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Almost all available results in elasticity on curved topographies are obtained within either a small
curvature expansion or an empirical covariant generalization that accounts for screening between
Gaussian curvature and disclinations. In this paper, we present a formulation of elasticity theory in
curved geometries that unifies its underlying geometric and topological content with the theory of
defects. The two different linear approximations widely used in the literature are shown to arise as
systematic expansions in reference and actual space. Taking the concrete example of a 2D crystal,
with and without a central disclination, constrained on a spherical cap, we compare the exact results
with different approximations and evaluate their range of validity. We conclude with some general
discussion about the universality of non-linear elasticity.

I. INTRODUCTION

There are many examples of 2D crystals on curved
spaces, including colloids absorbed on a spherical sur-
face [1, 2], negative curvature [3] at oil-water interface,
virus shells [4–6] and colloids mixtures [7], just to name
a few. The uniqueness of these problems arises from
the subtle but profound relation between geometry and
topology.

The equilibrium structure of two-dimensional ordered
structures on the surfaces of non-zero Gaussian curvature
is dictated by the presence and arrangement of defects
such as dislocations and disclinations. The energetically
forbidden defects in flat surfaces become ubiquitous on
curved substrates; nevertheless, their presence gives rise
to equilibrium structures that include finite stresses. The
standard theory of elasticity [8] is unwieldy to investigate
the interplay of the defects and geometry and, often, is
not the most suitable starting point for these problems.
In fact, in order to satisfy topological constraints, some-
what uncontrolled approximations need to be considered.

In this paper we develop a geometric theory for the
elasticity of microscopic crystals that incorporates topo-
logical constraints exactly, where disclinations are de-
fined in reference space, thus allowing to calculate the
stress and strain in a curved surface and analyze differ-
ent approximations employed in the literature. Because
the underlying ground state is restricted to a microscopic
triangular lattice, disclinations are “quantized” in units
of π3 and dislocations as multiples of the lattice constant.
It is not difficult to generalize to other lattices, but de-
scription of the elasticity of amorphous systems, for ex-
ample, would require a different approach. Cases that
will be discussed include five-fold disclinations in a trian-
gular lattice in the regions of constant positive Gaussian
curvature, see Fig.1.
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FIG. 1. Illustration of the formalism described in this paper:
The reference space may consists of flat surfaces connected by
any number of qi

π
3

disclinations in arbitrary locations, while
the actual space is any fixed manifold endowed with its nat-
ural metric. The cases of no or single isolated disclination on
a spherical cap are solved in Section IV.

The organization of the paper is as follows: First, in
Sect. II we present different approximations employed in
literature to solve elasticity equations and provide a con-
ceptual discussion of our approach, which is developed
in Sect. III. As an example, the case of a spherical cap,
with or without a central disclination and the deriva-
tion of all their relevant analytical formulas are presented
in Sect. IV. Explicit comparisons between the differ-
ent approximations and the exact results are presented
in Sect. V. Some general conclusions are presented in
Sect. VI. More technical/mathematical developments are
deferred to the appendices, where we have made a spe-
cial effort in providing all the detail necessary so that all
calculations are fully reproducible.
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II. FORMALISM: CONCEPTUAL ASPECTS

The basic quantities in elasticity theory are the dis-
placements u(x̄) from a reference state x̄

x ≡ x̄ + u(x̄) , (1)

and the associated strain (uαβ) and stress (σαβ) tensors,
which are conjugated variables in the thermodynamic
sense [8]. A definition of the strain tensor is given by
comparing how a small vector in the reference (some-
times denoted as “target” [9, 10]) space dx̄ transforms
after a mechanical deformation, represented by dx:

dx2 = dx̄2 + 2uαβdx̄
αdx̄β . (2)

The physical interpretation of this equation is that two
particles initially apart by dx̄, after deformation become
separated by dx. This equation can be written as a
function of two metrics, denoted as reference and actual
hereon, as follows,

gαβ = ḡαβ + 2uαβ . (3)

While the distances in the reference space are measured
according to the metric ḡαβ , after deformation, which de-
fines the actual space, distances and angles among phys-
ical particles change and are determined by the metric
gαβ , as illustrated in Fig. 1. The strain tensor is the
difference between actual and reference metrics.

The reference state is defined as a strain and stress free
configuration, which is typically taken as x = (x, y, z) in
3D or x = (x, y, z = 0) in 2D, which implies an euclidean
reference metric

dx̄2 = dx2 + dy2 + dz2 (3D) (4)

dx̄2 = dx2 + dy2 (2D) . (5)

Physically, the reference state maybe associated with a
lattice where all nearest neighbors are at the same dis-
tance and form the same angle. In 2D we associate it
with the triangular lattice, see Fig. 1. Further below,
we will show that the reference state is not unique, as a
triangular lattice with topological defects such as discli-
nations and dislocations is also allowed. We mention, on
passing, that in 3D a lattice where all nearest neighbors
are at the same distance and form the same angle would
consist of a tiling with regular tetrahedra, which is not
possible [11] and leads to several consequences that have
been discussed elsewhere [12, 13].

Our goal in this paper is to develop a formalism to
obtain the stress and strain in a curved surface. In par-
ticular, we focus on how an initially flat monolayer, whose
reference state is given by x̄, consisting of a plane with
additional defects, deforms into a given topography ~r(x̄)
embedded in 3D space, as illustrated in Fig. 1. Note
that both the reference metric dx̄2 and actual metric d~r2

(which, in order to alleviate the notation will be denoted
as dx2 in what it is, certainly, a blatant abuse of lan-
guage) are known beforehand. We aim at finding the

following transformation

x = F(x̄) , (6)

which will be obtained by solving the equations of elas-
ticity theory. How this transformation is related to the
more familiar quantities in elasticity theory: the stress
tensor σαβ , the Airy function (χ) [14] etc.. will be dis-
cussed extensively later in the paper.

The problem of finding the transformation given in
Eq. 6 is quite subtle because of the interplay of curva-
ture, topology and defects such as disclinations or dislo-
cations [14, 15]. Disclinations, for example, lead to long
range effects that forbid many putative configurations; In
a boundary free crystal, where the sum of all disclination
charges is related to the Euler characteristic χE through
the Gauss Bonnet theorem [16]

M∑
i=1

si =

∫
d2x
√
gK(x) = 2πχE , (7)

where K(x) is the Gaussian curvature, g is the deter-
minant of the surface metric and for a triangular lattice
si = π

3 qi (qi = ±1). In case of a spherical surface, χE = 2
leading to the well known result that a spherical crystal
has an excess of twelve qi = 1 disclinations (pentamers)
in the absence of heptamers (qi = −1).

Solutions to the theory of elasticity are obtained
mostly within the Foppl Von Karman theory of elastic
plates, which amounts to small displacements from equi-
librium positions, an approach we denote as the Euler
Framework (EF). A useful quantity to calculate the free
energy and stress of a curved object is the Airy stress
function. For a crystal consisting of M disclinations at
positions xi and with charge si, the equation for the Airy
function is

1

Y
∆2χ(x) =

M∑
i=1

siδ(xi − x)−K(x) , (8)

where ∆ is the 2D Laplacian on a plane and Y is the
Young modulus [8, 17]. Note that the Gaussian curva-
ture of the surface acts as an external field. Relevant
solutions to Eq. 8 are available for a buckled disclination
or dislocation [17], a spherical cap with and without a
central disclination [18, 19] and also, for a spherical cap
with an off-center disclination [20–22]. We emphasize
again that the EF is exact in the limit of small curvature
only. More precisely, if rm is the dimension of the crystal
and R some “average” curvature of the surface, the small
curvature limit is defined by

α ≡ rm
R

= θm << 1 . (9)

In a spherical cap (with constant curvature radius R), a
major problem arises as α → π, that is, as the spher-
ical cap becomes a full sphere. Because within EF the
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solution of Eq. 8 is defined on a plane for a disk of area
A = πr2

m, the constraint Eq. 7∫
d2xK(x) =

∫
d2x

R2
=

A

R2
= πα2 6= 4π , (10)

breaks down.
For a full sphere [23], the topological constraint Eq. 10

cannot be satisfied within EF. The failure to exactly sat-
isfy a topological constraint is a serious conceptual prob-
lem that typically results in very significant computa-
tional errors. In Ref. [24–26] a generalization of Eq. 8,
which we denote as the Laplace Formalism (LF), was
proposed

1

Y
∆2
gχ(x) =

1√
g(x)

M∑
i=1

siδ(xi − x)−K(x) , (11)

where the Laplacian ∆g is computed with the actual met-
ric, i.e., on the curved surface. Now, for a full sphere,
the topological constraint Eq. 7 is satisfied identically.
Although very successful and highly accurate in many
applications [27], the LF appears as an uncontrolled ap-
proximation: It is not obvious how to compute next or-
ders so that eventually the exact solution will be recov-
ered. Furthermore, for crystal with boundaries, like a
crystal spanning a spherical cap, it is not immediately
apparent what additional boundary conditions must be
supplemented to Eq. 11.

