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Acoustic radiation forces (ARFs) induced by a single Bessel beam with arbitrary order 15 

and location on a nonspherical shape are studied using the T-matrix method (TMM) in 16 

three dimensions. Based on the radiation stress tensor approach and the multipole 17 

expansion method for the arbitrary Bessel beam, the ARF expressions are derived in 18 

terms of the incident and scattered beam shape coefficients independently with the 19 

corresponding homemade code packages. Several numerical experiments are conducted 20 

to verify the versatility of the TMM. The axial acoustic radiation forces (ARFs) of several 21 

typical shapes are considered in the analysis with the emphasis on the axial ARF reversal 22 
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and the corresponding physical mechanism. This study may guide the experimental set-up 23 

to find negative axial ARFs quickly and effectively based on the predicted parameters 24 

with TMM. Relatively elongated shapes may be helpful for pulling forces in Bessel 25 

beams. Furthermore, the lateral ARFs for both convex and concave nonspherical shapes 26 

are also investigated with different topological charges, cone angles and offsets of the 27 

particle centroid to the beam axis in a broadband frequency regime. A brief theoretical 28 

derivation of the incident beam shape coefficients for the standing Bessel beams is also 29 

given. The present work could help to design the acoustic tweezers numerical toolbox 30 

which provides an acoustical alternative to the optical tweezers toolbox. 31 

1 Introduction 32 

Acoustic tweezers1-4, an appropriate counterpart to optical tweezers5, could be used for 33 

levitation6,7, pulling forces8-12, particle trapping13,14, and even dynamic controls15,16 in the 34 

fields of microfluidics and life sciences. Compared with optic tweezers, acoustic tweezers 35 

tend to exert a larger force over larger length scales with the same intensity since the 36 

radiation force is proportional to the ratio of the intensity to the velocity in the medium2,17. 37 

In general, there are two main schemes to design acoustic tweezers: the (quasi)standing 38 

wave scheme with dual beams1,2,4 and the single beam structure3. Single-beam tweezers 39 

may be superior to general plane standing-wave tweezers in some respects, for instance, 40 

single-beam tweezers can continuously pull or push a particle over a large region because 41 

there are no multiple equilibrium positions10,17. Negative radiation force single-beam 42 
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device could pull the target towards the source, which is of interest in both 43 

acoustical8-12,17 and optical fields18. The physical mechanism is due to the asymmetric 44 

scattering of the incident fields on the target such that the scattering into the forward 45 

direction is relatively stronger than the scattering into the backward direction8-10,18,19. This 46 

is understood by the conservation of momentum and Newton’s third law regarding 47 

reaction force between the acoustic field and the inside particle.19,20 48 

Beams having the local properties of acoustic Bessel beams are candidates for 49 

single-beam tweezers which have been examined in theoretical8-10,21 and experimental 50 

approaches17,22. The ordinary Bessel beam (OBB) possesses the axial maximum and 51 

azimuthal symmetry, while the helicoidal Bessel beams (HBBs) have an axial null and 52 

azimuthal phase gradient. Hefner and Marston conducted the experimental demonstration 53 

for the acoustical vortices by using simple four-panel piezoelectric transducers23. 54 

Recently, the transducer arrays17,24, active spiral transducer25,26, diffraction gratings27 and 55 

metasurfaces28 have been demonstrated to produce the local Bessel beams which coincide 56 

with the theoretical or simulation results. These fabrication technologies facilitate the 57 

experimental studies of Bessel beams and the possible applications in the fields of 58 

particle manipulations. In addition, the exact series solutions have been solved for the 59 

axial ARFs of spherical objects in an on-axis incident Bessel beam for both the 60 

ordinary8,9 and helicoidal (vortex)10,17 Bessel beams. The ARF produced by a Bessel 61 

vortex beam has also been studied via the optical theorem29-33 which gives the 62 



4 
 

relationship between the extinction and the scattering at the forward direction of the 63 

beam’s plane wave components. However, it is still necessary to develop efficient and 64 

versatile numerical models to investigate the three-dimensional ARFs of particles with 65 

different shapes and other complicated conditions. 66 

To this end, the T-matrix method (TMM) is introduced to the field of acoustic 67 

manipulations which has been demonstrated effective and very efficient for acoustic 68 

scattering34 from spheroid35-38, superspheroid38,39 and finite cylinder with endcaps40,41. 69 

These nonspherical (convex or concave) shapes are very common to model the 70 

geometries of particles in biomedical engineering (e.g., cells and bacteria) and lab-chip 71 

technologies (e.g., drops with gravity and fibers) in the context of acoustophoresis, which 72 

could provide more accurate models and give a better prediction of the particle motions 73 

than the spherical shape. It is noteworthy that other numerical methods, such as the finite 74 

element method42,43, boundary element method44-46, finite volume method47,48, lattice 75 

Boltzmann method49,50 and finite-difference time-domain method51, are also employed to 76 

successfully solve the acoustic radiation force of particles in fluid. Each numerical 77 

methods has its own metrics. However, for typical axisymmetric shapes, the TMM will 78 

be a superior approach since it will decrease the integral over the geometrical surface 79 

(three dimensions) into the line integral (two dimensions) and could save much 80 

computational cost, leading to high efficiency in the simulation experiments even at high 81 

frequencies38,39. Furthermore, based on the radiation stress tensor approach52,29 and the 82 



