
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Active acoustic switches using two-dimensional granular
crystals

Qikai Wu, Chunyang Cui, Thibault Bertrand, Mark D. Shattuck, and Corey S. O'Hern
Phys. Rev. E 99, 062901 — Published  3 June 2019

DOI: 10.1103/PhysRevE.99.062901

http://dx.doi.org/10.1103/PhysRevE.99.062901


Active acoustic switches using 2D granular crystals

Qikai Wu,1 Chunyang Cui,2 Thibault Bertrand,3, 1 Mark D. Shattuck,4, 1 and Corey S. O’Hern1, 5, 6

1Department of Mechanical Engineering and Materials Science,
Yale University, New Haven, Connecticut, 06520, USA

2Department of Water Resource Science and Engineering, Tsinghua University, Beijing, China
3Department of Mathematics, Imperial College London,

South Kensington Campus, London SW7 2AZ, England, UK
4Department of Physics and Benjamin Levich Institute,

The City College of the City University of New York, New York, 10031, USA
5Department of Physics, Yale University, New Haven, Connecticut, 06520, USA

6Department of Applied Physics, Yale University, New Haven, Connecticut, 06520, USA
(Dated: May 6, 2019)

We employ numerical simulations to study active transistor-like switches made from two-
dimensional (2D) granular crystals containing two types of grains with the same size, but different
masses. We tune the mass contrast and arrangement of the grains to maximize the width of the
frequency band gap in the device. The input signal is applied to a single grain on one side of the
device, and the output signal is measured from another grain on the other side of the device. Chang-
ing the size of one or many grains tunes the pressure, which controls the vibrational response of
the device. Switching between the on and off states is achieved using two mechanisms: 1) pressure-
induced switching where the interparticle contact network is the same in the on and off states, and 2)
switching through contact breaking. In general, the performance of the acoustic switch, as captured
by the gain ratio and switching time between the on and off states, is better for pressure-induced
switching. We show that in these acoustic switches the gain ratio between the on and off states
can be larger than 104 and the switching time (multiplied by the driving frequency) is comparable
to that obtained recently for sonic crystals and less than that for photonic transistor-like switches.
Since the self-assembly of grains with different masses into 2D granular crystals is challenging, we
describe simulations of circular grains with small circular knobs placed symmetrically around the
perimeter mixed with circular grains without knobs. Using umbrella sampling techniques, we show
that grains with 6 knobs most efficiently form the hexagonal crystals that yield the largest frequency
band gap. Using the simulation results, we estimate the time required for vibration experiments to
generate granular crystals of mm-sized steel beads with maximal band gaps.

PACS numbers:

I. INTRODUCTION

A number of recent studies have demonstrated the po-
tential for granular crystals to serve as switches [1], rec-
tifiers [2], and other logic elements [3] in circuits that use
mechanical rather than electrical signals. These mechan-
ical devices have potential applications in vibration iso-
lation [4], acoustic cloaks [5], and one-way sound propa-
gation [6]. Many prior studies have used one-dimensional
(1D) granular chains as model systems [7, 8] and relied
on the nonlinear Hertzian interparticle contact law to tai-
lor the acoustic response [9–11]. For example in Ref. [3],
researchers developed an acoustic switch by taking ad-
vantage of the fact that 1D granular chains composed of
steel beads possess a high-frequency cutoff ωmax, beyond
which an input signal cannot propagate. Thus, when the
system is driven at ω0 > ωmax, the response is extremely
small, i.e. it exists in the “off” state. However, when
the system is also driven at frequency ωc < ωmax, non-
linearities from the Hertzian interactions between grains
can induce a strong response at ω0 (i.e. produce an “on”
state), as well as linear combinations of ω0 and ωc. The
authors showed that the amplitude of the response at ω0

in the on state was 3.5 orders of magnitude larger than

that of the off state [3]. This seminal work demonstrated
the ability to actively control mechanical signal propaga-
tion in 1D granular chains.

FIG. 1: (a) A schematic of a metal-oxide-semiconductor field-
effect transistor (MOSFET) with gate (G), source (S), and
drain (D) ports and (b) a schematic of a switch made from a
2D granular crystal with three ports for the (1) output, (2)
control, and (3) input signals.

Transistors are fundamental components of modern
electrical devices that perform logic operations by am-
plifying or switching electrical signals [12]. In this study,
we numerically design a transistor-like acoustic switch
using 2D granular crystals composed of grains with two
different masses mL and mS . In a typical field-effect
transistor, the drain-to-source current is controlled by the
voltage applied between the gate and source terminals.
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Analogously, in our system, the mechanical response will
be controlled by the applied pressure. As shown in Fig. 1,
we will consider three-port devices. We will send mechan-
ical signals to a single particle (port 3) on one side of the
system, apply pressure by changing the size of a single or
many grains (port 2), and measure the power spectrum
of the displacements of another grain on the other side
of the system (port 1).