For the reasons exposed, neither the EF nor the LF are
entirely satisfactory, despite their many successes. There
is a clear need for a more rigorous formalism able to de-
velop the LF as a systematic expansion and from which
the EF appears as a low curvature expansion. A first in-
sight on how to develop this formalism is provided by the
fact that physical quantities (energies, stresses, strains,
etc..) should be independent of surface parameteriza-
tions, that is, expressed in terms of geometric invariants,
an approach pioneered by Kondo [28] in 1955 and Koi-
ter as early as 1966 [29]. An elegant formulation with
numerous new insights has been provided in Ref. [30]
and extended further in Ref. [31]. In previous papers,
see Ref. [32, 33] we have anticipated some aspects of the
formalism fully elaborated here.

Before dwelling into the actual formalism, it is worth
describing the main ideas and concepts, which are very
intuitive despite the significant amount of differential ge-
ometry [16] necessary for its rigorous development. As
already discussed, both the actual metric gµν(x) and the
reference ḡµν(x̄) are known, what is therefore needed is
the transformation Eq. 6 that enables to express the two
metrics either as gµν(x̄) or ḡµν(x).

A simple counting of the number of variables helps un-
derstand the problem better. A general metric has three
degrees of freedom g11, g22, g12, so in order to exactly map
ḡµν into gµν three functions are necessary. The solution
of elasticity theory Eq. 6 provides only two of them as F
is a 2D mapping. The third function is associated with
the Gaussian curvature. If the curvature of the reference

and actual metrics are not the same, a situation that
is called geometric frustration or metric incompatibility,
then it is not possible to make the two metrics ḡµν and
gµν coincide by Eq. 6. Since the Gaussian curvature is
a scalar invariant under reparameterizations, metric in-
compatibility, immediately leads to non-zero strains (and
stresses), as obvious from Eq. 2.

A few more clarifications are pertinent. First of all, as
discussed above, the reference metric represents a strain
and stress free configuration. This is different from other
descriptions in which the reference metric is flat but un-
der stress and strain, see Ref. [34]. We emphasize that
the reference metric in our formalism does not have any
residual strains/stresses. This is mainly due to the fact
that it consists of patches of a flat metric joined by point
disclinations (called quasi-flat), where elasticity theory is
not defined at the core. The metric of a plane, repre-
senting a triangular lattice, is an example of a reference
metric that can be embedded into the actual space with-
out any stresses. However, there are others: a cone with
the appropriate aperture angle and q = 1, 2, 3 disclina-
tion charge at its tip and q = 0 (hexamers) everywhere
else is also a stress and strain free configuration in the
actual space. In the same way, one can consider a refer-
ence metric that contains an arbitrary number of defects,
and hence, the associated curvature will be given by the
disclination density s(x̄)

K̄(x̄) = s(x̄) =
1√
ḡ

M∑
j=1

sjδ(x̄− x̄j) (12)

=
1√
ḡ

ND∑
j=1

sjδ(x̄− x̄j)+

+

Nd∑
i=1

εαβbiα∂µ(e µ
β δ(x̄− x̄i))

)
where use has been made of vielbeins e µ

β , see ap-
pendix B. The second equality follows by separating
the M disclinations as ND isolated disclinations and Nd
dislocations, that is, considering tightly bound discli-

nations as dipoles characterized by a Burgers vector ~b.
Only for a few cases, such as ND = 0, Nd = 0 (plane),
ND = 1, Nd = 0 (cone) or ND = k,Nd = 0 (with 12
≥ k ≥ 2, icosahedral sections), see also the limiting case
ND = 0, Nd = 1 [35] as well as others, it is possible
to embed explicit solutions in actual space such that
K = K̄ and therefore, they are strain and stress free.
In this form, elasticity solutions amount to expressing a
given metric gαβ as its optimal approximate in terms of
“quanta” of disclinations of charge π

3 q and dislocations
of Burgers vector b. In fact, the geometric content of
this “quanta” becomes even more explicit by noting that
isolated disclinations are “quanta” of Gaussian curvature
while dislocations are of geometrical torsion [32, 36].

In this paper, we will not further discuss the role of
dislocations, however, it is worth noting that it is pos-
sible to approximate any metric by Eq. 12 if Nd → ∞,
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as demonstrated in Ref. [32]. This corresponds to the
limit where Burgers vector b are infinitesimally small,
i.e. mean field solutions, also discussed in Ref. [37, 38].
In this limit, the Perfect Curvature Condition (PCC)

K(x) = s(x) (13)

is satisfied. As pointed out in Ref. [3], it has the elec-
trostatic analogy of a continuum of charge K(x) being
represented by ND isolated charges and a continuum of
polarization, i.e. Nd → ∞ dipoles. More generally, the
quantity

η(x) = K(x)− s(x) (14)

is a measure of the geometric frustration or metric in-
compatibility. The PCC η(x) = 0 is the necessary and
sufficient condition for a stress-strain free state to exist
in actual space. We next develop these ideas in precise
mathematical form.

III. FORMALISM: DEVELOPMENT

A. Exact Formulas

As introduced previously, we will consider two met-
rics, gµν(x) (actual metric) and ḡµν(x) (reference met-
ric). The reference domain Br represents the rest frame
where the elastic energy is zero. The actual metric is
defined over Bt, which we denote as the actual domain.
Consistent with our discussion in Sect. II, we will denote
as x the actual coordinates and as x̄ the reference coordi-
nates. The solution of the problem is then to determine
F in Eq. 6 (x = F(x̄)).

The most general elastic free energy has the form

F =
1

2

∫
B
W (g(x), ḡ(x)) dVolg . (15)

We now show that an appropriate choice of W leads to
the familiar expression for the elastic energy [8], see also
Ref. [31]. If Y is the Young modulus and νP is the Poisson
ratio, the following quantities are defined

Aαβγδ =
Y

1− ν2
P

(
νP g

αβgγδ + (1− νP )gαγgβδ
)

(16)

Aαβγδ =
1

Y
((1 + νP )gαγgβδ − νP gαβgγδ)

in such a way that AαβγδAγδα′β′ = gαα′g
β
β′ . Then the

functional W (g(x), ḡ(x)) is defined so that it reduces to
the standard elastic energy for an isotropic medium, that
is

W (g(x), ḡ(x)) = Aαβγδuαβuγδ , (17)

where the strain tensor, see Eq. 2, is

2uαβ(x) = gαβ(x)− ḡαβ(x) . (18)

Note that the free energy Eq. 15 is invariant under gen-
eral reparameterizations. Working in the actual frame,
the metric gαβ(x) is known, so we will derive the equilib-
rium equations in order to determine the reference metric
ḡµν(x), which, expressed in the actual coordinates is not
known. The stress tensor is given by

σαβ =
1
√
g

δF

δuαβ
= Aαβγδuγδ . (19)

Variations of Eq. 15 under reparameterizations (ξβ) of
the reference metric δḡαβ = −∇̄αξβ − ∇̄βξα, leaving the
actual metric invariant gives

