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Abstract 

The mechanical behavior of athermal random fiber networks embedding particulate inclusions is 

studied in this work. Composites in which the filler size is comparable with the mean segment 

length of the network are considered. Inclusions are randomly distributed in the network at various 

volume fractions and cases in which fibers are rigidly bonded to fillers, and in which no such 

bonding is imposed are studied separately. In presence of inclusions, the small strain modulus 

increases, while the ability of the network to strain stiffen decreases relative to the unfilled network 

case. The reinforcement induced by fillers is most pronounced in sparse networks of floppier 

filaments that deform in the bending-dominated mode in the unfilled state. As the unfilled network 

density or the bending stiffness of fibers increase, the effect of filling diminishes rapidly. Fillers 

lead to a transition from the soft, bending-dominated, to the stiffer, stretching-dominated, 

deformation mode of the network, transition which is primarily responsible for the observed 

overall reinforcement. The confinement, i.e. the restriction on network kinematics imposed by 

fillers, causes this transition. These results provide a justification for the observed difference in 

reinforcement obtained in sparsely versus densely cross-linked networks at given filling fraction, 

and provide guidance for the further development of network-based materials.  
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1. Introduction 

Many soft materials have a random fiber network as their primary structural component.  Examples 

include the cellular cytoskeleton [1], the extracellular matrix (ECM),  various connective tissues 

[2], and biomaterials such as mycelium [3], as well as synthetic materials such as paper [4], non-

wovens [5], rubber [6] and hydrogels [7]. In general, network-based materials are heterogeneous 

and often contain inclusions with dissimilar mechanical properties. For example, hydrogels 

reinforced with nanoparticles [8], particle-filled collagen scaffolds [9-11], and mycelium network 

embedding particles [12] are some prominent examples. In all these systems, inclusions influence 

the deformation mechanisms and the stress distribution in the underlying network, thus affecting 

critically the macroscopic behavior of the material. Despite the prevalence of such examples, a 

fundamental understanding of how inclusions alter the mechanical properties of the underlying 

network remains elusive, which limits our ability to design filled network based materials. 

The mechanics of fiber networks has been an active research area for more than a decade [13-16]. 

Most fiber networks of practical importance are sub-isostatic (i.e. their average connectivity is 

below the threshold defined by the Maxwell criterion for structures of trusses [17]) and 

predominantly derive rigidity at small strains from fiber bending [18,19]. Sub-isostatic networks 

acquire non-zero stiffness in presence of residual stresses [20] or upon straining [21]. Network 

elasticity is controlled by fiber density, degree of cross-linking and fiber stretching and bending 

rigidities [18,19,22]. Dense networks with fibers relatively stiff in bending deform (approximately) 

affinely and store strain energy mostly in the stretching deformation mode of fibers. Office paper, 

densely cross-linked non-wovens and some textiles are examples of this type of network. Low 

density and/or sparsely cross-linked networks, as well as networks of fibers soft in bending, deform 

in a highly non-affine manner, storing energy mostly in the softer, bending deformation mode of 

fibers. Most biological networks belong to this class of structures. Experimental and theoretical 

works have also shown that networks stiffen with increasing strain, which results in ‘J shaped’ 

stress-strain curve [23,24]. This nonlinear behavior is geometric in nature, being primarily 

associated with the re-orientation of fibers, or fiber segments, during loading [25], and, in 

relatively sparsely crosslinked networks, is less due to the nonlinearity of the individual fiber 

constitutive behavior [26]. Therefore, strain stiffening is highly dependent on network architecture 

[27].  
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Reinforcement of man-made networks with fillers has been used technologically for a long time, 

while biological tissue also contains “inclusions” such as cells and proteoglycans. Furthermore, 

nanoparticles are embedded in the cellular cytoplasm [28] or in the extracellular matrix [29] and 

used to apply loads (when moved using external fields) or as tracers of deformation. The effect of 

such inclusions on the stiffness and rheology of the embedding medium is still a matter of debate.  

The effect of fillers on network stiffness is different in densely and sparsely cross-linked cases. 

Particulate-filled epoxies exhibit modest stiffness enhancement upon filling with nanoscale or 

microscale particles [30]. Reinforcement of athermal collagen structures with nanofillers produces 

much stronger effects [9-11]. 

To explore the effect of fillers in fibrous materials, we consider in this work three-dimensional 

(3D) models of random athermal fiber networks containing spherical rigid inclusions of radius 

comparable to the mean segment length of the network. These are relevant for cases in which the 

network behavior is primarily enthalpic, including filled non-wovens of various kinds and 

connective tissue composed from largely athermal collagen or/and elastin filaments. The 

inclusions are caged by the network and are rigidly bonded to the fibers they contact. The slippery 

interface case is also considered in separate simulations. We explore the effect of the filler volume 

fraction on the linear and non-linear components of the mechanical response of networks loaded 

in tension. We observe that the addition of fillers has large effect if the base network is sparsely 

cross-linked or/and it is composed from filaments which have soft bending deformation modes. 