Granular crystals composed of two types of grains
with the same size, but with mass contrast mL/mS >
1, possess band gaps in their vibrational density of
states [8, 13]. The width of the band gap depends
strongly on pressure [14]. Thus, by varying the pres-
sure at fixed driving frequency, we can change the range
of the frequency band gap so that the driving frequency
occurs within or outside the band gap. When the system
is excited at a frequency within the band gap, the signal
will not propagate and the switch is off. When the sys-
tem is excited at a frequency outside the band gap, it will
propagate and the switch is on. Thus, by changing the
pressure, we can actively switch the device between the
off and on states. In addition, using 2D granular crys-
tals allows us to determine the effects of the polarization
of the mechanical signal and contact breaking [15, 16],
where grains come in and out of contact during vibra-
tion, on the performance of acoustic switches.

We will quantify the performance of the acoustic switch
by measuring its gain, which is the ratio of the amplitude
of the displacement spectrum at the driving frequency for
the output versus that of the input particle (via ports 1
and 3). We find that the ratio of the gain for the on
and off states of the device can be four orders of magni-
tude or larger. We also characterize the time required to
switch between the on and off states and vice versa. We
find that there is a trade-off between the switching time
and gain ratio. We achieve the fastest switching times
for devices with the smallest gain ratios between the on
and off states. In addition, we investigated the effect of
contact breaking on the performance of granular acoustic
switches. We find that when changes in pressure cause
contact breaking in the device, the performance of the
switch is degraded. In particular, devices with contact
breaking can only achieve modest gain ratios, where the
gain for the on state is 1.5 orders of magnitude larger
than that for the off state. We also studied the perfor-
mance of the acoustic switch when we adjust the sizes of
a single versus multiple grains to induce changes in pres-
sure. Adjusting the sizes of multiple grains allows the
device to achieve larger gain ratios. In addition, since it
is typically difficult to generate 2D granular crystals con-
taining grains with different masses in both simulations
and experiments [17, 18], we also describe a method to
generate granular crystals in 2D using circular grains that
include small circular knobs on their surfaces. We em-
ploy discrete element method simulations with advanced
sampling techniques to determine the number and place-
ment of the knobs that yield the most efficient 2D crystal-
lization. We then estimate the time required to achieve

crystallized configurations in vibration experiments on
granular materials.

This article includes three additional sections and two
Appendices. In the Methods section, we describe calcula-
tions of the vibrational density of states for 2D granular
crystals composed of two types of grains with the same
size, but with mass contrast mL/mS > 1. We measure
the width of the frequency band gap as a function of
the mass contrast, arrangement of the heavy and light
grains, and pressure. In addition, we describe the in-
put signal, how the output signal will be measured, and
the methods that will be used to change the pressure in
the device. In the Results section, we show our calcula-
tions of the gain ratios for the on and off states in devices
where the pressure is varied and in regimes where the net-
work of interparticle contacts is fixed or fluctuates. We
provide results for the gain ratios for systems in steady
state, and study the gain as a function of time after the
device switches from on to off and vice versa. We also de-
scribe discrete element method simulations coupled with
advanced sampling methods in 2D of circular grains con-
taining small circular knobs on their surfaces and iden-
tify the number and placement of knobs that give rise to
the most efficient crystallization. From the probabilities
of achieving crystalline configurations in the simulations,
we estimate the time required to generate the crystalline
configurations in vibration experiments of typical gran-
ular materials. In the final section, we summarize our
most important results, suggest future calculations, and
discuss the possibility to build mechanical circuits that
can perform logical operations. The two Appendices pro-
vide additional technical details that support the meth-
ods and results in the main text. In Appendix A, we show
that the numerical methods used to calculate the discrete
Fourier transform of the input and output signals do not
affect our results. In Appendix B, we show results for the
performance of 2D granular acoustic switches with small
band gaps.

II. METHODS

To narrow the parameter space, we focus on 2D granu-
lar systems composed of frictionless circular disks in the
absence of gravity. For most studies, the systems include
two types of disks with the same diameter σ, but different
masses, mL and mS , with mL > mS . The N = NL+NS
disks (where NL and NS are the numbers of disks with
mass mL and mS , respectively) interact via the pairwise,
purely repulsive linear spring potential,

U(rij) =
ε

2

(
1− rij

σ

)2

Θ
(

1− rij
σ

)
, (1)

where rij is the separation between the centers of disks
i and j, ε is the energy scale of the repulsive interac-
tion, and Θ(x) is the Heaviside step function that sets
U(rij) = 0 when the disks are not in contact with
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FIG. 2: Mechanically stable packings of N = 100 disks with the same size, two different masses, and mass ratio mL/mS = 10
arranged on a hexagonal lattice with periodic and fixed boundary conditions in the x- and y-directions, respectively. In (a),
the system is homogeneous with NL = 0 (dark blue) and NS = N (light blue). In (b), we set NL = 25 and NS = 75. The first
row contains all small masses. In the second row, the large and small masses alternate. The third row alternates between large
and small masses, and this order repeats for a total of ten rows. In (c), NL = 50 and NS = 50 and large and small masses are
distributed randomly on the hexagonal lattice. Panel (d) is similar to (b), except inverted with NL = 75 and NS = 25.

rij > σij . For most studies, the simulation cell is rect-
angular with area A = LxLy and dimensions Lx = Nxσ,

and Ly = Ny
√

3σ/2, where N = NxNy, and Nx and Ny
are the number of particles in the x- and y-directions,
so that it can accommodate a hexagonal lattice. We im-
plement periodic boundary conditions in the x-direction,
and fixed, flat boundaries in the y-direction. Interactions
between a circular grain and the wall are implemented by
assuming that a ghost particle is placed at a symmetric
position behind the wall. We focus on systems with rel-
atively small N , from N = 30 to 100 grains, since it is
difficult to self-assemble perfect crystalline structures in
large systems [17, 18]. Below, lengths, energies, stresses,
and frequencies will be given in units of σ, ε, ε/σ2, and√
ε/mSσ2, respectively.