δF = −1

2

∫
B
d2x
√
gσαβδḡαβ =

∫
B
d2x
√
gσαβ∇̄αξβ

=

∫
B
d2x

[
∂

∂xα

(√
gσαβξβ

)
−
√
ḡ ∇̄α

((
g

ḡ

)1/2

σαβ

)
ξβ

]
(20)

The first term is a total derivative, and it can be con-
verted to an integral along the boundary∫

B
d2x

∂

∂xα

(√
gσαβξβ

)
=

∫
∂B
dxρ
√
gεργσ

γβξβ . (21)

Should the boundary contain a line tension term

Fl = γ

∫
∂B
ds , (22)

then

δFl = −γ
∫
∂B
dxµ∇µtνξν , (23)

where tµ is the unit tangent to the boundary. Taking
into account the geometric formula

tµ∇µtν =
1

rB
e ν
α nα , (24)

with rB the radius of curvature, nα the normal and e ν
α

are the vielbeins, see the appendix B. The correct bound-
ary condition is:

nγ σ̂
γν = − γ

rB
nν , (25)

where σ̂αβ = eαµe
β
νσ

µν , see appendix B for the differ-
ent expressions of the stress tensor and some additional
details on the derivation of these formulas. This bound-
ary condition reduces to the one derived for the EF in
Ref. [19].

From the definition of the covariant derivative, it is

∇ασαβ =
∂σαβ

∂xα
+ Γααγσ

γβ + Γβαγσ
αγ . (26)
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Therefore, the equations determining equilibrium are

∇̄α

((
g

ḡ

)1/2

σαβ

)
= ∇̄ασαβ +

(
Γααγ − Γ̄ααγ

)
σγβ = 0 ,

(27)
which can also be written as

∇ασαβ +
(
Γ̄βαγ − Γβαγ

)
σαγ = 0 , (28)

derived first in Ref. [30]. The appropriate boundary con-
ditions as defined by Eq. 25. Here, we have used the
Christoffel symbols that are symmetric Γβαγ = Γβγα.

A general solution to Eq. 27 is given by the following
ansatz [31]

σαβ =
1
√
g

1√
ḡ
εαρεβγ∇̄ρ∇̄γχ , (29)

where ε12 = −ε21 = 1 and zero otherwise, and χ is the
Airy function. Using the following identity,

1

g
εαρεµν = gαµgρν − gανgρµ, (30)

Eq. 29 can be written as

σαβ =

(
ḡ

g

)1/2 (
ḡαβ ḡργ − ḡαγ ḡβρ

)
∇̄ρ∇̄γχ. (31)

Using the formula gργΓνργ = − 1√
g∂γ(
√
ggγν) and the fact

that the covariant derivative of the metric is zero, i.e.,
∇̄αḡµν = 0, we find

∇̄ασαβ +
(
Γααγ − Γ̄ααγ

)
σγβ =

1√
gḡ
εαρεβγ∇̄α∇̄ρ∇̄γχ .

(32)
The right hand side of the above equation can be ex-
pressed in terms of the Riemann tensor, see Eq. E4, as
follows

εαρεβγ∇̄α∇̄ρ∇̄γχ =
1

2
εαρεβγ [∇̄α, ∇̄ρ]∇̄γχ

=
1

2
εαρεβγR̄µγαρ∇̄µχ = 0 , (33)

where the last identity follows since the Riemann tensor
of the reference metric is zero outside the defect cores,
that is, almost everywhere, see Eq. 12. Thus, Eq. 29
provides a general solution of Eq. 27 in terms of the Airy
function.

Substituting the solution of Eq. 29 into the definition
of the strain Eq. 18 gives,

1
√
g

1√
ḡ
εαρεβγ∇̄ρ∇̄γχ =

1

2
Aαβγδ (gγδ − ḡγδ) (34)

or

ḡαβ = gαβ −
2√
gḡ
Aµλαβε

µρελγ∇̄ρ∇̄γχ (35)

ḡαβ = gαβ −
2

Y

(
g

ḡ

)1/2 [
gαβg

ργ − (1 + νP )gγαg
ρ
β

]
∇̄ρ∇̄γχ

Thus ḡµν(χ(x)) can be obtained from above equation.
Note however, that among all possible functions χ, there
is only a unique family that has the right curvature K̄,
so the equation above needs to be supplemented with the
additional constraint

2K̄ = R̄ = ḡµνR̄µν = ḡµνR̄ρµρν = 0 , (36)

which uniquely determines the family of solutions χ.
Here K̄ = s(x) is the Gaussian curvature, R̄ the scalar
curvature, R̄µν the Ricci tensor and R̄ρµγν the Riemann
tensor. That is, the solution consists among all possi-
ble functions of χ, to select the one that makes ḡµν a
quasi-flat metric. Thus, Eq. 18, 19, 29 and 36 define
a complete system of equations whose solution provides
ḡ(x) or g(x̄), σµν , and χ. In general, such a solution is
complicated as ḡµν appears on both sides of the equation,
and the rhs includes its derivatives. Explicit solutions are
possible in some cases that are discussed further below.

Using Eqs. 17-19 and 35, the expression for the elastic
energy (Eq. 15) without any approximations is,

F =
1

2

∫
B
σαβAαβρσσ

ρσdVolg (37)

=
1

2Y

∫
B
dVolg

g

ḡ

(
(1 + νp)g

αρgβσ − νpgαβgρσ
)
×

×∇̄α∇̄βχ∇̄ρ∇̄σχ (38)

note that up to this point all formulas are exact. We now
discuss some common approximations.

B. Incompatibility metric approximation

1. Actual frame

Since the actual metric gµν(x) is known, the goal is
to compute the reference metric ḡµν(x), and from there,
one can obtain the transformation Eq. 6. If one assumes
that η, see Eq. 14, is somehow small, the Airy function
and the metric are:

χ = χ(1) + χ(2) + · · · (39)

ḡ = g + g(1) + g(2) + · · · , (40)

where each term contains increasing powers of η. Obvi-
ously the Airy function is at least, linear with η, as for
η = 0, χ = 0 and g = ḡ. Plugging this expansion into
the Airy equation 35 provides the explicit orders in the
expansion. The first order is

g
(1)
αβ = − 2

Y

(
gαβ∆χ(1) − (1 + νP )∇α∇βχ(1)

)
, (41)

where ∆ = gαβ∇α∇β = 1√
g∂α(gαβ

√
g∂β) is the Laplace-

Beltrami operator. Higher orders are discussed in the
appendix C. The goal is now to derive an explicit equa-
tion for χ(i), as discussed below.
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2. First order expressions for energy and stress: actual
frame

With the metric expressed linearly in terms of the Airy
function, the next step is to enforce the constraint Eq. 36.
For this purpose, it is necessary to compute the scalar
curvature. This calculation is relegated to appendix C,
and gives

K̄ = K +
1

Y

(
∆2χ(1)+ (42)

+ 2K∆χ(1) + (1 + νp)g
µλ∇µK∇λχ(1)

)
.

In addition to the square of Laplacian in the above equa-
tion there are additional terms that will be explored fur-
ther below. The stress tensor within this order is

σαβ = gαβ∆χ(1) − gαµgβν∇µ∇νχ(1) , (43)

and the energy

F =
1

2Y

∫
d2u
√
g
[
(∆χ(1))2+

+
(1 + νP )

g
εασερβ∇α∇βχ(1)∇ρ∇σχ(1)

]
. (44)

As elaborated in appendix D, may be expressed as

F =
1

2Y

∫
d2u
√
g(∆χ(1))2 − (45)

− 1 + νp
2Y

∫
d2u
√
gKgαβ∇αχ(1)∇βχ(1) −

− 1 + νp
2Y

∮
dxρ
√
gερασ

αβ∇βχ(1).