On the other hand, the reinforcement effect is weak in dense networks. We show that fillers have 

a strong confining effect on the surrounding network, whose dominant deformation mode changes 

to the stiffer stretching mode. This transition is responsible for the increase of the small strain 

modulus and the reduction of the ability of the network to strain stiffen under large deformations. 

The model definition is presented in the next section. In the results section we discuss the generic 

effect of fillers on network behavior, describe a cross-over from the bending to the stretching 

deformation mode as the filler volume fraction increases, and explore the mechanism responsible 

for the observed reinforcement effect.   

2. Models and methods 
 

To model the discrete fiber network with embedded inclusions, a 3D network of straight fibers, 

each of length 𝐿", is constructed using a procedure similar to that developed previously [27]. In 
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this approach, sparse fiber assemblies are generated first based on the random sequential 

adsorption (RSA) algorithm where fibers of length, 𝐿", are deposited sequentially with random 

spatial location and orientation in the cubic domain while satisfying non-overlapping constraint. 

Six such fiber assemblies are generated and placed around the final model domain, similar to the 

method of fiber packing described in ref [31]. Dynamic finite element (FE) simulations are 

subsequently performed to pack the fibers of all six assemblies within the specified cubic volume 

of the model, V. Fibers are represented using Timoshenko beam elements during this packing 

process, and surface-based contact interaction are enforced to satisfy non-overlapping constraint 

[31].  

 

Next, fiber-to-fiber crosslinks are introduced at locations where the inter-fiber distance is smaller 

than 2𝑑 , where d is the fiber diameter. After the cross-linking process, fibers not cross-linked to 

the network and fiber dangling ends are removed such to obtain a fully crosslinked fiber network, 

as shown in Fig. 1(a). The size of the model, 𝑉'/), is at least three times larger than 𝐿" such to 

reduce the model size effect.In the reminder of this paper, we refer to this model (Fig. 1(a)) as ‘the 

unfilled network.’  

 

To introduce inclusions within the unfilled network, spherical inclusions are placed randomly 

inside the cubic domain and fibers are trimmed at their intersection with inclusions. Finally, fiber-

to-inclusion cross-links are introduced to obtain a fully connected structure, as shown in Fig. 1(b). 

Figure 1(c) shows the discrete interface between an inclusion and the surrounding fibers. The fiber-

inclusion cross-links are of the same nature with those between fibers and transmit both forces and 

moments (are of ‘welded’ type).  
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Figure 1. (a) 3D crosslinked fibrous network. (b) The network in (a) filled with spherical 

inclusions. The fillers occupy 𝜙 = 5% of the model volume in this realization. (c) Zoomed view 

of the discrete interface between an inclusion and surrounding network. The green lines represent 

fibers, red lines mark the cross-links and the blue spheres are inclusions (color online). 

 

The important network parameters are the network volume fraction, ρ/, and the fiber properties. 

ρ/ is related to the network density (defined as the total length of fiber per unit volume) r, as ρ/ =

ρA, where A is the cross-sectional area of fibers. All fibers in the model have the same length, 𝐿", 

which is taken here to be the unit of length and hence, it is used as normalization factor for all 

length. Segments between neighboring cross-links along given fiber have length 𝑙; this quantity is 

Poisson distributed and the mean segment length is denoted by 𝑙2. The mean number of cross-links 

per fiber (n4) is n4 = L"/l4 	+ 1. In the models used in this study, n4 ≈ 5, and the network density 

r is kept constant at 𝜌𝐿"< = 103.2, with @A
BC
= 	0.25. 

 

The fiber material is considered linear elastic, with Young’s modulus 𝐸E. The fiber bending and 

axial rigidities are proportional to 𝐸E𝐼	and 𝐸E𝐴, respectively, where 𝐼 is the axial moment of inertia 

of the fiber cross-section. We consider fibers with circular cross-section; networks of fiber with 

non-circular cross-section present additional complexities associated with the existence of two 

principal bending modes [32]. It has been determined earlier [18,22,33,34]  that the mechanical 

behavior of networks formed by filaments of same type depends on the fiber bending and axial 

rigidities exclusively through a parameter with units of length, lH = IEKI/EKA. For fibers with 
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circular section 𝑙M = 𝑑/4. We note that if the filaments cannot be considered beams, 𝑙M simply 

represents the ratio of the bending and axial rigidities and is not necessarily linked to any geometric 

parameter of the fiber cross-section. We take this view in the present work and vary 𝑙M/𝐿" in the 

range 10OP to 0.15.  

 

Fillers are defined by their diameter, D, and their volume fraction ϕ. Parameter ϕ, computed as 

the total volume of inclusions divided by the model volume, V, is varied in the range 2% to 10%. 