Most of the systems we consider are mechanically
stable with a full spectrum of 2N nonzero vibrational
frequencies, ωk, with k = 1,. . .,2N . The vibrational
frequencies are obtained by calculating the eigenvalues
λk = ω2

k of the mass-weighted dynamical matrix [19]

Mkj = M−1
ki Hij , where Hij = ∂2U/∂ξi∂ξj is the Hes-

sian of the total potential energy U =
∑
i>j U(rij),

ξi = xi, yi, and Mij = mL,Sδij is the diagonal mass

matrix. We also determine the eigenvectors ~λk that cor-

respond to each eigenfrequency ωk with ~λk ·~λk = 1, where
~λk = {xk1 , yk1 , . . . , xkN , ykN}.

We calculate the eigenfrequency spectrum of the mass-
weighted dynamical matrix for several arrangements of
the large and small masses on a hexagonal lattice with
N = 100 shown in Fig. 2. We illustrate in Fig. 3 that
for a hexagonal lattice with a uniform mass distribution
[Fig. 2 (a)], the frequency spectrum is nearly continuous
with a high frequency cutoff ωmax ≈ 25. For mixtures of
large and small masses with a mass ratio mL/mS = 10
[Fig. 2 (b) and (c)], a small frequency band gap devel-
ops in the range 5 . ω . 8. For each eigenfrequency
spectrum, we identify the maximum frequency difference
w = maxk(ωk+1 − ωk).

We find that the arrangement of large and small masses
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FIG. 3: Eigenfrequencies of the mass-weighted dynamical ma-
trix ωk, sorted in ascending order and indexed by k, for the
N = 100 configurations in Fig. 2 (a) circles, (b) exes, (c)
plusses, and (d) squares with periodic and fixed boundary
conditions in the x- and y-directions, respectively. w indicates
the maximum band gap in the eigenfrequency spectrum.

that gives rise to the largest band gap w is the alternat-
ing pattern in Fig. 2 (d). In Fig. 4, we show that for
the optimal arrangement of large and small masses (i.e.
Fig. 2 (d)), w increases with mL/mS , reaching a plateau
of w ≈ 16 in the mL/mS → ∞ limit. For most of our
studies, we use a mass ratio, mL/mS = 10, with w ≈ 10.

The width of the frequency band gap can also be tuned
by changing the pressure of the system. When all of the
disks are at contact and placed on a hexagonal lattice,
the packing fraction is φxtal = π/2

√
3 ≈ 0.91 for systems

with periodic boundary conditions in both the x- and
y-directions (and ≈ 0.89 for systems with fixed bound-
aries in the y-direction and periodic boundaries in the

x-direction), and the pressure p = A−1
∑
i>j

~fij · ~rij/2
is nearly zero, where ~fij = −dU/d~rij is the repulsive
force on disk i arising from disk j. We can change the
pressure of the system by increasing or decreasing the
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FIG. 4: The width w of the maximum band gap in the eigen-
frequency spectrum of the mass-weighted dynamical matrix
for the configuration in Fig. 2 (d) (and inset) as a function of
the mass ratio mL/mS .

diameter of the disks by an increment in packing frac-
tion ∆σ/σ = ∆φ/φ, or equivalently by bringing the fixed
walls in the y-direction closer together or further apart.

We define the packing fraction as φ = A−1
∑N
i=1 πσ

2
i /4,

even for systems in which the grains overlap. In Fig. 5
(a), we show the spectrum of eigenfrequencies of the
mass-weighted dynamical matrix for the configuration in
Fig. 2 (d) with mL/mS = 10 at low p = 10−3 and high
pressure p = 1. For the system at low pressure, we can
set the driving frequency at ω0 ≈ 9 in the band gap, and
the system exists in the off state. When we compress the
system to high pressure, all of the eigenfrequencies de-
crease, and the width of the band gap also decreases. At
high pressure, the driving frequency is no longer in the
band gap, and the system exists in the on state. Thus,
2D granular crystals can be switched from on to off and
vice versa by changing the pressure.

Contact breaking, a significant source of nonlinearity in
granular materials [16, 20, 21], can also be used to switch
between the on and off states and vice versa in 2D gran-
ular crystals. Contact breaking occurs when the system
is driven at sufficiently large amplitudes (e.g. through
vibration or shear) so that the network of interparticle
contacts changes. The characteristic driving amplitude
at which contact breaking occurs decreases with pres-
sure. When the system can break interparticle contacts
and form new ones, the frequencies of strong peaks in the
Fourier transform of the velocity autocorrelation function
of the disks will differ from the spectrum of eigenfrequen-
cies of the mass-weighted dynamical matrix.