A variation on the previous expansion consists in drop-
ping the cross terms involving Kχ in Eq. 42. The result-
ing equations are

K̄ = K +
1

Y
∆2χ(1) , (46)

with corresponding energy

F =
1

2Y

∫
d2u
√
g(∆χ(1))2 − (47)

− 1 + νp
2Y

∮
dxρ
√
gερασ

αβ∇βχ(1) ,

which we recognize as the LF discussed in Sect. II. Note
that in the absence of line tension or external stress, the
boundary conditions determine that the second term van-
ishes identically. Hereon, we will refer the approximation
Eq. 42 as the Incompatibility Framework (IF) in order to
differentiate it from the LF.

3. Reference frame

The expansion for the metric and the Airy function is

χ = χ(I) + χ(II) + · · · (48)

g = ḡ + ḡ(I) + ḡ(II) + · · · (49)

Similarly as in the actual approximation Eq. 41, the first
order is

ḡ
(I)
αβ =

2

Y

(
ḡαβ∆̄χ(I) − (1 + νP )∇̄α∇̄βχ(I)

)
, (50)

with ∆̄ being the Laplace-Beltrami operator of the ref-
erence metric. Higher orders are discussed in the ap-
pendix C.

4. First order expressions for energy and stress: reference
frame

The formulas derived in the previous case automat-
ically translate into the reference frame by replacing
gαβ ↔ ḡαβ and χ(1) → −χ(I), leading to

K = K̄ − 1

Y

(
∆̄2χ(I)+ (51)

+ 2K̄∆̄χ(I) + (1 + νp)ḡ
µλ∇̄µK̄∇̄λχ(I)

)
The stress tensor within this order is

σαβ = ḡαβ∆̄χ(I) − ḡαµḡβν∇̄µ∇̄νχ(I) , (52)

and the energy

F =
1

2Y

∫
d2u
√
ḡ
[
(∆̄χ(I))2+

+
(1 + νP )

ḡ
εασερβ∇̄α∇̄βχ(I)∇̄ρ∇̄σχ(I)

]
. (53)

Given the assumptions about the reference metric, see
Eq. 12, the above equations simplify to

1

Y
∆̄2χ(I) = K̄ −K (54)

and energy

F =
1

2Y

∫
d2u
√
ḡ(∆̄χ(I))2 (55)

where ∆̄ is the Laplacian on the plane. Thus, the refer-
ence frame expansion coincides with the EF discussed in
Sect. II. The singular terms in Eq. 12 can be dropped
from the second term in Eq. 53 as they only contribute
within the defect cores. These contributions are ac-
counted by an empirical core energy term Ecore as linear
elasticity breaks down.

IV. RESULTS

As a concrete example, we will solve the case of a
crystal on a sphere of radius R, as illustrated in Fig. 1.
The extent of the crystal is parameterized by its aperture
angle θM . This problem has been described previously
within the EF by Schneider and Gommper[18] as well as
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Morozov and Bruinsma [19] as well as Grason [21]. In
the current notation, the Gaussian curvature is K = 1

R2

and K̄ the disclination density K̄ = s(r). The reference
frame metric is Euclidean and is defined over a disk of
radius ρ0 by

ds2 = dρ2 + ρ2
(

1− s

2π

)2

dψ2 ≡ ḡµνdx̄µdx̄ν . (56)

The case s = π
3 qi corresponds to a disclination of positive

charge placed at the center of the disk. The actual metric
is

ds2 = dr2 +R2 sin2(r/R)dϕ2 ≡ gµνdxµdxν . (57)

The problem then consists in finding the function F such
that

xµ = F(x̄µ) , (58)

where xµ = (r, ϕ) and x̄µ = (ρ, ψ). We will investigate
symmetric solutions where ψ = ϕ

r ≡ r(ρ) = F (ρ) , (59)

so that the problem becomes one dimensional.

A. Exact Solution

We first summarize the steps necessary to reach the
exact solutions. As emphasized, ḡµν(x̄) (metric of quasi-
flat geometry with disinclinations in reference space) and
gµν(x) (metric of curved geometry in actual space) are
known. The goal is to find gµν(x̄) or ḡµν(x), which
is equivalent to finding x̄(x) (by solving, for example

gµν(x̄) = ∂x̄α

∂xµ
∂x̄β

∂xν
gαβ(x)). Note that we consider both

reference and actual metrics with azimuthal symmetry,
thus the problem reduces to finding the one dimensional
function ρ(r). Combining Eqs. 18, 19 and 27 allows us to
find ḡ(x). Further below using Eqs. 60-65, ρ as a function
of r is finally obtained.

We start with presenting the reference metric in actual
coordinates

ds2 = dρ2 + ρ2dψ2 ≡ (ρ′(r))2dr2 + w2ρ2(r)dϕ2 (60)

where ρ′ = dρ/dr, w ≡ 1− s
2π . The non-zero Christoffel

symbols are:

symbol Γrrr Γrϕϕ Γϕϕr
reference ρ′′(r)

ρ′(r) −w2 ρ(r)
ρ′(r)

ρ′(r)
ρ(r)

actual 0 −R sin(r/R) cos(r/R) cot(r/R)
R

(61)

The components of the stress tensor Eq. 19 is the differ-

ence between the actual and reference metric, that is

σrr =
Y

2(1− ν2
p)

[
1− ρ′(r)2 + νp

(
1−

(
wρ(r)

R sin(r/R)

)2
)]

σrϕ = 0 (62)

σϕϕ =
Y

2(1− ν2
p)R2 sin2(r/R)

×

×

[
1−

(
wρ(r)

R sin(r/R)

)2

+ νp(1− ρ′(r)2)

]
.

Inserting Eq. 61 into Eq. 27 we obtain

dσrr

dr
+ Γϕϕrσ

rr + Γ̄rrrσ
rr + Γ̄rϕϕσ

ϕϕ = 0, (63)

which becomes

dσrr

dr
+

(
cot
(
r
R

)
R

+
ρ′′(r)

ρ′(r)

)
σrr− w

2ρ(r)

ρ′(r)
σϕϕ = 0. (64)

Introducing Eq. 62 into Eq. 64 yields a nonlinear ordi-
nary differential equation for ρ(r)

2vw2

R2 sin( rR )2
ρ(r)2

(
cot( rR )

R
− ρ′(r)

ρ(r)

)
− 2ρ′(r)ρ′′(r)

+

(
cot( rR )

R
+
ρ′′(r)

ρ′(r)

)
×
[
1− ρ′(r)2 + v

(
1− w2ρ(r)2

R2 sin( rR )2

)]
− w2 ρ(r)

ρ′(r)

1

R2 sin( rR )2

×
[
1− w2ρ(r)2

R2 sin( rR )2
+ v − vρ′(r)2

]
= 0 (65)

with boundary conditions ρ(0) = 0 and σrr(θmR) =
Y

1−ν2
p

[
1− ρ′(θmR)2 + v

(
1− w2ρ(θmR)2

R2 sin(θm)2

)]
= 0. Al-

though within this formalism the Airy function is not
necessary to calculate the stress, its actual form is valu-
able as a comparison with its approximations. It is given
as:

σrr =
1

R sin(r/R)wρ(r)ρ′(r)
∇̄2
ϕχ =

w

R sin(r/R)ρ′(r)2

dχ

dr

σϕϕ =
1

R sin(r/R)wρ′(r)ρ(r)

(
d2χ

dr2
− ρ′′(r)

ρ′(r)

dχ

dr

)
(66)

where σrϕ = 0 is satisfied identically. Note that only
one of the equations needs to be satisfied, as the other
becomes then an identity.