The filler diameter is taken to be 𝐷 = 2𝑙2 in all models and all inclusions in given model are of 

same size. Inclusions much smaller than 𝑙2 are also smaller than the typical inter-fiber distance and 

are likely in contact with a single fiber. Their reinforcement is likely limited. If 𝐷 ≫ 2𝑙2, the 

network appears as a continuum on the scale of the inclusion and the standard view of a particle-

filled continuum applies [35]. We expect that interesting behavior emerges when the scale of the 

filler, 𝐷, is comparable with the characteristic length scale of the network, 𝑙2. This motivates the 

present choice of parameters.  

 

Inclusions are considered rigid. This represents all situations in which fillers are much stiffer than 

the surrounding network/matrix, such as electrospun network filled with nanoparticles [36], epoxy 

filled with nanoparticles [37], or reconstructed collagen networks with nanofillers [9-11].   

 

Fibers are discretized with Timoshenko beam elements of aspect ratio 5. Inclusions are modeled 

using rigid shell elements (approximately 300 elements per inclusion). The excluded volume 

constraints between fibers and between fibers and inclusions are enforced using the general contact 

algorithm in Abaqus [38]. All cross-links, between fibers and between fillers and fibers, are 

modeled using rigid connector elements which are not allowed to fail. The model is deformed 

uniaxially in tension by imposing equal and opposite displacement boundary conditions on two 

opposite boundaries. Traction free boundary conditions are imposed on model surfaces parallel to 

the loading direction. These are also constrained to remain planar during deformation. The model 

is free to contract in the direction transverse to the loading. The solution is obtained using the finite 

element solver Abaqus/Explicit (version 6.13-1). 

 

3. Results and discussion 
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3.1 Reinforcement depends on the type of network used as matrix 

Figure 2 shows the tensile stress-stretch response of filled networks with four inclusion volume 

fractions, 𝜙 = 2%, 5%, 8% and 10%. Figure 2(a) shows curves for systems in which the unfilled 

network deformation is non-affine, with 𝑙M 𝐿"	⁄ = 	0.008 while Fig. 2(b) corresponds to cases in 

which the unfilled network deformation is approximately affine, with 𝑙M 𝐿"	⁄ = 	0.04 The stress-

stretch curves of the corresponding unfilled networks are also shown for reference. The stress 

measure used in this work is the nominal (first Piola-Kirchoff) stress, S and the deformation 

measure used is the stretch ratio, 𝜆. The reported stress is normalized by the fiber modulus, 𝐸E, 

which is considered here the unit of stress. 

It is observed that inclusions stiffen the network and the effect increases with increasing 𝜙. Both 

filled and unfilled networks demonstrate three distinct regimes during uniaxial deformation, which 

are identical to those usually observed for unfilled networks [27]. The deformation is linear elastic 

(of modulus 𝐸") in the first regime, for 1 < 𝜆 ≼ 1.05. Beyond this critical stretch (𝜆2'~1.05), a 

second regime is observed in which strain stiffening is pronounced. Strain stiffening is primarily 

due to the gradual orientation of fibers in the loading direction. Fibrous networks of small 𝑙M 𝐿"	⁄  

values strain stiffen quadratically, i.e. 𝑆~(𝜆 − 1)< [27]. In the third regime, the stress-stretch curve 

becomes linear again. In this regime, multiple stress paths form and transmit loads across the 

sample, while the majority of fibers are not loaded. In most applications (e.g collagen networks in 

connective tissue) the network functions in regimes I and II. Networks with large 𝑙M 𝐿"	⁄ , which 

deform mostly in the stretching mode, exhibit little strain stiffening up to large stress values. The 

three regimes are visible in Fig. 2(a) for cases with low  𝑙M 𝐿"	⁄ , while the stress-strain response is 

approximately linear throughout the entire strain history in Fig. 2(b). The arrows in Fig. 2(a) 

indicate the transition between regimes I and II and between regimes II and III for the unfilled 

network (black arrows) and the filled network with 𝜙 = 10% (red arrows). The transitions 

between these three regimes are better visualized when the stress-stretch curves of Fig. 2(a) are 

replotted as tangent stiffness vs. stress, as shown in Fig. 2(c). The normalized tangent stiffness is 

calculated as  E_ EK⁄ = d(S EK⁄ ) dλ⁄ . The initial linear regime appears as a plateau at small stress 

values in Fig. 2(c). 
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We observe that the stretch at the first transition, 𝜆2', is largely unaffected by the presence of 

inclusions, while the second transition, 𝜆2<, depends on the filling fraction. 𝜆2< decreases with 

increasing 𝜙 and hence the range of stretch ratios corresponding to regime II decreases with 

increasing 𝜙 (see Fig. S1 of the Supplementary material). A more detailed discussion of this aspect 

is deferred to section 3.3.  