5 
 

independent derivations, the three-dimensional ARFs could be expressed and calculated 83 

in terms of the incident and scattered beam shape coefficients (see details below). Note 84 

that the transition matrix need only to calculate once for the scattered field and is 85 

independent of the incident beams, making the TMM even more efficient to calculate the 86 

forces on particles. It is convenient to obtain the incident beam shape coefficients for the 87 

ordinary and standing plane wave, however, may be challenging in the context of vortex 88 

beam since the particle may deviate the beam axis with an offset. For an ideal Bessel 89 

beam of arbitrary topological charge and location, general theoretical formulas of the 90 

incident beam shape coefficients are derived based on the multipole expansion method35 91 

and also given by Zhang53. 92 

It is important to investigate the particle dynamics in three dimensions with the on- 93 

or off-axis incidence since it could help the beam calibrate with the particle centroid in 94 

experimental setups with higher frequency regime. To some extent, the numerical method 95 

is an alternative to direct experimental approaches and more versatile than analytical 96 

investigations. In this paper, several numerical experiments are conducted based on the 97 

traditional T-matrix method with the emphasis on nonspherical objects which are typical 98 

in engineering practice and life sciences, such as the generalized superspheroid and finite 99 

cylinder with endcaps which may be used to model the biological cells or bacteria. This 100 

will extend the previous theoretical studies of the axial ARF8-10 and numerical 101 

implementations of the off-axial ARF on a sphere54,11 to cases of an object with 102 
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complicate shapes placed in a Bessel beam with arbitrary location and order. Note that 103 

Few analytical solutions of the ARF on rigid spheroids have been derived in the 104 

long-wavelength limit55,56, which has the potential for the Bessel beam illumination 105 

example. The physical mechanism of the axial ARF reversal for nonspherical shape is 106 

demonstrated by numerical experiments and the corresponding parameter conditions are 107 

discussed. In addition, the lateral and the axial ARFs for both convex and concave 108 

nonspherical shapes are discussed with emphasis on the dimensionless frequency, the 109 

cone angle of the Bessel beam and the offsets. The theoretical formulas of the Bessel 110 

standing wave with arbitrary orders and offsets are also briefly given with the numerical 111 

example. 112 

2 Theoretical and numerical models 113 

2.1 Radiation momentum stress tensor method 114 

The ARFs comes from the transfers of linear momentum between the acoustic fields 115 

and particles which could be induced by the scattering or absorption. The radiation stress 116 

tensor approach52,29 is widely employed to compute the static radiation force by 117 

integrating the time-averaged radiation stress tensor over a far-field spherical surface 0S . 118 

Consider a particle with arbitrary shape S  in an ideal fluid, as shown in Fig. 1, a Bessel 119 

beam is incident with arbitrary topological charge and location. Based on the momentum 120 

conservation, the radiation stress tensor TS  in the ideal fluid meets: 0T =S . By 121 

integrating TS  over the particle surface S , the expression of the ARF could be written 122 



7 
 

as 123 

 
0d d dT

S S S
L = − = − +   F S S S S uu   (1) 124 

where L  is the time average of the Lagrangian density, 0  is the density of the 125 

surrounding fluid and 0 uu  described the average value of the flux of momentum 126 

density tensor. The integral in the ARF expression on the particle surface S  could be 127 

transferred to the far-field standard spherical surface 0S  according to the Gaussian 128 

theorem, having 129 

 
0 0

0d d
S S

L = −  F S S uu   (2) 130 

Note that Eq. (2) could apply for the arbitrary-shaped particle since the integral will, in 131 

fact, be conducted in a standard spherical surface, which is very important for both 132 

theoretical and numerical computations. For simplicity, the time average of the 133 

Lagrangian density is divided into three terms: the contribution of only the incident beam 134 

iiL , only the scattered field ssL , and the interaction of the incident and scattered 135 

fields isL , respectively,   136 
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where 0c  is the velocity in the fluid, ,i su  are the incident and scattered velocity vectors 138 

with , ,i s i su=u n , n  is the outward unit normal vector, ,i sp  are the first order pressure 139 

of the incident and scattered fields with the relationship , 0 0 ,i s i sp c u= , leading to the 140 
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vanish of ssL . In addition, there will be no transfer of linear momentum when the 141 

particle does not exist in the fluid, making the terms only related to the incident fields 142 

vanish 143 

 
0 0

0d d 0ii i i
S S

L −  = S S u u   (4) 144 

Inserting Eqs. (3) and (4) into (2), the ARF expression in terms of the velocity and 145 

pressure scalar quantities is  146 

 
0 0 0

0 02

0 0

d d di s
s s s i

S S S

p p
S u u S u u S

c
 


= − − −  F n n n   (5) 147 

By using the relations between the velocities (pressures) and complex velocity 148 

potentials for both the incident and far-field scattered fields, such as , ,i s i s=u , 149 

, 0 ,i s i sp i =  and , , ,i s i s i su r =  =  n  (far-field approximation), the expression of 150 

ARF in terms of velocity potentials could be  151 
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where k  is the wave number, * denotes complex conjugation. i , s  denote the 153 

incident and scattered complex velocity potentials, Re means the real part of a complex 154 

number.  155 

From the view of numerical computation, the TMM is an efficient tool to compute 156 

acoustic scattering on nonspherical objects. At present, this method will be further 157 

extended for ARFs which is closely related to the incident and scattered fields. In the 158 

TMM formulation, the velocity potentials of the incident and scattered fields could be 159 
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expanded as35-41 160 

 ( ) ( )0 ,i nm n nm

nm

a j kr Y   =    (7) 161 

 ( ) ( ) ( )1

0 ,s nm n nm

nm

s h kr Y   =    (8) 162 

where nma  and nms  are the incident and scattered coefficients of expansion (others 163 

prefer to call the incident and scattered beam-shape coefficients), 0  is the beam 164 

amplitude, ( )nj kr  and ( ) ( )1

nh kr  are the spherical Bessel and Hankel functions of the 165 

first kind, respectively. In the far field ( kr → ), the following asymptotic expressions of 166 

the spherical Bessel function and Hankel function of the first kind are used respectively, 167 

as ( ) ( )1 12 2
n ikr n ikr

nj kr i e kr i e kr
− + + −+  and 

( ) ( ) ( )1 1n ikr

nh kr i e kr
− +

. ( ),nmY    denotes 168 

the normalized spherical harmonics. The transition relationship between nma  and nms  is 169 

given by , ' ' ' 'nm nm n m n ms T a= , where , ' 'nm n mT  denotes the transition matrix which only 170 

depends on the properties of the object, including the geometrical shape, the material 171 

composition and the boundary conditions at the interface, and otherwise is independent of 172 

the sources. For the exact series solution, the transition matrix could be considered as 173 