B. Incompatibility metric approximation solutions

1. Reference frame

The equations describing the Airy function for a discli-
nation of charge s in the reference frame have been de-
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scribed above, namely

∆̄2χ(I) + Y (K − s(r)) = 0 . (67)

The solution can be read directly from Ref. [19], and it
is given by

χ(I)(ρ) =
Y

64R2

(
2ρ2

0ρ
2 − ρ4

)
+
Y s

8π
ρ2

(
log(ρ/ρ0)− 1

2

)
,

(68)
where ρ0 = Rθm is the radius of the crystal. This is
a double expansion in the small parameters ρ2

0/R
2 and

s/(2π).
Substitution of Eq. 68 into Eq. 50 gives

ḡ(I)
rr =

1

8R2
(ρ2

0 − ρ2 + νp(3ρ
2 − ρ2

0))− s

2π
νp

+
s

2π
(1− νp) log(

ρ

ρ0
),

ḡ
(I)
φφ = w2ρ2

(
1

8R2
(ρ2

0 − 3ρ2 + νp(ρ
2 − ρ2

0))

+
s

2π
+

s

2π
(1− νp) log(

ρ

ρ0
)

)
. (69)

The actual frame metric becomes

grr = ḡ + ḡ(I)
rr

= 1 +
1

8R2
(ρ2

0 − ρ2 + νp(3ρ
2 − ρ2

0))

− s

2π
νp +

s

2π
(1− νp) log(

ρ

ρ0
)

≡ r′(ρ)2,

gφφ = ḡφφ + ḡ
(I)
φφ

= w2ρ2 + w2ρ2

(
1

8R2
(ρ2

0 − 3ρ2 + νp(ρ
2 − ρ2

0))

+
s

2π
+

s

2π
(1− νp) log(

ρ

ρ0
)

)
≡ sin2(r(ρ)) . (70)

Using the transformation properties of g(x̄)µν in terms
of F in Eq. 6, we obtain

r(ρ) = ρ

(
1 +

1

16R2
(ρ2

0 −
ρ2

3
+ νp(ρ

2 − ρ2
0))

− s

4π
+

s

4π
(1− νp) log(

ρ

ρ0
)

)
, (71)

which is inverted to give the complete solution,

ρ(r) = r

(
1− 1

16R2
((θmR)2 − r2

3
+ νp(r

2 − (θmR)2))

+
s

4π
− s

4π
(1− νp) log(

r

θmR
)

)
. (72)

The stresses are then found using Eq. 52

σρρ =
Y

16R2
(ρ2

0 − ρ2) +
Y s

4π
log(

ρ

ρ0
)

ρ2σψψ =
Y

16R2
(ρ2

0 − 3ρ2) +
Y s

4π

(
1 + log(

ρ

ρ0
)

)
(73)

and the free energy from Eq. 55 becomes,

F

πρ2
0Y

=
θ4
m

384
+

1

32
(
s2

π2
− s

2π
θ2
m) (74)

F

Area · Y
=

θ4
m

1536
+

1

32

(
s

π
− θ2

m

4

)2

.

The limit θm → 0 (flat limit) agrees with previous re-
sults [17].

2. Actual frame

With the assumptions that ψ = ϕ, the actual metric
becomes

ds2 = (F ′(ρ))2dρ2 + sin2(F(ρ))dψ2 (75)

The equations for the Airy function are either Eq. 42 (IF)
or Eq. 46 (LF), namely

∆2χ
(1)
IF +

2

R2
∆χ

(1)
IF = s(x)− 1

R2
(IF) (76)

∆2χ
(1)
LF = s(x)− 1

R2
(LF)

where s(x) is the disclination density.
The solutions to Eq. 76 is

χ
(1)
IF (r)/(Y R2) = log(cos(

r

2R
))− log(cos(

θm
2

))

−1

2
cos(

r

R
) csc(θm) tan(

θm
2

) +
1

2
cot(θm) tan(

θm
2

)

+
s

2π

[
sin2(

r

2R
) log(

tan( r
2R

)

tan( θm
2

)
)

−1

2
sin2(

r

2R
) sec2(

θm
2

) +
1

2
tan2(

θm
2

)

]
(77)

and also

χ
(1)
LF (r)/(Y R2) = Li2(sin2(

r

2R
))− Li2(sin2(

θm
2

))

− cot2(
θm
2

) log(
1 + tan2( r

2R
)

1 + tan2( θm
2

)
) log(1 + tan2(

θm
2

))

+
s

2π

[
Li2(− tan2(

r

2R
))− Li2(− tan2(

θm
2

))

+ log(tan(
r

2R
)) log(1 + tan2(

r

2R
))

− log(tan(
θm
2

)) log(1 + tan2(
θm
2

))

+2 log(cos(
r

2R
))

(
cot2(

θm
2

) log(cos(
θm
2

)) + log(sin(
θm
2

))

)
−2 log(cos(

θm
2

))

(
cot2(

θm
2

) log(cos(
θm
2

)) + log(sin(
θm
2

))

)]
,

(78)

with Li2 the dilogarithmic function. It is relevant at this
point to compare the Airy function in actual space with
the one in reference space; the difference between both
gives an idea of the errors involved in the coresponding
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approximations. Using Eq. 68 by expanding Eq. 78 to
the next orders gives

χ
(1)
IF (x)/(Y R2) =

− 1

64
(x2 − θ2

m)2 +
s

16π
(θ2
m − x2 + 2x2 log(

x

θm
))

− 1

384
(θ6
m − 2x2θ4

m + x4θ2
m)

+
s

192π
(3x4 + 2θ4

m − 5x2θ2
m − 2x4 log(

x

θm
))

χ
(1)
LF (x)/(Y R2) =

− 1

64
(x2 − θ2

m)2 +
s

16π
(θ2
m − x2 + 2x2 log(

x

θm
))

− 1

2304
(θ6
m + 2x6 − 3x4θ2

m)

+
s

384π
(θ4
m − x2θ2

m + 2x4 log(
x

θm
)), (79)

with x = r/R. It is important to note that there are only
linear terms in disclination charge s, but higher orders in
x and θM . This is basically due to the fact that defects in
both IF and LF appear linearly, but, the displacements
do not need to be small. The explicit form of the stresses
can be found using Eq. 43

σ rr
IF (r)/Y =

1

4
cos(

r

R
)

[
− sec2(

r

2R
) + sec2(

θm
2

)

+
s

2π

(
2 log(

tan( r
2R )

tan( θm2 )
) + sec2(

r

2R
)− sec2(

θm
2

)

)]
,

R2sin2(
r

R
)σφφIF (r)/Y =

1

4
cos(

r

R
)

[
sec2(

r

2R
) + sec2(

θm
2

)

+
s

2π

(
2 log(

tan( r
2R )

tan( θm2 )
)− sec2(

r

2R
)− sec2(

θm
2

)

)]

+
s

2π
− 1

2
(80)

and

σrrLF (r)/Y =

1

2
sec2(

r

2R
) cos(

r

R
)×[

− cot2(
r

2R
) log(cos2(

r

2R
)) + cot2(

θm
2

) log(cos2(
θm
2

))

+
s

2π

(
log(

tan( r
2R )

tan( θm2 )
)

+ csc2(
r

2R
) log(cos(

r

2R
))− csc2(

θm
2

) log(cos(
θm
2

))

)]
,
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FIG. 2. The difference between actual and reference coordinate
(r − ρ(r)) as a function of the actual coordinate (r) for different
values of disclination charge s and Poisson ratio νp (a) [s = 0,
νp = 0.2], (b) [s = 0, νp = 0.8], (c) [s = π

3
, νp = 0.2] and (d)

[s = π
3

, νp = 0.8]. The solid lines correspond to the exact result
Eq. 65 while the dotted lines denote the EF solution Eq. 72.

R2sin2(
r

R
)σφφLF (r)/Y = 1 +

1

2
sec2(

r

2R
)×[

cot2(
r

2R
) log(cos2(

r

2R
)) + cot2(

θm
2

) log(cos2(
θm
2

))

+
s

2π

(
log(

tan( r
2R )

tan( θm2 )
)− cos(

r

R
) csc2(

r

2R
) log(cos(

r

2R
))

− csc2(
θm
2

) log(cos(
θm
2

))

)]
, (81)

which we thoroughly analyze in the next section.

V. DISCUSSION

We now present approximate solutions and compare
them to those of the exact equations, and analyze each
quantity in turn.