To illustrate contact breaking and its effect on the vi-
brational response, we excite a 2D granular crystal by
setting the velocities of the grains such that all eigen-
modes of the mass-weighted dynamical matrix are in-
cluded with equi-partition of the total kinetic energy, K0.
To determine the vibrational response, we calculate the
Fourier transform of the normalized velocity autocorre-
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FIG. 5: (a) Spectrum of eigenfrequencies of the mass-weighted
dynamical matrix sorted in ascending order with index k for
systems with N = 100 disks, mL/mS = 10, and arranged on
a hexagonal lattice in the optimal configuration in Fig. 2 (d)
at pressure p = 10−3 (circles) and 1 (exes). The dashed line
indicates a driving frequency at which the acoustic switch can
operate. (b) The Fourier transform of the velocity correlation
function D(ω) for the mechanically stable packing in Fig. 2
(d) at pressure p = 10−4 after adding velocities to all grains
such that the eigenfrequencies of the mass-weighted dynami-
cal matrix are included with equi-partition of the total kinetic
energy K0. The color scale from dark red to violet represents
decreasing D(ω) on a linear scale.

lation function,

D(ω) =

∫ ∞
0

dt
〈~v(t0 + t) · ~v(t0)〉
〈~v(t0) · ~v(t0)〉

eiωt, (2)

where 〈.〉 indicates an average over all of the disks and
time origins t0. In Fig. 5 (b), we show D(ω) as a function
of K0/N for the optimal configuration in Fig. 2 (d) at
p = 10−4. At small vibration amplitudes, D(ω) is large
at all of the 2N eigenfrequencies of the mass-weighted
dynamical matrix. When the vibration amplitude ex-
ceeds K0/N ≈ 10−9 existing contacts begin to break and
new contacts begin to form, D(ω) broadens and spreads
to lower frequencies. In particular, for amplitudes above
10−9, there is a very weak response at high frequencies.
Thus, contact breaking can also be used to switch be-
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tween the on and off states. For example, when the sys-
tem is driven at ω0 = 18 at small K0/N , the switch is
on. However, when the system is driven at the same ω0

with amplitude K0/N & 10−9, the switch is off.

1

3

2

(a)

1

3

2

(b)

FIG. 6: (a) An illustration of a three port acoustic switch with
fixed, flat boundary conditions in the y-direction and periodic
boundary conditions in the x-direction. The device includes
N = 30 disks (with NL = 21 (dark), NS = 9 (light), and
mL/mS = 10) arranged on a hexagonal lattice. The solid
white lines indicate the Nc = 90 distinct contacts between
disks. Disk 3 is the input port, indicating where the system
will be driven. The gain of the system is measured via the
output port, labelled disk 1. The switch can be turned on
and off by varying the pressure of the system through port
2, e.g. by changing the size of a single disk or all disks in
the system. Here, the device changes from pressure p = 10−6

(dashed outline) to 10−1 (solid outline) when all disks increase
in size. (b) Illustration of the device in (a) at p = 10−6

with disk 3 driven at A0 = 10−6 and frequency ω0 = 16.0,
which causes contact breaking. In this snapshot, the device
has four fewer contacts than in (a). The central grain with
the dashed outline provides the pressure control when we use
single-particle control for port 2.

For the specific device geometry, we consider a three-
port switch built from the 2D granular crystal shown in
Fig. 6. We will add sinusoidal displacements with ampli-
tude A0 at driving frequency ω0 to a single disk on the

bottom wall (port 3),

x3(t) = x0
3 +A0 sin(ω0t), (3)

where x0
3 is the position of disk 3 in the mechanically

stable packing. When we add a continuous input sig-
nal, we also include a viscous damping force for each

disk i, ~Fi = −b~vi, where b is the damping coefficient.
After the system reaches a steady state, we determine
the response of the system by measuring the Fourier
transform of the x-displacement of disk 1 that is sev-
eral layers away from disk 3 in the top wall (port 1):
F1(ω) =

∫∞
0

[x1(t) − x0
1]eiωtdt. The Fourier transform is

calculated numerically as discussed in Appendix A. The
gain of the system is defined as the ratio of the response
at the output port 1 to strength of the signal at the input
port 3 at the driving frequency ω0:

G(ω0) =
F1(ω0)

F3(ω0)
. (4)

Note that we chose the input and output signals to be in
the x-direction, which we assume has a significant overlap
with the eigenmodes of the system. We deliberately did
not consider input and output signals along eigenmodes
since they are difficult to measure experimentally in 2D
granular media.

We will actively control the response of the device (i.e.
through port 2) by varying the pressure in the device.
We will adjust the pressure by changing the size of grain
i: ∆i(t) = (σi(t) − σ)/σ, where σ is the unperturbed
diameter of the grains. For the control signal, we can
also vary the fraction of grains f whose sizes are changed
by ∆. Below, we will consider the extremes f = 1/N
(one grain) and 1 (all grains). The case f = 1 is depicted
in Fig. 6 (a).