 

Figure 2. Nominal stress versus stretch curves for fiber networks with rigid inclusions: (a) 

corresponds to  𝑙M 𝐿"	⁄ = 	0.008 and (b) corresponds to	𝑙M 𝐿"	⁄ = 	0.04 Results for four inclusion 

volume fractions, 𝜙, are reported. The stress-stretch curve of the unfilled network, 𝜙 = 0%, is 

shown for reference. Each curve is obtained by averaging the response of three realizations of 

same network parameters. The bars shown for 𝜙=8% (red diamonds) and 𝜙=10% (blue upward 

triangles) represent the range of the three realizations. The bars are not shown for the other curves 

for which the range of variability is comparable to the size of the symbols. The arrows in (a) 

indicate transitions between the three regimes of deformation for the unfilled network (black 
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arrows) and the filled network with 𝜙 = 10% (red arrows). The curves corresponding to 𝜙=0 and 

10% from (a) are replotted in (c) as tangent stiffness versus stress. This representation outlines 

better the three regimes described in the text, and the transition points between them (marked by 

arrows).  

   

The effect of filling is discussed further in terms of the linear elastic modulus and strain stiffening. 

Figure 3(a) shows the variation of 𝐸" as a function of 𝑙M/𝐿" for filled networks with various 

inclusion volume fractions, 𝜙. The vertical axis is normalized by the affine modulus of the unfilled 

network, 𝐸bEEcde
fE . Data for unfilled networks,  𝐸"

fE (black circles), is shown for comparison. The 

effective modulus 𝐸bEEcde
fE  is evaluated by assuming that each filament deforms affinely with the 

imposed macro-deformation, which restricts their deformation to the stretching mode, leading to 

𝐸bEEcde
fE = 𝛽𝜌𝐸E𝐴. As well-known [39], the affine modulus scales linearly with the density and is 

proportional to 𝐸E𝐴. The constant 𝛽 depends on the network architecture and, for the models 

considered here, 𝛽 = 	0.12 . The plot exhibits the two distinct regimes (defined approximately by 

the vertical dashed line in Fig. 3(a)) broadly discussed in the literature on fiber networks [14,18,19] 

and reviewed in the introduction: the modulus approaches the affine prediction at large  𝑙M/𝐿" and 

𝐸"
fE~𝐸E𝐴, while at small 𝑙M/𝐿", 𝐸"

fE~𝐸E𝐴𝑙M< = 𝐸E𝐼, the deformation is non-affine and the bending 

deformation mode of fibers prevails.  

Filled networks exhibit qualitatively the same general behavior, but with important distinguishing 

differences. The transition from the stretching-dominated to the bending-dominated regimes takes 

place at smaller values of 𝑙M/𝐿" as 𝜙 increases. The transition is also broader and in this regime 

one can approximate 𝐸"(𝜙)	~	𝐸bEEcde
fE 𝑙M<h	~		(𝐸E𝐴)	'Oh(𝐸E𝐼)	h, where 𝛼 = 𝑓(𝜙) < 1. The 

exponent α varies from 0.99 (𝜙 = 2%) to 0.695 (𝜙 = 10%) in the given range of filler density. 

This implies that, at given 𝑙M/𝐿", the contribution of the stretching deformation mode to the small 

strain modulus increases with		ϕ. This issue is discussed further in section 3.2.  

Fillers reinforce the network in all cases and hence  𝐸"(𝜙) > 𝐸"
fE = 𝐸"(0).  However, 

reinforcement is much more pronounced in the bending-dominated regime. To emphasize this 

result, the data in Fig. 3(a) is re-plotted in Fig. 3(b) by normalizing the filled network modulus 

with the modulus of the corresponding unfilled network, i.e. 𝐸"(𝜙)/𝐸"
fE. While in the stretching-
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dominated regime the modulus increases by a factor of ~3 upon the addition of up to 10% volume 

fraction of rigid fillers, in the bending-dominated regime the reinforcement is more than one order 

of magnitude larger. This is the first important result of the present work.  

 
Figure 3. (a) Scaling of the small strain modulus (Em) of filled networks with 𝑙M/𝐿" for different 

filler volume fractions, ϕ. The vertical axis is normalized by the affine modulus of the unfilled 

network, 𝐸bEEcde
fE . The vertical dashed line indicates approximately the transition from bending 

(unfilled symbols) to stretching (filled symbols) dominated network response for the unfilled 

networks. The transition shifts gradually to the left as ϕ increases. (b) Data in (a) replotted as 

𝐸"(𝜙)/𝐸"
fE function of 𝑙M/𝐿".  

 

Figure 4 compares the reinforcement observed experimentally in two types of nanocomposites: 

epoxy filled with nanoparticles and filled reconstructed collagen and fibrin networks. Epoxies are 

densely cross-linked networks in which the strands are rather stiff in bending. Elasticity is 

enthalpic in these systems. The data is presented as 𝐸"(𝜙)/𝐸"
fE (i.e. the reinforcement) versus the 

filling fraction (vol%). The domain representing filled epoxies is based on experimental data from 

[30,37].  The figure includes data for several collagen-based composites incorporating 

hydroxyapatite whisker particles [11], Al2O3-ZnO2 nanoparticles[9], and polyacrylic acid 

nanoparticles [10], in which the collagen is in the usual fibrilar form, as well as data from a study 

of fibrin networks embedding platelets [40]. The two data sets separate in the vertical direction, 

with the reinforcement of the sparsely cross-linked networks of flexible strands being much more 

pronounced. The results from Fig. 3(b) are also shown, for 𝑙M/𝐿" = 3.8 × 10O) and 3.8 × 10O<. 
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As discussed above, the reinforcement obtained in a network of flexible fibers is much larger than 

that of a network of fibers stiff in bending filled with the same volume fraction of rigid fillers.   