( )= 1 2nT s −  without dependence on the azimuthal index m  for spheres, which is in 174 

fact the partial-wave coefficients na  with the scattering coefficients ns  known for a 175 

wide variety of spheres57 and may be taken as a special case for the TMM. Varadan et al. 176 

also gave the explicit expressions of the transition matrixes for acoustic soft, hard and 177 

fluid sphere58, which all coincide with those obtained with the exact series solutions. It is 178 

noteworthy that both the TMM35-41 and the series solution for scattering by a sphere can 179 
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be truncated at appropriate indices ( maxN ) in computations, which make the asymptotic 180 

expressions of scattered fields convergent in the far-field. After using the far-field 181 

asymptotic expressions for the scattered velocity potentials and implementing several 182 

algebraic manipulations (including the recursion relation of the spherical Bessel function 183 

and its derivative ( ) 1'n n nj n kr j j += −  with the variable kr ), the ARF could be given 184 

briefly in terms of the incident and scattered beam shape coefficients, such that 185 
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( ) ( ) ( )
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     

−  
= − + 

  
F n   (9) 186 

which could be applied for radiation force with arbitrary orientation and agrees with Eqs. 187 

(7) and (9) in Silva’s work59. The differential surface area is 
2d sinS r d d  = . The 188 

dimensionless ARF Y  is introduced to coincide with the exact solutions for spheres 189 

with the relationship as 190 

 
2 1

0 0 0r I c −=F Y   (10) 191 

where ( )( )
2

0 0 0 02I c k =  and 0r  is the characteristic dimension of the target. The 192 

outward unit normal vector is =sin cos sin sin cos    + +x y zn e e e  in Cartesian 193 

ordinates. Hence,  194 
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The integration could be simplified easily by using Eqs. (15.150-152) in Ref. [60] 196 

for the integration involving the spherical harmonics and circular functions with the 197 
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detailed derivations given in Appendix A. Finally, the axial and lateral components of the 198 

dimensionless ARFs could be derived independently as  199 

 
( )

( )
* *

1, 1 1, 1, 1 , 1

2 * *

1, 1 1, 1, 1 , 10

1
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2

n m n m n m n m

x nm nm

nm n m n m n m n m

s b s b
Y a s

s b s bkr

+ + + − + − −

+ − + − − − −

  − − 
= +    + +   

   (12) 200 
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( )
* *

1, 1 1, 1, 1 , 1

2 * *

1, 1 1, 1, 1 , 10

1
Re

2

n m n m n m n m

y nm nm

nm n m n m n m n m

s b s b
Y a s

s b s bkr

+ + + − + − −

+ − + − − − −

  + 
= +    + +   

   (13) 201 

 
( )

( )( )* *

1, 1, 1,2

0

1
Imz nm nm n m n m n m nm

nm

Y a s s c s c
kr

+ + −

 
= + − 

 
   (14) 202 

where the coefficients are ( )( ) ( )( )
1 2

, 1 2 1 2 1n mb n m n m n n= + + + − +    and 203 

( )( ) ( )( )
1 2

, 2 1 2 1n mc n m n m n n= + − − +   . As observed from Eqs. (12-14), the 204 

three-dimensional ARFs could be obtained once the scattered beam shape coefficients 205 

are calculated from the incident coefficients through various methods, such as the partial 206 

wave series solution, the T-matrix method and other kinds of theoretical and numerical 207 

methods. It is noteworthy that the theoretical expressions of the axial ARF from 208 

spherical shapes in the zeroth- and first-order Bessel beams are derived in Refs. [8-10] 209 

and three-dimensional ARFs for arbitrarily located elastic sphere in Ref. [11]. 210 

2.2 A brief review of incident beam shape coefficients of arbitrary Bessel beams 211 

Consider the Bessel beam is placed in an arbitrary location relative to the particle, as 212 

shown with the coordinate system in Fig. 2. The origin of the Oxyz  system O  213 

coincides with the particle centroid, while the origin of the Bessel beam BO  in the 214 

' ' 'BO x y z  system coordinates is located at ( )0 0 0, ,x y z  in Oxyz . The velocity potential 215 

of a Bessel beam with arbitrary topological charge M  and location could be expressed 216 
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as 217 

 
( ) ( )0 '

0 'zik z zM iM

B M ri e J k R e  
−

=   (15) 218 

where ( ) ( )
2 2

0 0'R x x y y= − + −  and ( ) ( )1

0 0' tan y y x x −= − −    in Fig. 2 describe 219 

the radius and azimuthal angle of the field point ( ), ,x y z  in the ' ' 'BO x y z  system. 220 

coszk k =  and sinrk k =  are the axial and transverse component of the wave 221 

number 0k c=  with   the cone angle of the Bessel beam and   the angular 222 

frequency. By using the addition theorem for the Bessel functions and the exact solution 223 

to the integral on the hybrid product including the associated Legendre, Bessel, and 224 

exponential functions in spherical coordinates as 225 

 ( ) ( ) ( ) ( )cos cos

0

d sin cos sin sin 2 cosikr m n m m

n m n ne P J kr i P j kr



 