III. RESULTS

We describe the results on acoustic switches con-
structed from 2D granular crystals in four subsections. In
Sec. III A, we focus on acoustic devices that can switch
between the on and off states by changing the size of
all particles in the system to control the pressure, and
both the on and off states have the same network of in-
terparticle contacts. These devices can achieve large gain
ratios of at least four orders of magnitude between the on
and off states. However, the switching times are rather
large, exceeding hundreds of oscillations of the driving
frequency. Further, there is a tradeoff between gain ra-
tios and switching times, i.e. the largest gain ratios are
achieved for the slowest switching times. In Sec. III B, we
discuss acoustic devices in which contact breaking occurs,
i.e., the on and off states possess different interparticle
contact networks. In general, these devices have worse
performance (smaller gain ratios) than those for which
the interparticle contact networks are the same in the on
and off states. However, switching between the on and
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off states in these devices can be achieved at much lower
pressures. In Sec. III C, we discuss the pressure operat-
ing regime for the acoustic device when the size of only
a single control particle is used to tune between the on
and off states. In general, devices with a single control
particle possess smaller gain ratios than those with many
control particles. In Sec. III D, we describe a novel sim-
ulation technique, where we add small circular knobs to
the surface of circular grains, that can robustly generate
the ordered disk packing with the optimal arrangement
of more and less massive grains in Fig. 2 (d). A simi-
lar technique can be used in experiments to generate 2D
granular crystals.

A. Pressure-induced switching

In Fig. 7, we show the eigenfrequencies of the mass-
weighted dynamical matrix for the device in Fig. 6 (a)
in the high pressure regime, p = 10−1 and 3.2 × 10−2.
Changes in the pressure of the device allow us to tune
the frequency range of the band gap. When we drive the
system at ω0 = 14.9 with p = 10−1, we expect the gain
to be large since the density of states has weight at the
driving frequency. In contrast, when we drive the system
at the same frequency and p = 3.2 × 10−2, there is no
weight in the density of states at the driving frequency
and we expect the gain be much smaller, even though the
interparticle contact network is the same as that for the
device at p = 10−1.

0 10 20 30 40 50 60
0

5

10

15

20

FIG. 7: The eigenfrequencies of the mass-weighted dynam-
ical matrix plotted in increasing order with index k for the
acoustic device in Fig. 6 at pressure p = 10−1 (the “on” state,
circles) and 3.2× 10−2 (the “off” state, exes). The horizontal
line at ω = 14.9 indicates a potential driving frequency that
yields a large gain ratio between the on and off states.

In Fig. 8 (a), we show the Fourier transform F1(ω)
of the x-displacement of the output disk 1 in the de-
vice after driving the input disk 3 sinusoidally accord-
ing to Eq. 3 with amplitude A0 = 10−6 and frequency
ω0 = 14.9. Since displacing disk 3 in the x-direction
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FIG. 8: (a) The Fourier transform F1(ω) of the x-
displacement of disk 1 for the acoustic device with pressure
p = 10−1 (dashed line) and 3.2 × 10−2 (solid line) obtained
by driving disk 3 sinusoidally with amplitude A0 = 10−6 and
frequency ω0 = 14.9. The dotted line shows the Fourier trans-
form F3(ω) of the x-displacement of the input disk 3. (b)
The gain G(ω0) (defined in Eq. 4) plotted as a function of the
driving amplitude A0 with driving frequency ω0 = 14.9 for
the device at pressure p = 10−1 (open circles) and 3.2× 10−2

(exes).

is not a pure eigenmode of the mass-weighted dynam-
ical matrix for the full system, there are contributions
to F1(ω) over a wide range of frequencies. Despite this,
there is a strong response at the driving frequency ω0.
We also show the Fourier transform F3(ω) of the x-
displacement of the input disk 3, and calculate the gain
G(ω0) = F1(ω0)/F3(ω0). We find that the gain in this
high pressure regime is independent of the amplitude of
the driving. (See Fig. 8 (b).) The gain for the on state
at high pressure p = 10−1 is G(ω0) ≈ 1, whereas the
gain for the off state at lower pressure p = 3.2× 10−2 is
more than two orders of magnitude smaller. In Fig. 9 (a),
we show the variation of the gain G(ω0) with pressure for
several values of the driving frequency ω0. We verify that
we can accurately measure the gain (G(ω0) ≈ 3.5) near
each resonance in Fig. 9 (b). For each driving frequency,
ω0 = 13.1, 14.9, and 15.7, the ratio of the maximum gain
(at pon, on state) and minimum gain (at poff , off state)
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FIG. 9: (a) The gain G(ω0) for the acoustic device as a
function of pressure p for three values of the driving fre-
quency ω0 = 13.1 (circles), 14.9 (exes), and 15.7 (triangles).
(b) The gain G(ω0 + ∆ω) over a small frequency range ∆ω
near the driving frequency ω0 = 14.9. The inset is a close-
up of the gain to within 10−3 of ω0. (c) The gain ratio
Gon(ω0)/Goff(ω0) as a function of the normalized change in
pressure between the on and off states, (pon − poff)/pon, for
pon = 3.2 × 10−1 (circles), 10−1 (exes), and 3.2 × 10−2 (tri-
angles) and the sizes of all particles are changed to control
the pressure. The vertical dashed lines indicate the value of
(pon−poff)/pon at which contacts would begin breaking if the
size of only a single particle was changed to control the pres-
sure. For all data, the driving amplitude is A0 = 10−6 and
the damping parameter b = 10−3.
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FIG. 10: The gain ratio Gon(ω0)/Goff(ω0) between the on and
off states versus the damping parameter b at fixed driving fre-
quency ω0 = 14.9 for pressure-induced switching (solid line)
and 16.0 for switching with contact breaking (dashed line).
The inset shows the switching time ω0t