  

It is further of interest to compare the reinforcement observed here with that expected for a 

particulate composite with continuum matrix of stiffness identical to the stiffness of the 

corresponding unfilled network. To this end, we add to Fig. 4 predictions for the continuum 

equivalent composites obtained with the generalized self consistent method [41]. These 

continuum-based models are based exclusively on the filler volume fraction and predict lower 

reinforcement than both network models and most of the experimental values for all 𝜙. This 

difference has at least two sources: (i) network models are intrinsically heterogeneous and do not 

deform exactly affinely even at large values of 𝑙M/𝐿"; (ii) Classical local continuum models with 

no internal length scale are not adequate to represent the deformation of fiber networks at a scale 

comparable with the fiber segment length. Non-local formulations that take into account the 

micropolar nature of stress in these structures are more appropriate [42]. Furthermore, we expect 

that networks filled with inclusions of size much larger than any internal length scale of the 

network (𝑙2,𝐿") would exhibit behavior closer to that predicted by the equivalent continuum 

models. The numerical data in Fig. 4 also indicate that the effective modulus scales linearly with 

the filling fraction in this range of 𝜙, which is expected based on continuum mechanics results 

[41].  
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Figure 4. The degree of reinforcement 𝐸"(𝜙)/𝐸"
fE function of the volume fraction of rigid fillers, 

𝜙, as predicted by the present network models with two values of 	𝑙M/𝐿", from Fig. 3(b) (lines with 

filled symbols), and by the generalized self-consistent scheme for continuum composites (dashed 

line). Data for different collagen-based composites reinforced with hydroxyapatite particles (plus 

symbols) [11], Al2O3-ZnO nanoparticles (open pentagon symbols) [9], and polyacrylic acid 

nanoparticles (open triangle symbols) [10] and fibrin network with embedded platelets 

(diamonds)[40] are shown. The shaded domain represents the range of reinforcement values 

reported for filled epoxy materials based on data from [37].  

 

The observation that low density networks of filaments soft in bending change their small strain 

modulus by orders of magnitude upon the addition to the network of a small fraction of rigid 

filaments has been made before using two-dimensional models [43]. In this work, Mikado models 

with bending-dominated and stretching-dominated deformation were considered and a small 

fraction of very stiff fibers were added. The overall modulus of the composite structure increased 

by more than 2 orders of magnitude in the case of the bending-dominated base networks, even 

before the reinforcing fibers were dense enough to produce a percolated sub-network of stiff 

filaments. This effect is associated with the fact that stiff filaments restrict the deformation of the 

base network filaments with which they come in contact to the stretching deformation mode. The 

effect is more pronounced as the non-affinity of the base network increases. A similar stiffening 

effect was reported in [44] for 2D models, but was not observed in the 3D models reported in [45]. 

The discussion in [43] is limited to the small strain modulus of the composite network and does 

not address the non-linear behavior of the material.  

 

It is of interest to discuss the effect of inclusions on the larger strains, non-linear behavior of filled 

networks. To facilitate the direct comparison of curves corresponding to different filling fractions, 

we normalize the stress with the small strain modulus of the respective filled network and plot in 

Fig. 5(a) the normalized stress, 𝑆 𝐸"⁄ , versus stretch for networks with 𝑙M 𝐿" = 8 × 10O)⁄ . As 𝜙 

increases, strain stiffening becomes less pronounced. The data in Fig. 5(a) are replotted in Fig. 

5(b) as tangent stiffness versus stress. The normalized tangent stiffness 𝐸o 𝐸"⁄ = 𝑑(𝑆 𝐸"⁄ ) 𝑑𝜆⁄  is 

equal to 1 at small strains by definition. Networks enter the strain stiffening regime II at a critical 

stretch 𝜆2' which is approximately 𝜙-independent (Fig. S1). Since 𝐸" increases with 𝜙, the 
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transition appears shifted to larger stresses in this representation as indicated by the arrows (shown 

for 𝜙= 0% and 8% only). The unfilled network stiffens in regime II as 𝑆~(𝜆 − 1)<, as also 

observed in [27]. Filled networks exhibit similar stiffening. While the regime I to II transition is 

rapid in the case of unfilled networks, it is more gradual in filled networks of larger 𝜙. In addition, 

the transition from regime II to III takes place at smaller stretches, 𝜆2<, for the filled networks (Fig. 

S1). This renders regime II less well defined in the filled networks case, which leads to the 

appearance of weaker non-linear behavior seen in Fig. 5(a).  