A. The function F

This function defines how distances between particles
in reference frame are transformed in actual space. We
have not been able to find an analytical expression for the
exact Eq. 65, which we could nevertheless solve numeri-
cally. In Fig. 2 we compare it to the EF solution defined
by Eq. 72. In order to visualize the difference, the figures
are shown as a function of r − ρ(r). Quite interestingly,
the EF mapping shows very small errors, certainly for
θm < 0.1, which corresponds to an aperture angle of 60
degrees. Even for θm ∼ 1.5 (half the sphere), the linear
approximation does extremely well when a disclination
is present, which is expected as the disclination charge
screens the Gaussian curvature, so that the geometric
frustration parameter η, see Eq. 14, is small and subse-
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FIG. 3. χ as function of r (actual frame) or ρ (reference frame)
corresponding to cap sizes θm = 0.8 and θm = 0.3. The upper
figure denotes to s = 0 and lower one with s = π/3.

quent corrections to the linear contribution become very
small.

B. Airy function and stresses

The Airy function, computed with the different ap-
proximations, namely EF (Eq. 68), IF (Eq. 77) and LF
(Eq. 78) is shown in Fig. 3 for two different values of the
aperture angle (cap size). Small but significant differ-
ences are observed for larger caps.

The stresses show similar trends as observed for the
Airy function illustrated in Fig. 4. As expected, for large
values of the apeture angle the exact result is in much
better agreement with the case of a disclination at the
center (note the different scales in the plot).

C. Energy

The values for the total free energy are shown in Fig. 5
as a function of the aperture angle θm . As expected, in
the flat limit θm → 0, the EF, LF and IF all converge to a
value that is different from the exact result, which is also
slightly different from another exact result obtained by
Seung and Nelson [17] (see the discussion in conclusions
and appendix), namely

F

YArea
=

1

288
= 0.0035 (EF, LF, IF) (82)

= 0.0041 (Exact)

= 0.0040 (Exact SN) .

! = 0, %& = 0.3 ! = 0, %& = 0.8

! = #/3, '( = 0.3 ! = #/3, '( = 0.8

FIG. 4. Stress σ̂rr and σ̂φφ with small cap size (θm = 0.3, left
column) and large cap size (θm = 0.8, right column). The top four
plots of stress correspond to zero disclination and four bottom plots
to a single disclination at the center.

FIG. 5. Free energy per unit area for s = 0 and s = π
3

for different
model presented in the paper.

The (small) disagreement between EF, LF and IF with
the exact result is a consequence of large displacements
near the core of a disclination on a flat topography [39].
The small disagreement with SN results also reflects the
intrinsic ambiguity of what is meant by an “exact” elastic
theory, as terms with higher powers of the strain tensor,
for example, maybe included in the definition of the elas-
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tic energy Eq. 15, a point which we will elaborate in the
conclusions.

For the case of a central disclination, at finite and in-
creasing values of the aperture angle θm, the different
linear approximations gradually converge to the exact
result. Note that the free energy goes through a min-
imum at around θm ≈ 1.05, which maybe interpreted
as the point where the disclination optimally screens the
Gaussian curvature. It seems reasonable that this point
maybe calculated when the PCC Eq. 13 is satisfied on
average, namely∫

d2xs(x) =

∫
d2xK(x)→ π

3
= 2π(1− cos(θc)) , (83)

that is, at θM = θc = arccos(5/6) = 0.59, which is signif-
icantly lower and reflects the role of the boundary con-
ditions. It is also important to note that when θM > θc,
the approximation to the energy for the disclination free
monolayer starts to deviate from the exact result.

VI. CONCLUSIONS

In this paper we have presented a general fully co-
variant elastic theory, as defined by the energy Eqs. 15
and 17, anticipated in Refs. [30, 31]. In particular, we
have considered the reference metric, which consists of
patches of flat manifolds, connected by quanta of pi/3
charges (for a triangular lattice), so that the reference
space is not necessarily flat everywhere. The actual met-
ric is the induced metric from ambient (3d) space on
the given curved surface. The continuum formalism pre-
sented in the paper is identical to the limit of vanishing
lattice constant of a discrete model consisting of equi-
lateral triangles (or squares). Therefore, the disclination
charges are quantized as pi/3 (pi/2), and the dislocation
charges are quantized in units of the lattice constant a,
the Burgers vector.

We have discussed three different linear approxima-
tions (EF, LF, IF) from which all analytical results
quoted in the literature have been derived. Quite un-
expectedly, the differences are quantitatively very small,
but the ones in actual space (LF, IF) have the advantage
that satisfy topological relations, see Eq. 7, exactly. It
is possible to compute orders beyond linear and, in this
way, obtain the exact result, although for general prob-
lems, the calculations are quite demanding.

The actual meaning of the “exact solution”, however,
appears as an ambiguous concept. While our exact result
of a single disclination on a flat monolayer as θm → 0 is
almost the same as the value (see Eq. 82) obtained by
Seung and Nelson [17], it is not obvious that the energies
obtained by the two methods match for all values of θm.
The Seung and Nelson’s energy is given as

FD =
ε

2

∑
〈i,j〉

(
dij − d̄ij

)2
=
ε

2

∑
〈i,j〉

(|~ri − ~rj | − a)
2

(84)

where 〈i, j〉 are the nearest neighbors defined by a trian-
gulation T . This energy is conceptually the same as the
one defined by Eqs. 15 and 17, since d̄ij = a is the dis-
tance in reference and dij in actual space, and, expand-
ing in small displacements, both energies coincide for the
choices of elastic constants Y = 2ε/

√
3 and νp = 1/3 [17].

However, these two approaches differ beyond linear or-
der. It is possible to make them agree at higher orders
by adding higher powers of |dij − d̄ij | in Eq. 84 ,

F = FD +

M∑
l=2

εl
2

(
dij − d̄ij

)2l
(85)

so that, for appropriately chosen values εl, higher or-
ders of the displacement beyond linear will agree with
the energy Eq. 17. Additional powers of uαβ can also
be added to Eq. 17, to make it agree with Eq. 84. Ei-
ther case, it serves to make the point that Eqs. 17 and
84 represent two different non-linear elastic theories, and
therefore, it is expected that the exact results for a sin-
gle disclination will differ. It should be noted, however,
that both exact results are close, thus highlighting that
non-linear corrections are small. The natural question
becomes then, which one is the “correct” model. A satis-
factory answer can be given if the underlying microscopic
potential among particles is known. Then it is possible
to impose that the higher orders of elasticity theory (see
Eq. 85) match the same orders of the energy of the crystal
in powers of the displacement, as discussed in Ref. [26],
where exceedingly accurate predictions for energies were
obtained for any geometry.

Another fundamental aspect of the geometric theory of
elasticity discussed in this paper is the choice of the refer-
ence metric, which corresponds to a configuration where
all nearest neighbors distances and angles are the same.
In some cases, such as for a defect free disk or a cone with
a single disclination, it is possible to optimize the geom-
etry resulting into strain and stress free configurations in
actual space. For other, more complex defect distribu-
tions, such actual space configurations do not exist. A
conspicuous property of the model in Eq. 84, however, is
that it involves nearest neighbor distances only, and the
condition that the angles are the same does not need to
be satisfied. Thus, general Archimedean tilings configu-
rations, such as the one shown in Fig. 6, are strain/stress
free for an actual space consisting of a plane. It is inter-
esting to note that it is possible to build dodecagonal qua-
sicrystals out of (33.42) Archimedean tiling, which have
been observed in nanocrystal systems [40]. Within elas-
ticity theory, those Archimedean tilings require a Pois-
son ratio νp = 1/3, as clear from the discussion following
Eq. 84, see also Ref. [39].