1
s/2π from the on to

the off state (open circles) and ω0t
2
s/2π from the off to the on

state (exes) versus b for the same systems in the main panel.

increases as a function of the normalized pressure differ-
ence (pon − poff)/pon. For ω0 = 15.9, the increase in the
gain ratio Gon(ω0)/Goff(ω0) is the largest, reaching 104

at the largest pressure difference. (See Fig. 9 (c).) We
can also vary the gain ratio between the on and off states
at fixed driving frequency ω0 by changing the damping
coefficient b. In Fig. 10, we show that the gain ratio
decreases as a power law with the damping parameter,
Gon(ω0)/Goff(ω0) ∼ b−1 for large b. In contrast, the gain
ratio plateaus in the limit of small b.

We have demonstrated that we can achieve gain ratios
between the on and off states for the acoustic device that
are at least four orders of magnitude. We will now ana-
lyze the ability of the device to switch from the on to off
states and vice versa. We will change the sizes of all parti-
cles in the device to instantaneously increase or decrease
the pressure and induce switching. In Fig. 11 (a), we
show the Fourier transform F1(ω0) of the x-displacement
of disk 1, while driving disk 3 sinusoidally at ω0 in the
x-direction. We consider two situations: 1) The device is
initiated in the on state at pressure p = 10−1. The sys-
tem remains in the on state for a given amount of time.
At time t∗, the system is switched to the off state by de-
creasing the pressure to 3.2×10−2 and remains there. 2)
The device is initiated in the off state at p = 3.2× 10−2

and remains in the off state for a given amount of time.
At time t∗, the pressure is increased to p = 10−1 and
remains there. In Fig. 11 (a), we show that for the case
of pressure-induced switching, the switching time ts from
on to off and from off to on are comparable. For damping
parameter b = 10−2, ω0ts/2π ≈ 103, where ts is obtained
by determining the time at which F1(ω0) reaches the ge-
ometric mean of the values of F1(ω0) in the on and off
states.

Note that the switching time ts is rather large (∼ 103
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FIG. 11: (a) The Fourier transform F1(ω0) of the x-
displacement of disk 1 as a function of time ω0(t − t∗)/2π
when switching the device at time t∗ from the “on (pressure
p = 10−1) to off (p = 3.2 × 10−2) states (circles) and vice
versa (exes) using a damping coefficient b = 10−2. The hor-
izontal dotted line indicates the geometric mean F 1(ω0) of
the on and off values of F1(ω0). The switching times ts are
obtained by finding when F1(ω0) crosses F 1(ω0). (b) The
Fourier transform F1(ω0) (open circles and left axes labels) of
the x-displacement of disk 1 as a function of time t/∆t (after
reaching an initial steady state at t = 0) during continuous
switching of the device between the “on and off states using
b = 10−2. The pressure of the device (dashed line and right
axes labels) follows a square wave signal with ∆t/ts ≈ 3.7.
(c) Same as (b) except ∆t/ts ≈ 0.7.

oscillations for b = 10−2). This large timescale occurs
because the oscillation of a single input particle and a
single output particle are not pure eigenmodes of the
mass-weighted dynamical matrix of the device. Thus,
when switching from the on to off state, there is resid-
ual energy in the eigenmode at ω0 that must be removed
via damping. When switching from the off to on state,
there is residual energy in eigenmodes that are different
from the one at ω0 that must be removed via damping.
This picture is consistent with the fact that the switching
times scale as ω0ts ∼ b−1 as shown in the inset to Fig. 10
(solid lines). With this scaling behavior, ts can be de-
creased by increasing b. However, as shown in Fig. 10, the
gain ratio also decreases with increasing b, which makes
it difficult to distinguish between the on and off states.
Thus, the optimal performance for the pressure-induced
acoustic switch is the relatively small value for the damp-
ing parameter, b ≈ 10−2, where the gain ratio no longer
increases dramatically with decreasing b, yet ts is rela-
tively small.

We also studied dynamic switching using a square wave
input signal for the time dependence of the pressure. In
this case, the pressure is large for given amount of time
∆t and then it is switched instantaneously to a lower
pressure for a time period ∆t. After an additional time
period ∆t, the pressure is again switched back to the
large pressure value. This process is then repeated for a
given number of cycles. (See the dashed lines in Fig. 11
(b) and (c).) When ∆t satisfies ∆t & ts, F1(ω0) tracks
with the pressure signal and is nearly able to reach the
steady-state values of F1(ω0) at each pressure as shown
in Fig. 11 (b). (The steady-state values of F1(ω0) are
≈ 2 × 10−8 for the on state and ≈ 8 × 10−11 for the off
state.) For ∆t . ts, F1(ω0) is not able to track the input
signal (as shown in Fig. 11 (c)) and thus the gain ratio
between the on and off states for dynamic switching is
much smaller than the gain ratio in steady-state. The
case ∆t� ts is similar to the step function perturbation
in Fig. 11 (a).