 
Figure 5. (a) Data from Fig. 2(a) normalized such to emphasize the effect of f on the non-linear 

component of the stress-stretch curves. (b) shows the curves in (a) represented as tangent stiffness 

versus stress such to emphasize the three regimes of deformation and the differences of strain 

stiffening in filled and unfilled networks. 

 
3.2 Filler-controlled transition from bending to stretching-dominated deformation 

The transition of the dominant deformation mode of fibers from the stretching to the bending mode 

as either or both the network density decreases or fibers become softer in bending (𝑙M decreases) 

is well documented in the literature [46,47]. Here we show that a similar transition takes place 

when the filler volume fraction increases. Specifically, when a bending dominated network is 

reinforced with increasing volume fractions of rigid fillers, it stores gradually more energy in the 

stretching deformation mode of fibers. This effect is demonstrated in Fig. 6 for a network with  

𝑙M 𝐿" = 8 × 10O)⁄ . The curves represent the fraction of the total strain energy stored in the 

stretching and bending modes. The other deformation modes (torsion and shear) store less than 

5% of the strain energy in all cases. The unfilled network stores more than 80% of the strain energy 



14 
 

in the bending mode. As deformation proceeds, the two fractions become comparable and 

eventually the stretching mode becomes dominant. The transition takes place at 𝜆~1.2, which 

corresponds to the middle region of regime II of the stress-stretch curve in Fig. 2(a). As 𝜙 

increases, the fraction of strain energy stored in the bending mode at small strains decreases and 

the stretch at which the modes switch dominance decreases. The network with 𝜙 = 10% is 

stretching-dominated almost throughout the entire deformation history. This indicates that fillers 

constrain the deformation of fibers in their neighborhood to deform in the stretching mode. This 

effect was also discussed in [43] in the context of 2D Mikado networks and its mechanistic origins 

are further analyzed in section 3.3. The observation that the deformation mechanism of the network 

is modified by the presence of inclusions is the second important conclusion of this work.  

 

Figure 6. Evolution of energy partition with stretch for a network with 𝑙M 𝐿" = 8 × 10O)⁄  and at 

different filler volume fractions, 𝜙. For each case, only the stretching (solid lines) and bending 

(dashed lines) energy fractions are shown; the shear and torsional modes carry less than 5% of the 

total energy at any stage of the deformation history.  

 
3.3 Physical origins of the reinforcement effect 

Three hypotheses regarding the physical origins of the reinforcement effect are analyzed in this 

section. We first analyze the hypothesis that reinforcement is due to the fact that fillers act as 

additional network cross-links with high connectivity. The second hypothesis relates to the 

excluded volume effect, i.e. the requirement that fibers do not overlap other fibers and do not 

penetrate fillers during deformation. The third hypothesis is based on the idea that fillers constrain 
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the deformation of the network, with the degree of confinement increasing as the wall-to-wall 

distance between fillers decreases.  

3.3.1 Connectivity hypothesis 

The stiffness of fiber networks depends markedly on the mean nodal connectivity, 𝑧̅ [21]. 

Increasing 𝑧̅ may also cause a transition from the bending-dominated to the stretching-dominated 

deformation mode. In filled networks, each filler comes in contact with many fibers and may be 

thought as a network node with excluded volume and large z. Hence, it is of interest to inquire to 

what extent the observed reinforcement is associated with the increase of the effective average z 

of the network. 

 

Figure 7. (a) Original filled network with 𝜙=5%, (b) equivalent network with high z nodes where 

each filled is replaced by additional fiber segments (red lines) connecting the neighboring network 

fibers (green lines) to the filler center, and (c) a schematic illustrating how additional fiber 

segments are introduced to create the high z node for each filler (color online). 

To clarify this issue, we consider filled networks in which fillers are replaced by high z nodes as 

shown in Figure 7. Figure 7(a) shows the original filled network with 𝜙=5% whereas Figure 7(b) 

illustrates the equivalent network with high z nodes. Specifically, each filler is replaced by fiber 

segments (red lines in Figure 7(b)) continuing the fibers that come in contact with the respective 

filler surface to a node located at its geometric center, as illustrated in Figure 7(c). The connectivity 

number of this node, z, is equal to the number of fibers in contact with the respective filler. The 

fiber segments added in this process have the same stretching and bending rigidity as all other 
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fibers of the network. Since fillers are effectively removed via this procedure, the excluded volume 

constraint they impose is eliminated.  

Figure 8(a) shows stress-stretch curves for a filled network with  𝑙M 𝐿" = 8 × 10O)⁄  and 𝜙 = 5%, 

for the equivalent unfilled network and for the network in which fillers are replaced by high z 

nodes. The curve corresponding to the modified network with high connectivity overlaps that of 

the unfilled network and does not exhibit the reinforcement observed in the actual filled network 

case. The modified network has higher 𝑧̅ compared with the unfilled network, but the difference 

is small, given that there are many more regular network nodes per unit volume than high z nodes. 

Figure 8(b) shows the energy partition in these three types of structures. Once, again, the energy 

partition in the network with high z nodes is quite similar to that of the unfilled, reference network. 