     −

=

=   (16) 226 

The incident beam shape coefficients of the Bessel beam with arbitrary topological 227 

charge and location could be derived35  228 

 ( ) ( ) ( ) 00

04 cos z i m Mik zn m M m

nm nm n m Ma i P e J e


  
− −−− +

−=    (17) 229 

with the normalized coefficients ( )( ) ( )
1 2 1 2

= 2 1 ! 4 !nm n n m n m 
−

+ − +       , 0 0rk R = , 230 

( )
1 2

2 2

0 0 0R x y= +  and ( )1

0 0 0tan y x −= . When the offset is ( ) ( )0 0 0, , 0,0,0x y z = , Eq. 231 

(17) will degenerate into the on-axis incidence situation of the Bessel beam. 232 

The scattered beam shape coefficients nms  are still missing to calculate the 233 

three-dimensional ARFs based on Eqs. (12-14). In this work, a versatile TMM (which 234 

gives a linear relationship between the incident and scattered beam shape coefficients as 235 

, ' ' ' 'nm nm n m n ms T a= ) is introduced to the field of radiation forces. Note that the TMM in the 236 
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acoustic field mainly considers the scattering field in underwater or elastic mediums 237 

instead of the further consideration on the acoustic radiation forces and torques. The 238 

present work is inspired to take advantage of this method (as discussed in the 239 

Introduction) which is very efficient for both spherical and aspherical shapes with 240 

rotational symmetry and only needs to be computed once for the transition (T) matrix as 241 

shown in the Appendix B. The TMM makes it possible to employ nonspherical shapes to 242 

model the real interesting particles in life science and engineering in an exacter manner. 243 

3 Numerical results and discussion 244 

3.1 Validation of T-matrix method for acoustic radiation force 245 

To verify the correctness of the TMM, several examples are implemented for a rigid 246 

sphere in the ordinary (OBB, blue dashed line) and first-order helicoidal Bessel beams 247 

(FHBB, red solid line) as shown in Fig. 3(a). Both cases are under on-axis incidence. The 248 

axial ARFs zY  for the OBB case are extracted from Fig. 2 of Ref. [8] with the half-cone 249 

angle 60 =  [blue circles in Fig. 3(a)], while those for the HBB are extracted from Fig. 250 

1 of Ref. [10] with 66.42 =  [red triangles in Fig.3(a)]. The reference results are 251 

calculated with the exact series solutions (partial-wave series method). As shown in Fig. 252 

3(a), all the TMM results agree well with the series solutions. In addition, the axial ARFs 253 

zY  for a rigid sphere located off the OBB axis have been calculated by TMM and 254 

partial-wave series method based on the multipole expansion method, with the references 255 



14 
 

given by the boundary element method (Fig. 11 in Ref. [46]). The cone angle is =30 , 256 

dimensionless frequency 1ka = , and 0x  describes the offset with the length unit in 257 

meters. As shown in Fig. 3(b), the results from the TMM and partial-wave series coincide 258 

with each other and agree well with those from the Boundary element method. Moreover, 259 

the TMM has been demonstrated for the scattering from spheroid36-39, finite cylinder40,41 260 

in plane wave and Bessel beams, and hence it could be applied for the radiation forces for 261 

these shapes convincingly provided that the incident and scattered coefficients of 262 

expansion are computed correctly [see Eqs. (12-14)]. It is noteworthy that the incident 263 

and scattered coefficients (occurring as column vectors in our numerical computations 264 

with the TMM) will be assembled in the same way for the radiation force. This will 265 

further verify the effectiveness of the present derivation of the ARF using the TMM and 266 

the corresponding homemade codes. 267 

Furthermore, the convergence curves of the TMM are discussed in terms of the axial 268 

ARF versus different truncation number maxN  for a biconcave shape [see Fig. 3(c) for 269 

the 2D schematic, taking the "peanut-shaped" generalized superspheroid as an example]. 270 

The definitions of a  and b  for the generalized superspheroid in Fig. 3(c) are 271 

analogous with those for a spheroid36. For the rotational symmetry of the generalized 272 

superspheroid, the distance of the surface field to the origin (center of the object) could 273 

be expressed as ( ) ( )
1 2

2 2 2 2= cos sinSr a b  + , where   is the polar angle of the 274 

surface field point, which are used by implementing an integral over the object surface to 275 
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obtain the transition matrix , ' 'nm n mT  relating the incident coefficients to the scattered 276 

coefficients of expansion. Note that due to the rotational symmetry, the integral involving 277 

the term ( )Sr   over the surface is only dependent on the polar angle, otherwise 278 

independent of the azimuthal angle. Fig. 3(d) depicts the axial ARFs of a rigid 279 

"peanut-shaped" generalized superspheroid with the aspect ratio 4a b = . The incident 280 

wave is a first-order Bessel beam with an arbitrary cone angle (here we choose 281 

66.42 = ) and the dimensionless frequency 0 =8kr  where 0r  is the characteristic 282 

length of the nonspherical object. Under this circumstance, 0r  is the larger value 283 

between a  and b . The on-axis incidence is described by the blue solid line with 284 

triangles, while the off-axis case with the offset ( ) ( )0 0 0 0, 0.1 ,0.1x y kr kr =  is 285 

described by the red solid line with circles. ( )0 0,x y  are the translational coordinates of 286 

the beam center with respect to that of the object (i.e. the origin of the considered 287 

coordinates). A convergence test for a rigid finite cylinder with spherical endcaps has 288 

been conducted in Ref. [40] and hence omitted for brevity. All these curves converge 289 

very fast versus maxN , which further demonstrates the efficiency of the present TMM for 290 

ARF. In the following computations, the truncation number is set as 291 

( )3
max 0 02 Int 8 4.05N kr kr= + + + , which could ensure the accuracy and convergence of 292 

the present computations according to our tests. The symbol Int  means to round the 293 

following number towards the positive infinity. Both the accuracy and convergence tests 294 

and related discussions provide enough validation of the T-matrix method for acoustic 295 
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radiation force. 296 