B. Switching with contact breaking

In this subsection, we describe the results for acoustic
devices where switching between the on and off states is
achieved by changing the network of interparticle con-
tacts. In the systems we consider, the interparticle con-
tact network does not change during the vibrations in
the on state. However, the interparticle contact net-
work fluctuates during the vibrations in the off state. In
Fig. 12 (a), we show the Fourier transform F1(ω) of the x-
displacement of disk 1 for the device in the low-pressure
regime with p = 10−6 (on state) and 10−8 (off state)
obtained by driving disk 3 sinusoidally with amplitude
A0 = 3.2 × 10−7 and frequency ω0 = 16.0, using damp-
ing coefficient b = 10−3. F1(ω) for the device at p = 10−6

is similar to that in the high pressure regime (Fig. 8 (a)).
However, F1(ω) at p = 10−8 has a broad and noisy spec-
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trum since the interparticle contact network fluctuates
during the vibrations. (See the contact-breaking regime
for D(ω) in Fig. 5 (b).) In the low-pressure regime, the
device can be switched on and off by varying the am-
plitude of the driving at fixed frequency ω0. In Fig. 12
(b), we show the gain G(ω0) of the device at pressures
p = 10−6 and 10−8 and driving frequency ω0 = 16.0.
At small driving amplitudes, the gain is relatively large,
G(ω0) ≈ 1. As the amplitude is increased, changes in the
interparticle contact network begin to occur at a char-
acteristic amplitude A∗0 that scales with pressure. See
Fig. 6 (b) for a device in which the interparticle contact
network has fewer contacts in the off state than in the
on state. For example, A∗0 ≈ 10−8.5 for p = 10−8 and
A∗0 ≈ 10−6.5 for p = 10−6. The onset of contact breaking
causes the gain to drop abruptly by more than two orders
of magnitude. We show in Fig. 12 (b) that if we drive the
device at amplitude A0 = 3.2 × 10−7 and frequency ω0,
it is in the on state at pressure p = 10−6 and the off state
at 10−8. We can obtain similar behavior if we drive the
device in the amplitude range 5×10−9 . A0 < 3.2×10−7.

We show the ratio of the gain in the on versus the
off state Gon(ω0)/Goff(ω0) as a function of the damping
parameter b for devices that experience contact breaking
in Fig. 10. As for devices with no contact breaking, the
gain ratio decreases with b for large b, whereas it forms a
plateau for small b. However, at small b, the gain ratio is
nearly two orders of magnitude smaller for devices that
incorporate contact breaking compared to those that do
not.

In Fig. 13 (a), we show the performance of the acoustic
device in switching from the on to off states and vice versa
using damping parameter b = 10−3 in the regime where
contact breaking occurs. An interesting feature is that
the times t1s and t2s for switching the device from the on to
the off state and from the off to the on state, respectively,
are different. As shown in the inset in Fig. 10, the switch-
ing time from the on to the off state, ω0t

1
s/2π ∼ 102, is

nearly independent of the damping parameter b, and is
less than the switching time from the off to the on state
(t1s < t2s) since t2s grows with decreasing b.

We show the results for dynamic switching with con-
tact breaking for the device in Fig. 13 (b) for the case
∆t/t1s ≈ 2.7. F1(ω0) can roughly track the pressure sig-
nal, but the signal for the off state is noisy. When we
decrease ∆t such that ∆t/t1s ≈ 0.68, there is no signif-
icant difference between F1(ω0) in the on and off states
and F1(ω0) is not strongly affected by the relatively rapid
changes in pressure.

C. Single-particle control signal

For systems without contact breaking, the gain ratio
between the on and off states Gon(ω0)/Goff(ω0) is deter-
mined by the difference in pressure that can be achieved,
for example, by changing all particle sizes. In Fig. 9 (c),
we showed that the gain ratio increases with the nor-
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FIG. 12: (a) The Fourier transform F1(ω) of the x-
displacement of disk 1 for the device with pressure p = 10−6

(dashed line) and 10−8 (solid line) obtained by driving disk
3 sinusoidally with amplitude A0 = 3.2× 10−7 and frequency
ω0 = 16.0, using damping coefficient b = 10−3. The dotted
line shows the Fourier transform F3(ω) of the x-displacement
of the input disk 3. (b) The gain G(ω0) (defined in Eq. 4)
plotted as a function of the driving amplitude A0 with driv-
ing frequency ω0 = 16.0 for a device at pressure p = 10−6

(dashed line) and 10−8 (solid line), using damping parameter
b = 10−3. The vertical dotted line indicates the amplitude of
the driving A0 = 3.2× 10−7 in (a).