We have shown that the “exact” equations of elasticity
theory amount to minimizing the difference between the
actual and the reference metric

g(actual metric)− ḡ(reference metric) = 2uαβ

where the actual metric is fixed by the topography (the
surface), see Fig. 1, and the reference metric is such that
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FIG. 6. Example of the (33.42) Archimedean tiling with zero
elastic energy. Such configuration, however, has zero energy
modes and require additional constraints to be stable.

its curvature K̄ is a sum of disclinations and dislocations

K̄ = Disclinations + Dislocations

= “Quanta” of Curvature + “Quanta” of Torsion ,

where the disclinations are quantized in units of π
3 and

the dislocations in units of the Burgers vector ~b. These
equations summarize the geometric content of the equa-
tions in elasticity theory as applied to arbitrary topogra-
phies. For boundary free crystals, they also satisfy topo-
logical constraints, for example, Eq. 7.

There are a number of issues that we have not dis-
cussed. For example, the free energy Eq. 17 is invariant
under general parameterizations, which in turns, through
the Noether theorem, gives rise to conservation laws that
relate to the stress tensor. Also, the IF includes a term,
see Eq. 42, that has derivative of the Gaussian curvature.
In those cases where the Gaussian curvature is not con-
stant and varies rapidly, this term may become important
or even dominant.

In summary, we presented a covariant formulation of
elasticity that unifies geometric and topological concepts
with the theory of defects. All available results in the
literature maybe recovered from this formulation as suit-
able approximations, thus providing a rigorous justifica-
tion on their validity, and providing the necessary frame-
work for our recent studies of icosahedral order in virus
shells [33]. Throughout this paper, the geometry has
been fixed. There are obviously many fascinating prob-
lems when the geometry is allowed to fluctuate, see, for
example Ref. [41], but those problems will be discussed
elsewhere.
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Appendix A: The Seung-Nelson result as a function
of area

Seung-Nelson [17] quote, for a flat disclination

F

Y s2R2
= 0.008 . (A1)

The radius is given by R = na, where n is an integer and
a is the lattice constant. A more precise calculation com-
putes this coefficient as 0.00785 [39]. This is a numerical
calculation considering a pentagonal shape crystal con-

taining 5n2 triangles. Each trianlge has an area
√

3
4 a

2,
hence

F

Y Area
= 0.008

(π
3

)2

/(5
√

3/4) ≈ 0.00405 , (A2)

or 0.00400 with the more precise value [39]. This is the
coefficient used in Eq. 82.

Appendix B: Geometry, curvature, vielbeins and the
definition of the stress tensor

It should be noticed that the stress tensor, defined by
Eq. 19 is in general different than the one defined in stan-
dard textbooks, such as Landau and Lifshitz, which we
denote as σ̂αβ . We now show the relation between both
tensors. For that purpose, we introduce the Vielbeins
eαµ, defined as

gµν = eαµe
β
µδαβ

δαβ = e µ
α e µ

β gµν (B1)

Then, there is the relation

σ̂αβ = eαµe
β
νσ

µν . (B2)

The advantage of σ̂αβ is that the units of all the compo-
nents are the same. This is not the case for σµν . Obvious
to say that all physical quantities have the same dimen-
sions in either form.

Also, the line tension term Eq. 22 is simplified by∫
∂B
ds =

∫
∂B

√
gdl =

∫
∂B
dxµgµνt

ν , (B3)

where tν = 1√
g
dxµ

dl for any parameterization xµ(l). Here

tµ is the unit tangent vector to the curve defining the
boundary. Note that

g = gµν
dxµ

dl

dxν

dl
(B4)
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and dxµ =
√
gtµdl. The variation of this term gives∫

∂B
dxµδgµνt

ν = −
∫
∂B
dxµ(∇νξµ +∇µξν)tν

=

∫
∂B
dxµ(ξµ∇ν + ξν∇µ)tν

=

∫
∂B
dxµ∇µtνξν , (B5)

where dxµξµ = 0 as the vector ξµ is perpendicular to tµ.
Note that the vector

nρ =
√
gεµρt

µ , (B6)

is a unit vector, perpendicular to tµ.

The variation in Eq. B5 refers to δgαβ with the im-
plicit condition δḡαβ = 0, while the variation leading to
Eq. 20 is with respect to δḡαβ with δgαβ = 0. One notes,
however, that the general transformation

δgαβ = ∇αξβ +∇βξα
δḡαβ = ∇̄αξβ + ∇̄βξα , (B7)

encodes a simple reparamaterization and therefore, under
this transformation any term Fa appearing in the energy
should satisfy

δFa = δgFa + δḡFa = 0 , (B8)

hence, the correct variation, with respect to ḡαβ picks up
a minus sign, as compared with Eq. B5,

δFl = −
∫
∂B
dxµ∇µtνξν , (B9)

as used in the main text.

Appendix C: Incompatibility metric approximations

1. Incompatibility metric approximation: actual
frame

The second order in the expansion Eq. 39 is given by

g
(2)
αβ = − 2

Y

(
gαβ∆χ(2) − (1 + νP )∇α∇βχ(2)

)
− 2

Y

(
gαβg

ργΓµ(1)
ργ − (1 + νP )Γ

µ(1)
αβ

)
∇µχ(1)

− 1

2
g

(1)
αβg

γσg(1)
γσ (C1)

Obviously, the expansion can be continued to all orders,
and in this way a perturbative solution to Eq. 35 and
Eq. 36 can be found. The goal is now to derive an explicit
equation for χ(i), as shown below.

2. Incompatibility metric approximation: reference
frame

The second order in Eq. 50 can also be computed as:

ḡ
(II)
αβ =

2

Y

(
ḡαβ∆̄χ(II) − (1 + νP )∇̄α∇̄βχ(II)

)
+

1

2
ḡ

(I)
αβ ḡ

γσ ḡ(I)
γσ (C2)

3. First order solution: actual frame

We will compute the Ricci tensor R̄σν = R̄ρσρν , which
from Eq. E18 is

R̄σν = Rσν +∇µΓµ(1)
νσ −∇νΓµ(1)

µσ . (C3)

The first term is obtained from Eq. 41, Eq. E16 and
Eq. E18, leading to

−Y∇µΓµ(1)
νσ = ∇σ∇ν∆χ(1) − (1 + νP )gµγ∇µ∇ν∇σ∇γχ(1)

+ ∇ν∇σ∆χ(1) − (1 + νP )gµγ∇µ∇σ∇ν∇γχ(1)

− gσν∆2χ(1) + (1 + νP )gµγ∇µ∇γ∇ν∇σχ(1)

(C4)

This is simplified by using Eq. E3 and Eq. E4

gµγ∇µ∇γ∇ν∇σχ(1) = gµγ∇µ∇ν∇γ∇σχ(1)

− gµγ∇µ
(
Rλσγν∇λχ(1)

)
(C5)

and

gµγ∇µ∇σ∇ν∇γχ(1) = gµγ∇σ∇µ∇ν∇γχ(1)

− gµγRλνµσ∇λ∇γχ(1)

− gµγRλγµσ∇ν∇λχ(1) . (C6)

One more application of Eq. E4 converts Eq. C6 into

gµγ∇µ∇σ∇ν∇γχ(1) = gµγ∇σ∇ν∇µ∇γχ(1)

− gµγ∇σ
(
Rλγµν∇λχ(1)

)
− gµγRλνµσ∇λ∇γχ(1)

− gµγRλγµσ∇ν∇λχ(1) . (C7)

Using the expression of the Riemann tensor in two di-
mensions Eq. E9, we obtain

gµγRλνµσ∇λ∇γχ(1) = Kgνσ∆χ(1) −K∇σ∇νχ(1)

gµγRλγµσ∇ν∇λχ(1) = −K∇ν∇σχ(1) . (C8)

and

gµγ∇σ
(
Rλγµν∇λχ(1)

)
= −∇σK∇νχ(1) −K∇σ∇νχ(1)

. (C9)
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Also

gµγ∇µ
(
Rλσγν∇λχ(1)

)
= gσνg

µλ∇µK∇λχ(1)

− ∇σK∇νχ(1)

+ gσνK∆χ(1)

− K∇σ∇νχ(1) (C10)

Collecting all these terms, Eq. C4

−Y∇µΓµ(1)
νσ = 2∇σ∇νχ(1) − gσν∆2χ(1) −

− (1 + νP )
[
∇σ∇ν∆χ(1) + 2K∇σ∇νχ(1)+

+ gσνg
µλ∇µK∇λχ(1)

