
?szaﬁa Vo= pﬁi-

Finally, additional relationships are

E=¢+K+k,
_ 1.
Kziuiui,
k= Sl
2 1)
~ 1 [/ou; Ou,
Sij =5 ‘ 1.
J 2(3%7+am)

2. The k-2l-a-v model

(B15)

(B16)

(B17)

(B18)

(B19)

(B20)

(B21)

Due to the lack of closure in the mean flow equa-
77 tions of Sec. B1, a turbulence model is required.
79s The latest iteration in the family [9, 10, 36, 37] of



790 k-l models is used in this study, namely the k-2l-a-v
g0 nodel.

g1 The turbulent fluxes are modeled using

2 ~ 1~
PTij = gﬁlﬂsij — Clev2tt <Sz’j - 3Skk5ij) , (B22)
802

—~—

pe'y!! = —= , B23
803
— dY,
oYy = —pD,—=. B24
Py Uy p taxj ( )

s« Note that for the above, ¥ = 6’10 / C,. The modeled
sos turbulent fluxes above depend on eddy transport co-
s efficients, which are given below

e = Cﬂp\/ 2]€lt, (B25)
807
Utép
= — B2
Rt Prt ) ( 6)
808
1243
Dy = . B2
= (527)
The transport equations of the model are
opk | Opki _ 0, (20
8t 8x2 R axj ld
0 1223 ok
— B2
%lt aﬁltﬂl . _ _ 1 O,
o o = Cupv2k Cl2tpTZ]E87:rj
[t ol
— B2

% 8215? = CnpV2k — CZZdPTijl]:fgg;
+ B [(M-i— J/\;lii) gid} . (B30)
agji ﬁg;? = C’%béﬁ —Capai\ij?—ﬂTij(fii
218, o
e s B
o, K“ i 1/?) ag;f: - (P

Finally, the model’s coefficients have the following
values,

Caew =16.67  C, =0.204  Pr, = 0.060
Sc; =0.060 Cp=0354  Cpy =0.283
Clor = —22.96  Clg=0272  Cp=0857
C,=0339  Cu,1 =46.67  Cuy=0.849
Np=0.060 Ny =0030 Ny =0.030
N, = 0.060. (B33)

The vector a; is used to model the mass-weighted
s velocity fluctuation —u! in the internal energy equa-
sn tion. Additionally, the dissipative term in this equa-

s12 tion is modeled as

809

ou, _(2k)3/?
p St , B34
ij al,j la ( )

s13 SO as to be consistent with the dissipative term in Eq.
s (B28). The pressure dilatation term in the internal
a5 energy and TKE equations is neglected. A model
s16 for b, which represents the density—specific-volume
s1i7 covariance, is still needed—the reader is referred to
as Refs. [9, 10, 37] for various closures.
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