3.2 Axial ARF reversal and physical mechanism 297 

Two numerical experiments were conducted with the emphasis on the negative 298 

ARFs exerted on the rigid oblate and prolate spheroids in Bessel beams and the related 299 

physical mechanisms. The Neumann boundary condition was applied throughout for 300 

objects including spheroids, generalized superspheroids and finite cylinders in the 301 

following. In this Section, the rotational axis of the rigid spheroid coincides with the 302 

incident beam axis. Note that the relative orientation of the spheroid to the beam axis 303 

changes the scattering field from the particle, leading to the alteration of the transfer of 304 

linear momentum from the incident acoustic beam to the particle. The zY  of the oblate 305 

and prolate spheroids versus the dimensionless frequency 0kr  in the FHBB are depicted 306 

in Fig. 4(a) for 1 2a b =  and Fig. 4(b) for 2a b = , with 30 = , 66.42 , and 80 . 307 

a  is the polar radius and b  is the equatorial radius.29 The ranges including the negative 308 

ARFs in panels (a) and (b) are zoomed in and presented in panels (c) and (d) of Fig. 4, 309 

respectively. It implies that a large   (sufficiently nonparaxial) may facilitate the 310 

pulling force since the negative ARFs appear for both cases with 80 =  in the 311 

considered region, while it fails for 30 = . Especially, negative ARF is impossible for 312 

plane waves ( 0 = ) with passive spheres19,61. The term in Eq. (21) of Ref. [19] 313 

( ( )1 cos cosz sca sF P c  −= −  without absorption) including cos  represents the 314 

momentum removed from the incident Bessel beam (which induces positive ARF) and 315 
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the term including cos s−  gives the axial projection of the momentum transport 316 

associated with the scattered field (which may induce positive or negative ARF), where 317 

s  is the polar angle of the field point with respect to the positive z-direction [see Fig. 318 

3(c)]. The schematic of Fig. 1 qualitatively describes how to produce a negative ARF on 319 

an arbitrary object. The red solid arrows in the forward hemisphere denote the total 320 

scattered fields with the forward axial components, while the blue dashed arrows in the 321 

backward hemisphere represent the total scattered field with the backward axial 322 

components. The resultant forward component of all the scattering denoted by the red 323 

solid arrows are relatively larger than the resultant backward component of all scattering 324 

denoted by the blue dashed arrows. To further reveal the physical mechanism 325 

quantitatively, the angular dependences of the scattered form functions versus the 326 

scattered polar angle s  for the oblate spheroid in the FHBB with =80  are plotted in 327 

Fig. 4(e) with 0 1.8kr =  [marked as the red pentagram in Fig. 4(c)] and 0 2.1kr =  328 

[marked as the blue pentagram in Fig. 4(c)]. The black dotted line denotes the direction of 329 

the incident wave vector (i.e. =s  ). As shown in the enlarged view in Fig. 4(c), the 330 

ARF is negative at 0 1.8kr = , and otherwise positive at 0 2.1kr = . It can be observed in 331 

Fig. 4(e) that for 0 1.8kr = , the scattering dominates in the forward directions with 332 

s  , resulting in the negative ARF; for 0 2.1kr = , the scattering in the backward is 333 

relatively stronger than that in the forward, leading to the positive ARF. To better 334 

understand the relationship between the axial ARFs and two-dimensional scattering 335 
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patterns, the scattering patterns of form functions for both the oblate and prolate 336 

spheroids in the first-order HBB (M=1) with cone angle =80  are given versus 337 

different dimensionless frequencies ranging from 0kr =10 to 0kr =0.2 [See Mov1 in 338 

Supplemental Material at URL]. Note that at high frequencies, the forward scattering is 339 

comparable with the scattering in the backward hemisphere, however, the positive axial 340 

force induced by the incident wave (
1 cosscaP c −

) is important and lead to the resultant 341 

axial force positive. 342 

3.3 Pulling forces on typical nonspherical objects 343 

After giving an explicit explanation of the physical mechanism for the negative ARF, 344 

the emphasis will be put on the parameter conditions for exerting the pulling force on 345 

several typical objects, which may have potential applications in acoustophoresis, surface 346 

chemistry, atomic physics, ultrasonic medicine, reduced gravity environment, and so on. 347 

Panels (a-d) of Fig.5 study the influence of the topological charges (orders) of the Bessel 348 

beams for a "peanut-shaped" generalized superspheroid with 2a b =  for an on-axis 349 

incidence. The 2D plots depict the negative ARF “islands” in the ( )0 ,kr   domain and 350 

the white domains stand for the positive ARFs (not shown numerically). The islands of 351 

the negative ARF are different between the OBB and HBBs since panel (a) has two 352 

subregions, while panels (b-d) have one subregion under consideration. For the HBBs, 353 

the frequencies of the negative ARF seem to increase with the increase of the beam order. 354 

To discuss the parameter of the aspect ratio, the 2D plots of a generalized superspheroid 355 
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with 3a b =  and 4a b =  in the FHBB are given in panel (e) and (f) [compared with 356 

panel (b)], respectively. These results imply that the distributions of the negative ARF 357 

depend on both the beams and objects. However, the central frequencies do not change 358 

greatly with the aspect ratios. The oblate case for the generalized superspheroid is also 359 

described in panel (g). This shape is like some biological cells, the red blood cell with a 360 

dip in the center for example. In biomedicine or reduced gravity environment, the finite 361 

cylinder shapes with endcaps are helpful to model several kinds of bacteria or space 362 

shuttle, which will be discussed as follows. Capsule-shaped (cylinder with spherical 363 

endcaps40,41) objects are investigated for both the on-axis [panel (h)] and off-axis 364 

incidences [panels (i-l)]. The aspect ratio is 2l b =  for all the cases, where l  is the half 365 

length of the total cylinder and b  is the radius of the cylindrical portion.40 Panels (h-j) 366 

are for FHBB while Panels (k,l) are for SHBB. The beam axis is shifted off the axis of 367 

the object in the transverse plane as ( )0 00.1 ,0.1kr kr   for Fig. 5(i,k) and 368 