]
(C11)

The next quantity to compute is

−Y∇νΓµ(1)
µσ = ∇ν∇σ∆χ(1) − (1 + νP )gµγ∇ν∇µ∇σ∇γχ(1)

+ 2∇ν∇σ∆χ(1) − (1 + νP )gµγ∇ν∇σ∇µ∇γχ(1)

− ∇ν∇σ∆χ(1) + (1 + νP )gµγ∇ν∇µ∇γ∇σχ(1)

(C12)

that immediately leads to

−Y∇νΓµ(1)
µσ = 2∇σ∇ν∆χ(1) − (1 + νP )∇ν∇σχ(1)(C13)

Therefore, the Ricci tensor is

R̄σν = Rσν +
1

Y

(
gσν∆2χ(1)+

+ (1 + νP )
[
2K∇σ∇νχ(1) + gσνg

µλ∇µχ(1)∇λK
])

(C14)

Finally, the scalar curvature is obtained as the trace of
the Ricci tensor, hence

K̄ = K +
1

Y

(
∆2χ(1)+ (C15)

+ 2K∆χ(1) + (1 + νp)g
µλ∇µK∇λχ(1)

)
.

Appendix D: Elastic energy in the actual frame

Our starting point is Eq. 44, which for the sake of
reference we repeat here:

F =
1

2Y

∫
d2u
√
g
[
(∆χ(1))2+

+
(1 + νP )

g
εασερβ∇α∇βχ(1)∇ρ∇σχ(1)

]
. (D1)

We now focus on the second term. Using Eq. 30 this term
becomes

εασερβ∇α∇βχ(1)∇ρ∇σχ(1) (D2)

= g
[
∇α∇βχ(1)∇α∇βχ(1) − (∆χ(1))2

]
.

Making further use of Eq. E1, allows to prove the follow-
ing identity

√
gTαβ∇α∇βχ(1) (D3)

= ∂α

(√
gTαβ∇βχ(1)

)
−√g∇αTαβ∇βχ(1)

= ∂α

(√
gTαβ∇βχ(1)

)
−√g∇α(gαβ∆χ(1))∇βχ(1) −

− √gKgβα∇αχ(1)∇βχ(1)

where Tαβ = ∇α∇βχ(1). Note that

∇αTαβ = ∇αgαρgβν∇ρ∇νχ(1) = gβνgαρ∇α∇ρ∇νχ(1)

= gβνgαρ∇ν∇α∇ρχ(1) − gβνgαρRλραν∇λχ(1)

= gβα∇α∆χ(1) +Kgβα∇αχ(1) (D4)

Here, we have used the identity Eq. E5.
Using the same operations, it is

√
g∇α(gαβ∆χ(1))∇βχ(1)

= ∂α

(√
g∆χ(1)gαβ∇βχ(1)

)
−√g(∆χ(1))2 . (D5)

Hence, the second term in Eq. D1 becomes

−1 + νp
2Y

∫
d2u
√
gKgαβ∇αχ(1)∇βχ(1) (D6)

plus a total derivative

1 + νp
2Y

∫
d2u∂α

[√
g
(
Tαβ∇β −∆χ(1)gαβ∇β

)
χ(1)

]
= −1 + νp

2Y

∫
d2u∂α

[√
gσαβ∇βχ(1)

]
, (D7)

where use has been made of the definition of the stress
tensor, see Eq. 43. The above integral contributes only
at the boundary, leading to the contribution

−1 + νp
2Y

∮
dxρ
√
gερασ

αβ∇βχ(1). (D8)

For a spherical cap, the above equation is

1 + νp
2Y

∮
dθ
√
gσrβ∇βχ(1). (D9)

and therefore, in the absence of line tension vanishes by
the boundary condition σrβ = 0, β = r, θ at the bound-
ary.

Appendix E: General Formulas in Riemannian
geometry

1. Useful identities

The following results apply for any metric gµν in any
dimension, unless further restrictions are stated.

1

2
∂µ(log g) = Γρµρ . (E1)
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The last equation can be written also as

1
√
g
∂µ(
√
g) = Γρµρ . (E2)

Another relation involving Christoffel symbols is

gργΓνργ = − 1
√
g
∂γ(
√
ggγν) . (E3)

The following relation, involving the Riemann tensor is

[∇µ,∇ν ]V ρ = RρλµνV
λ . (E4)

The same relation exists for forms as well, namely

[∇µ,∇ν ]Wργ = −RλρµνWλγ −RλγµνWρλ (E5)

Finally, the Ricci and scalar curvature are defined as

Rµν = Rλµλν R = gµνRµν (E6)

The equations from here onwards are valid in two dimen-
sions only:

1

g
εαρεµν = gαµgρν − gανgρµ . (E7)

gαβ =
1

g
εαρεβσgρσ . (E8)

And, the Riemann tensor is

Rρλµν = K (gρµgλν − gρνgλµ) , (E9)

where K = R/2 is the Gaussian curvature.

2. Expansion around a given metric

From the incompatibility expansion Eq. 39 it is

Γ̄ρµα = Γρµα + ηΓρ(1)
µα + η2Γρ(2)

µα + · · · (E10)

here, the η value is just a formal quantity that allows to
keep track of the different orders in the expansion.

The compatibility of the connection with the metric
implies

∇µgαβ = 0

∇̄µḡαβ = 0 (E11)

This last equation, in explicit terms is

∇̄µḡαβ =
∂ḡαβ
∂xµ

− Γ̄ρµαḡρβ − Γ̄ρµβ ḡαρ = 0. (E12)

Introducing the expansion Eq. E10 into the previous
equation leads to

∇µgαβ + η
(
∇µg(1)

αβ − Γρ(1)
µα gρβ − Γ

ρ(1)
µβ gαρ

)
+

η2
(
∇µg(2)

αβ − Γρ(2)
µα gρβ − Γ

ρ(2)
µβ gαρ − Γρ(1)

µα g
(1)
ρβ − Γ

ρ(1)
µβ g(1)

αρ

)
(E13)

which immediately leads to the identities

∇µg(1)
αβ − Γρ(1)

µα gρβ − Γ
ρ(1)
µβ gαρ = 0

∇µg(2)
αβ − Γρ(2)

µα gρβ − Γ
ρ(2)
µβ gαρ − Γρ(1)

µα g
(1)
ρβ − Γ

ρ(1)
µβ g(1)

αρ = 0

(E14)

with solutions

Γρ(1)
µα =

gρβ

2

(
∇µg(1)

αβ +∇αg(1)
βµ −∇βg

(1)
µα

)
(E15)

and

Γρ(2)
µα =

gρβ

2

(
∇µg(2)

αβ +∇αg(2)
βµ −∇βg

(2)
µα

)
− gρβΓγ(1)

µα g
(1)
γβ

(E16)
These expressions allow to compute the Riemann tensor,
defined from

R̄ρσµν = ∂µΓ̄ρνσ − ∂ν Γ̄ρµσ + Γ̄ρµλΓ̄λνσ − Γ̄ρνλΓ̄λµσ . (E17)

Inserting the terms in Eq. E15 and Eq. E16 after some
algebra it leads to

R̄ρσµν = Rρσµν + η
(
∇µΓρ(1)

νσ −∇νΓρ(1)
µσ

)
+ (E18)

+ η2
(
∇µΓρ(2)

νσ −∇νΓρ(2)
µσ + Γ

ρ(1)
µλ Γλ(1)

νσ − Γ
ρ(1)
νλ Γλ(1)

µσ

)
.

The Ricci tensor is

R̄σν = Rσν + η
(
∇µΓµ(1)

νσ −∇νΓµ(1)
µσ

)
+ (E19)

+ η2
(
∇µΓµ(2)

νσ −∇νΓµ(2)
µσ + Γ

µ(1)
µλ Γλ(1)

νσ − Γ
µ(1)
νλ Γλ(1)

µσ

)
.
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