We conclude that this mechanism is not responsible for the observed reinforcement in filled 

networks.  

 

Figure 8. (a) Comparison of stress-stretch curves for a filled network with 𝑙M 𝐿" = 8 × 10O)⁄  and 

𝜙 = 5% (filled), the corresponding unfilled network (unfilled) and the network that results from 

the filled one by replacing fillers with nodes of high connectivity (high z). The vertical axis is 

normalized with the density of the network in order to compensate for the density variation 

associated with the substitution of high z nodes for fillers. (b) Energy partition for the three cases 

in (a).  

 

3.3.2 Excluded volume hypothesis  
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It is of interest to inquire to what extent the excluded volume condition (the fact that fibers cannot 

cross each other and cannot penetrate fillers) is responsible for the observed reinforcement. 

To clarify this issue, we compare in Fig. 9 stress-stretch curves for networks with 

𝑙M 𝐿" = 8 × 10O)⁄ , and 𝜙 = 5% and 10%, obtained with and without enabling the contact 

constraints during simulation. The data indicates that contacts make little contribution to the 

overall mechanical response in tension. This is due to the large free volume of the network. 

Contacts become slightly more important in shear and are essential in compression [27,48]. We 

conclude that reinforcement is not directly associated with the occurrence of inter-fiber, fiber-filler 

or filler-filler contacts in the effect observed here in uniaxial tension. The excluded volume of 

fillers is expected to become important at large filling fractions, but these situations are of 

importance in a limited number of practical applications.  

 

Figure 9. Stress-stretch curves for networks with 𝑙M 𝐿" = 8 × 10O)⁄  and 𝜙 = 5% and 10% 

obtained with and without the excluded volume constraint.  

 

3.3.3 Confinement hypothesis 

To explore the effect of confinement, we modify the size of inclusions at constant 𝜙 (𝜙 = 5%), 

from 𝐷 = 2𝑙2 to 𝐷 = 3𝑙2. This leads to an increase of the average wall-to-wall distance between 

fillers, w, from 𝜔 𝑙2⁄ = 2.8 to 𝜔 𝑙2⁄ = 4.2. Figure 10(a) shows the stress-stretch curves for the 

unfilled network with 𝑙M 𝐿" = 8 × 10O)⁄ , and for the filled network with 𝜙 = 5% with two values 
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of 𝐷. Increasing the wall-to-wall distance decreases the degree of confinement, which has a strong 

effect on reinforcement. The curve corresponding to the large 𝜔 𝑙2⁄  value is close to that of the 

unfilled network. Figure 10(b) shows the energy partition for all cases presented in Fig. 10(a). 

Once again, increasing 𝜔 𝑙2⁄  brings the filled network closer to the situation of the unfilled 

network, promoting the bending dominated deformation and postponing to larger strains the 

transition to stretching dominance. It results that the effects discussed in this article originate from 

the confinement imposed by fillers on the surrounding network which restricts the softer bending 

deformation mode of fibers and promotes the stiffer stretching mode.  

 

Figure 10. (a) Stress-stretch curves for the unfilled network with 𝑙M 𝐿" = 8 × 10O)⁄  and two filled 

networks with 𝜙 = 5% and filler diameter 𝐷 𝑙2 = 2⁄  and 3, respectively. (b) Energy partition for 

the three cases shown in (a). 

 

3.4 Fillers reduce the Poisson effect 

Networks with large free volume, which are not embedded in a continuum matrix, exhibit large 

Poisson contraction when subjected to uniaxial tension [49-51]. This is due to the reorientation of 

filaments in the loading direction during regime II of deformation (Fig. 2(a)). The same non-linear 

mechanism causes the Poynting effect under shear loading [52]. Figure 11(a) shows the 

incremental Poisson ratio of unfilled and a series of filled networks with 𝑙M 𝐿" = 8 × 10O)⁄  and 

increasing 𝜙. The incremental Poisson ratio is computed as 
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𝜈c = −
𝑑(ln(𝜆@))
𝑑(ln(𝜆))

 

where 𝜆 and 𝜆@ are stretches in the loading and transverse directions, respectively. The incremental 

Poisson ratio 𝜈c reduces to the conventional Poisson ratio, 𝜈", at infinitesimal strains. The unfilled 

network exhibits a rapid increase of 𝜈c during regime II (marked by arrows). A maximum is 

reached towards the end of regime II, beyond which 𝜈c decreases. The origin of this behavior is 

discussed in [51]. Filled networks exhibit similar trends, but the maxima of the respective curves 

decreases as 𝜙 increases.  

 

Figure 11. (a) Variation of the incremental Poisson ratio of the unfilled network with 

𝑙M 𝐿" = 8 × 10O)⁄  and of filled networks with various 𝜙. The corresponding volumetric strains 

are shown in (b). The arrows indicate transitions between regimes I and II, and regimes II and III, 

respectively (see also Fig. 2), for the unfilled network and for the filled network with 𝜙 = 10%. 