( )0 00.5 ,0.5kr kr   for Fig. 5(j, l). Note that there is no need for the extra 369 

computational cost for the off-axis incidence compared with the on-axis case35. By 370 

comparison, the area of the negative force island decreases with a larger offset with 371 

respect to the object’s center for both the FHBB and SHBB. It also implies that the 372 

negative ARFs occur at higher frequencies with a larger offset by comparing Fig.5(i) with 373 

Fig.5(j) [or Fig.5(k) with Fig.5(l)]. Unfortunately, quantitative results for the orientation 374 

dependence of the negative force are not available although it is known that to induce a 375 
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negative axial ARF the scattering in the forward hemisphere needs to be stronger than 376 

scattering in the backward hemisphere29. 377 

One of the most important results concerns the extent of the first-order HBB 378 

negative ARF regions in evident in Fig. 5 (b) and (h) where the cone angle   can be as 379 

small as 54 degrees. For fixed rigid spheres on the axis of a first-order HBB it has long 380 

been known that conditions can be found giving negative axial ARF8,10. The smallest 381 

value of   for a first-order HBB to produce negative ARF on a rigid sphere is known to 382 

be   of approximately 63 degrees. Inspection of Fig. 5 (b) and (h) shows that for an 383 

appropriately elongated generalized superspheroid [Fig. 5(b)] and capsule [Fig. 5(h)] the 384 

associated values can be as small as 54 and 55 degrees, respectively. This suggests those 385 

shapes of elongated objects can be especially favorable for producing negative axial ARF 386 

in first-order HBB. 387 

3.4 Three dimensional ARFs for typical nonspherical objects 388 

The three-dimensional ARFs (from the first to third column) of typical concave and 389 

convex shapes are investigated versus the dimensionless frequencies 0kr , the cone angle 390 

of the Bessel beam   and the transverse offset ( )0 0,x y , as shown in Fig. 6. The 391 

first-order HBB is considered with both on- (first row) and off-axis incidences (second 392 

and third rows). The offset is set as ( ) ( )0 0 0 0, y 0.5 ,0.5x kr kr = . The generalized 393 

superspheroid with 2a b = (first and second rows) is discussed at first and it could be 394 

found that the transverse ARFs vanish for the on-axis incidence because of the rotational 395 
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symmetry of both the incident Bessel beam and geometric shape. However, for the 396 

off-axis incidence, the transverse ARFs will exist, see Fig. 6(d) and 6(e). To investigate 397 

the effect of the geometric shapes on the three-dimensional ARFs, the ARFs of a 398 

smoothed spheroid with the same aspect ratio 2a b =  and offset are given in the third 399 

row of Fig. 6. By comparison of the ARFs in the second and third rows, the main profiles 400 

of ARFs in the two-dimensional ( )0 ,kr   regions are similar for the same aspect ratio 401 

and off-set. However, there are some “jumps” in the ARFs patterns versus ( )0 ,kr   at 402 

relatively high frequencies (e.g., 0 4.75kr  ). This is due to the fact that the scattering 403 

patterns will be more easily influenced when the aspect of the geometric shape 404 

comparable with the wavelength (i.e., relatively high frequency), which is further 405 

demonstrated by the similar ARFs patterns at low frequencies, see the second and third 406 

rows. 407 

In addition, the three-dimensional ARFs of the generalized superspheroid with 408 

2a b = are studied versus the offset 0x  and 0y  in ordinary (order=0), first-order 409 

(order=1) and second- order (order=2) Bessel beams, as depicted in Fig. 7. The range of 410 

the offset is  01 1x−    and 01 1y−   , with the increase are ( )0 0 0.02x y  = . The 411 

incident dimensionless frequency is 0 10kr =  and cone angle 30 = . As observed in 412 

the first ( xY ) and second ( yY ) columns, the transverse ARFs versus the offsets ( )0 0,x y  413 

have the rotational symmetry with the angle of 2 . This could be easily understood by 414 

the reciprocity of transverse ARFs in x  and y  directions. Furthermore, the axial ARFs 415 
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of OBB and HBBs are different such that the maximum value occurs at the axis for the 416 

OBB while at the concentric ring for the HBBs, which depends on the structure profiles 417 

of the Bessel beams. The three-dimensional ARFs could be used to discuss the trapping 418 

stability and the dynamic motions (axial translocation and orbital rotation around the 419 

beam axis) of particles in the Bessel beams. To further understand the three-dimensional 420 

ARFs of the generalized superspheroid versus different dimensional frequencies and 421 

transverse offsets, the ARFs are given when the superspheroid is placed in the ordinary 422 

(M=0), first-order (M=1), and second-order (M=2) Bessel beams, respectively, with a 423 

fixed cone angle 30 =  and the frequencies ranging from 0kr =0.2 to 0kr =10 [see 424 

Mov2 in Supplemental Material at URL]. The transverse forces are given in the form of 425 

arrow patterns, while the axial force is placed in the background with the colormaps. 426 

3.5 Axial ARFs of rigid spheres in Standing Bessel Waves 427 

The incident beam shape coefficients of a traveling Bessel beam are given 428 

theoretically in Eq. (17)35, which could be easily extended for the standing Bessel waves. 429 

The velocity potential SB  of a standing Bessel beams could be written as  430 

 
( ) ( ) ( )0 0 '

0 'z zik z z h ik z z hM iM

SB M ri Ae Be J k R e  
− + − − + = + 

 
  (18) 431 

where h  is the axial distance between the particle centroid and nearest pressure antinode, 432 

A  and B  are the amplitudes of the two beams with opposite propagation. To keep the 433 

energy of the standing fields the same as the traveling Bessel beam, one has 
2 2 1A B+ = , 434 

with B A=  and 
21 1A = + . Conducting the similar derivation of the beam shape 435 
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coefficients of a single Bessel beam, the theoretical derivations for the standing Bessel 436 

beams could be de obtained as 437 

 ( ) ( ) ( ) ( ) ( ) ( )0 0 0

04 1 cosz z
n mik z h ik z h i m Mn-m+M m

nm nm n m Ma Ae Be i P J e


  
−− + − − + − −

−
 = + −
 

  (19) 438 

Both the axial ARFs of a rigid sphere in a standing ( 1 = ) and traveling ( 0 = ) 439 

Bessel beams with different orders (order=0, 1, 2, and 3) are calculated versus the 440 

dimensional frequency ka  with a fixed cone angle 60 = . As observed in Fig. 8, 441 

axial force curves in standing Bessel waves show intuitive oscillation characteristics 442 

versus the dimensionless frequency as similar to the plane standing waves, which are 443 

different from those in traveling Bessel beams. However, the fabrication set-ups for 444 

Bessel beams and calibration of two counter-propagating Bessel beams will be 445 

challenging in experimental and applied investigations. 446 

4 Conclusions 447 

Computation of three-dimensional acoustic radiation forces on objects with complex 448 

geometrical shapes and boundary conditions is a challenging topic in engineering 449 

applications. Previous derivations of the acoustic radiation pressure are based on the long 450 

wavelength approximation62-64 which has the limitation that the particle size is much 451 

smaller than the acoustic wavelength. Recently, the partial wave series solution has been 452 

introduced to study the ARF in the context of a Bessel beam without the limitation of 453 

computational frequencies. However, this exact solution may be restricted to certain 454 

shapes8-10. The T-matrix method is quite helpful for typical objects in engineering and 455 
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especially efficient for shapes with rotational symmetry. In addition, the TMM could be 456 

employed for scattering problems involved in a waveguide65 or multiple scattering66 457 

(including objects of multilayers and/or arbitrary numbers), which could be further 458 

extended for the ARFs based on the present work. The present numerical experiments 459 

demonstrate the effectiveness of the TMM to calculate the ARFs for several typical 460 

shapes, and the negative axial ARFs are obtained under certain conditions with the 461 

corresponding physical mechanisms. The TMM is very versatile for both spherical and 462 

nonspherical shapes with different material composition34-41,58 once the geometrical shape 463 

functions could be given explicitly, providing an alternative to theoretical and 464 

experimental approaches. Other numerical methods, such as the finite volume method 465 

(FVM)47,48, the (modified) finite element method (FEM)68,69, the boundary element 466 

method (BEM)44-46, the finite-difference time-domain method (FDTD)51, and methods 467 

based on the ray acoustics approach69 and the perturbation theory70, may combine with 468 

the present derivation to provide more choices for the computations of ARF in Bessel 469 

beams. The TMM can be also used to calculate the acoustic radiation torques71, which has 470 

been implemented in optics with the TMM72 for a Gaussian beam incidence73 by using 471 

the sums of products of the expansion coefficients for the integrals of the angular 472 

momentum fluxes74. The design of the acoustic tweezers numerical toolbox will benefit 473 

from the present work as similar to that in Optics73. It is anticipated that the 474 

three-dimensional ARFs could be obtained immediately once the scattered coefficients 475 
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could be calculated according to a certain incident wave. The dynamic motions could be 476 

obtained for the axial translocation and orbital rotation around the beam axis. The long 477 

nonspherical shape may be especially favorable for producing negative axial ARF in 478 

Bessel beams, which is potential in the fields of microfluidics and life sciences. A brief 479 

theoretical derivation of the beam shape coefficients for the standing Bessel beams is 480 

given with the comparisons of axial ARFs in both standing and traveling beams, which 481 

may provide more possibility for the particle manipulations with vortex beams. 482 

483 
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Appendix:  484 

A. Detailed derivations of Three-dimensional ARFs 485 

 486 

To conduct the integrals of products including spherical harmonics and 487 

trigonometric functions over the solid angle in Eq. (11), the following formulas should be 488 

introduced based on the Eqs. (15.150-152) in Ref. [60] for the three-dimensional 489 

dimensionless ARFs xY , yY and zY , respectively 490 

( ) ( )

( )

2
* 2

' '
0 0

1, ', 1 ', 1 , 1 ', 1 ', 1 1, ', 1 ', 1 , 1 ', 1 ', 1

, , sin cos d d

1
;

2

nm n m

n m m m n n n m m m n n n m m m n n n m m m n n

Y Y

b b b b

 

       

       + + + − − + − + − − + − − −= − − − +

 
  (A1) 491 

( ) ( )

( )

2
* 2

' '
0 0

1, ', 1 ', 1 , 1 ', 1 ', 1 1, ', 1 ', 1 , 1 ', 1 ', 1

, , sin sin d d

;
2

nm n m

n m m m n n n m m m n n n m m m n n n m m m n n

Y Y

i
b b b b

 

       

       + + + − − + − + − − + − − −= − + −

 
  (A2) 492 

( ) ( ) ( )
2

*

' ' 1, ', ', 1 , ', ', 1
0 0

, , sin cos d d ;nm n m n m m m n n n m m m n nY Y c c
 

           + + −= +   (A3) 493 

where   is the Kronecker delta function. Substituting Eqs. (A1)-(A3) into the three 494 

components into Eq. (11), the explicit expressions are obtained as Eqs. (12-14) with the 495 

corresponding coefficients therein. 496 

B. Explicit expression of transition (T) matrix 497 

The incident and scattered beam shape coefficients are related by the transition 498 

matrix, depending on the geometric shape, material composition, and boundary 499 

conditions at the interface of the particle. For a rigid particle with rotational symmetry, 500 
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the T matrix could be calculated as 1Re −= −T QQ  with the element of the Q  matrix 501 

derived as36 502 

( ) ( )
( ) ( )