Figure 11(b) shows the variation of the model volume relative to the volume of the unloaded model 

for all cases shown in Fig. 11(a). The strong volume reduction observed during regime II is 

associated with the large increase of the incremental Poisson ratio (Fig. 11(a)). The volume 

reduction decreases in magnitude as 𝜙 increases and for 𝜙 = 10% the network volume is almost 

constant during deformation. This demonstrates that the constraints imposed by fillers on the 

deformation of the surrounding network lead to deformation conditions closer to isochoric even in 

presence of a large free volume in the network. This can be understood based on the observation 

that fillers render the deformation more stretching-dominated. Unfilled stretching-dominated (and 

therefore almost affinely-deforming) networks exhibit much weaker Poisson effect than the 

equivalent bending-dominated networks. Figure 12 shows corresponding deformed and 
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undeformed networks with 𝜙 = 0%, 5%, 10%, respectively, demonstrating the reduction of the 

Poisson effect associated with the presence of fillers.  

 

Figure 12. Deformed (green) model configurations of (a) unfilled network, (b) filled network with 

ϕ=5% and (c) filled network with ϕ=10%. Undeformed configurations (black) are overlaid to 

demonstrate the reduction of the Poisson effect in the presence of inclusions. 

 

3.5 Non-bonded filler-network interfaces 

A related perspective on the constraints imposed by fillers on network deformation can be obtained 

by modifying the state of the filler-network interface. In all cases discussed above, fibers are 

connected to fillers through ‘welded’ bonds that transmit both forces and moments. We gradually 

relax these constraints to investigate their relative effect on confinement and reinforcement. In the 

first stage, the fiber-filler bonds are represented as ‘pin joints,’ which transmit only forces. Figure 

13 shows the stress-stretch curves for the filled network with 𝑙M 𝐿" = 8 × 10O)⁄  and 𝜙 = 5%, and 

with ‘welded’ and ‘pin-jointed’ network-filler bonds. Reducing the kinematic constraint at the 

filler-network interface causes a significant reduction of the reinforcement. Taking one step further 

and removing all bonds between fillers and the network, while insuring that fibers do not penetrate 

fillers (state denoted by ‘unbonded’) leads to an even more drastic reduction of reinforcement. 

Note that the curve for this last case falls below that of the unfilled network (Fig. 13). In fact, the 

filled network with unbonded interfaces may be compared with a network in which inclusions are 
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replaced by spherical holes of same size and same total volume fraction with the fillers. This 

network (denoted by ‘porous’) is obviously softer than the unfilled network. This is seen in Fig. 

13, where the curves for the ‘unbonded’ and ‘porous’ cases overlap. This observation re-

emphasizes the results discussed in section 3.3.2 which indicate that excluded volume effects are 

weak in these networks subjected to uniaxial tension.  

 

Figure 13. Stress-stretch curves for the filled network with 𝑙M 𝐿" = 8 × 10O)⁄  and 𝜙 = 5%, and 

with various states of the filler-network interface: ‘welded’ and ‘pinned’ correspond to fiber-filler 

bonds that transmit both forces and moments, and only forces, respectively. ‘Unbonded’ 

corresponds to models in which there are no bonds between fibers and fillers, but the excluded 

volume constraint is imposed. ‘Porous’ corresponds to a system in which fillers are replaced by 

holes.  

Finally, it is of interest to discuss the role of the assumption that fillers are rigid. While the rigid 

case is an appropriate representation for most polymeric nanocomposites, biological networks 

generally embed soft, but (generally) volume preserving inclusions. Examples include cell-seeded 

biopolymer networks and artificial tissue scaffolds, and platelet-reinforced fibrin clots. This case 

requires a separate study. However, based on the present results it can be conjectured that reducing 

the stiffness of fillers would decrease the reinforcement effect because the constraint imposed by 

fillers on fibers would be partially relaxed. Since here we observe that the excluded volume 

constraint has a weak impact on reinforcement, we expect the condition that inclusions volume 

remains constant to have a weak or no effect on the overall filled network behavior.  
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4. Conclusions 

The mechanical behavior of cross-linked athermal fiber networks embedding rigid spherical 

inclusions is investigated in this work. Inclusions increase the small strain network stiffness, but 

reduce the strain stiffening ability of the network at larger strains, in the non-linear regime. 

Reinforcement depends on the nature of the network, being pronounced in networks which are 

bending-dominated in the unfilled state, and rather weak in networks which are stretching-

dominated when unfilled. The effect is associated with the kinematic restrictions imposed by fillers 

on fibers in their vicinity. This confinement promotes the much stiffer stretching deformation 

mode of fibers. A gradual transition from bending-dominated to stretching-dominated deformation 

is observed as the filling volume fraction increases. Decreasing the wall-to-wall distance between 

inclusions, while maintaining the filling fraction constant, enhances the reinforcement effect and 

promotes the stretching deformation mode of the network. Further, inclusions restrict fiber 

reorientation during loading and limit the overall Poisson effect. These results shed light on the 

physical basis of reinforcement in a number of material systems of high practical interest.  
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