( ) ( ) ( )
( )1

1' '

, ' ' ' ' ' ' 20

2
2

0

cos
cos cos

cos ' cos
sin d d

sin ' sin

m

n nm m

nm n m n m n n nm n n

h kr Pr
Q j kr P P h kr

r r

m m
r

m m


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

 
  

 


 



  
= − 

   

  
   

  





(A4) 503 

where ( )r   is the geometric shape function and d dr r =  is the derivate of ( )r   504 

with respect to the polar angle   on the particle surface. Further details and simplified 505 

methods could be found in Refs. [36,40]. In fact, the Q  matrix could be calculated for 506 

an arbitrary shape from the point of view of theory, however, there can be severe 507 

numerical difficulties in the general situation. The TMM is quite efficient for rotational 508 

shapes as demonstrated in the literature over the past decades. 509 

510 
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Figure captions 616 

Fig. 1 (Color online) Schematic of an arbitrary 3D object in an ideal fluid illuminated by 617 

a helicoidal Bessel beam (HBB) with arbitrary order and location. The acoustic scattering 618 

in the forward half-space (red solid arrows) is relatively stronger than the scattering in the 619 

backward half-space (blue dashed arrows), leading to a negative ARF.  620 

 621 

Fig. 2 (Color online) The coordinates relationship of the particle centroid [ ( )0,0,0O ] and 622 

beam origin [ ( )0 0 0, ,BO x y z ]. ( ), ,x y z  is an arbitrary field point. 623 

 624 

Fig. 3 (Color online) Validations of the Axial ARFs calculated using the TMM compared 625 

with those from the exact solutions for a rigid sphere (a=b) in a Bessel beam based on the 626 

multipole expansion method. (a) On-axis incidence for with the orders M=0 (blue dashed 627 

line) and M=1 (red solid line). (b) Off-axis incidences with the order M=0 and cone angle 628 

=30 . (c) 2D schematic of a "peanut-shaped" generalized superspheroid placed on the 629 

axis of a Bessel beam. (d) Convergence tests for a rigid generalized superspheroid with 630 

aspect ratio 4a b =  for on-axis and off-axis incidences with the order of Bessel beam 631 

M=1. 632 

 633 

Fig. 4 (Color online) (a) The axial ARF of the rigid oblate spheroid with aspect ratio 634 

1 2a b =  with 0r b=  ( a b ). The order of the Bessel beam is M=1 with cone angles 635 
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30 = , 66.42 , and 80 . (b) Like panel (a) except that the particle is the prolate 636 

spheroid with 2a b =  and 0r a=  ( a b ). Panels (c) and (d) depict the enlarged view 637 

of the negative ARF region for the rigid oblate and prolate spheroids, respectively. (e) 638 

Angular dependence of the scattered form functions versus the scattered polar angle s  639 

for the oblate spheroid in the first-order HBB with =80  for 0 1.8kr =  [red solid line, 640 

corresponding to the red solid pentagram in (c)] and 0 2.1kr =  [blue dash line, 641 

corresponding to the blue solid pentagram in (c)]. The black dotted line denotes the 642 

direction of the incident wave vector with s = . Negative axial ARFs exist when the 643 

scattering in the forward hemisphere is relatively stronger than that in the backward 644 

hemisphere. 645 

 646 

Fig. 5 (Color online) Negative axial ARF “islands”. The 2D plots depict only the 647 

negative ARFs in the ( )0 ,kr   domain with colors, while the white domain stands for the 648 

non-negative ARFs. (a) the rigid generalized superspheroid with 2a b =  under the 649 

on-axis incidence of the OBB (M=1). (b) Like panel (a) except that order=1. (c) Like 650 

panel (a) except that order=2. (d) Like panel (a) except that order=3. (e) Like panel (b) 651 

except that 3a b = . (f) Like panel (b) except that 4a b = . (g) Like panel (c) except that 652 

1 2a b = . 0r b=  since a b  in this case. This shape may model a red blood cell shape 653 

with a dip in the center. Panels (h-l): The 2D negative ARF islands for a capsule shape 654 

( =2l b ) with 0r l= . (h-j) are for the first-order (M=1) HBB with (h) on-axis and (i,j) 655 
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off-axis incidence. The offsets ( )0 0,x y in the unit of meters are ( )0,0 , 656 

( )0 00.1 ,0.1kr kr   and ( )0 00.5 ,0.5kr kr  , respectively for (h-j). (k) Like panel (i) 657 

except that order=2. (l) Like panel (j) except that order=2. 658 

 659 

Fig. 6 (Color online) Three-dimensional ARFs versus dimensional frequency 0kr  and 660 

cone angle  . The first two columns describe the transverse ARFs while the third is the 661 

axial ARFs. A rigid generalized superspheroid with aspect ratio 2a b =  under the (a-c) 662 

on-axis and (d-f) off-axis incidences of the first-order (M=1) HBB. The offset is set as 663 

( ) ( )0 0 0 0, y 0.5 ,0.5x kr kr = . The third row is as same as the second except that the 664 

particle is a smoothed rigid spheroid with 2a b = . 665 

 666 

Fig. 7 (Color online) Three-dimensional ARFs (first to third columns: xY , yY , and zY ) 667 

versus transverse offset 0x  and 0y  for Bessel beam with different orders: (a-c) OBB 668 

(M=0); (d-f) first-order (M=1) HBB; (g-i) second-order (M=2) HBB. 669 

 670 

Fig. 8 (Color online) Axial ARFs of a rigid sphere in a standing or traveling Bessel beam 671 

with a fixed cone angle 60 = . 672 

673 
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Fig. 1 674 

 675 

676 



38 
 

Fig. 2 677 
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Fig. 3 680 
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Fig. 4 683 
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Fig. 5 686 
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Fig. 6 689 
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Fig. 7 692 
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Fig. 8 695 
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