malized pressure difference (pon − poff)/pon. When we
use all particles in the device to change the pressure,
we can achieve a wide range of normalized pressure dif-
ferences from 0 to 0.8, and thus we can obtain a wide
range of gain ratios from 1 to 104. However, when we
use only a single control particle (e.g. the central grain
in Fig. 6 (b)), the maximum change in the normalized
pressure that can be achieved scales as 1/N . In Fig. 14,
we show that for N = 30, the maximum normalized pres-
sure difference is ∼ 10−1 using a single control particle.
Operating the device in the regime where the interpar-
ticle contact network remains intact further restricts the
normalized pressure difference that can be used. If we
limit (pon − poff)/pon < 10−1, the maximum gain ratio
that can be achieved is Gon(ω0)/Goff(ω0) ≈ 102.5, which
is less than the value of 104 achieved for devices that
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FIG. 13: (a) The Fourier transform F1(ω0) of the x-
displacement of disk 1 as a function of time ω0(t − t∗)/2π
when switching the device from the “on (pressure p = 10−6)
to off (p = 10−8) states (circles) and vice versa (exes) at time
t∗ using a damping coefficient b = 10−3. The driving fre-
quency and amplitude are ω0 = 16.0 and A0 = 3.2 × 10−7.
(b) The Fourier transform F1(ω0) of the x-displacement of
disk 1 (circles and left axes labels) as a function of time t/∆t
when continuously switching the device between the “on and
off states using b = 10−3. The dashed line shows the pres-
sure of the device (right axes labels), which has a square wave
form with ∆t/ts ≈ 2.7 (where ts is the time for the device to
switch from the off to the on states). (c) Same as (b) ex-
cept ∆t/ts ≈ 0.68. For (a)-(c), the off and on states possess
different interparticle contact networks.
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FIG. 14: The normalized change of pressure (pon − poff)/pon,
where pon and poff are the pressures in the on and off states,
respectively, as a function of the normalized change in the size
(σon−σoff)/σon of a single control particle for pressures pon =
10−2 (circles), 3.2 × 10−2 (exes), and 10−1 (triangles). The
vertical dashed lines (from left to right) indicate the change
in size above which the control particle loses a contact with
neighboring particles for pon = 10−2, 3.2× 10−2, and 10−1.

change the sizes of all particles. (See the vertical lines in
Fig. 9 (c).)

As expected, the performance of devices that only have
a single control particle is also degraded in the regime
where contact breaking occurs. In Fig. 15 (a), we show
the gain G(ω0) for a device driven at frequency ω0 = 16.0
versus the amplitude A0 and compare it to the gain from
systems in which the size of a single control particle has
been decreased by an amount ∆σ/σ. The reference sys-
tem (with ∆σ/σ = 0) is in the on state with G(ω0) ≈ 1
for small driving amplitudes. As the driving amplitude
increases, the gain decreases abruptly when the interpar-
ticle contact network begins to fluctuate. Similar behav-
ior is found in Fig. 12 (b). When the change in the size
of the control particle is small, i.e. ∆σ/σ = 5.1 × 10−7,
G(ω0) is similar to that for the reference system. When
∆σ/σ is increased further, G(ω0) develops an intermedi-
ate plateau between that for the on state (G(ω0) ≈ 1)
and the off state (G(ω0) ≈ 10−3). Thus, by changing the
size of only one particle, a dynamic state with an inter-
mediate value of the gain occurs. This intermediate state
represents a system in which only the contacts that in-
volve the control particle (not all interparticle contacts)
are fluctuating. As shown in Fig. 15 (b), the presence
of the state with intermediate gain significantly reduces
the difference in F1(ω0) between the on and off states
during switching. For all changes in pressure that can be
achieved using a single control particle and induce con-
tact breaking between the control particle and its neigh-
bors, we find a dynamical state with intermediate gain
between that for the on state (with no contact breaking)
and off state (with contact breaking among all particles).
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FIG. 15: (a) The gain G(ω0) (defined in Eq. 4) plotted as
a function of the driving amplitude A0 at fixed driving fre-
quency ω0 = 16.0 for a device with a single control particle
at ∆σ/σ = 0 (dashed line), 5.1 × 10−7 (circles), 5.4 × 10−7

(exes), and 5.5 × 10−7 (triangles), using damping parame-
ter b = 10−3. (b) The Fourier transform F1(ω0) of the x-
displacement of disk 1 as a function of time ω0(t − t∗)/2π
when switching the device from the on (∆σ/σ = 0) to off
(∆σ/σ = 5.4 × 10−7) state (circles) and vice versa (exes) at
time t∗ using a single control particle and damping parameter
b = 10−3. The driving frequency and amplitude are ω0 = 16.0
and A0 = 6.3× 10−8, respectively.

FIG. 16: Circular particles with different numbers of circular
knobs, (a) n = 0, (b) 3, and 6, placed symmetrically around
the perimeter of the particle. The central disk has diameter
σ and the circular knobs have diameter σk = (2

√
3/3− 1)σ.

D. Generating 2D granular crystals

In Sec. III A, we described the performance of acous-
tic switching devices composed of N = 30 monodis-
perse disks (with diameter σ) of two different masses
(NL = 21 with mass mL and NS = 9 with mass mS)
arranged on a two-dimensional hexagonal lattice similar
to that in the inset of Fig. 4. To realize these devices
in experiments, an automated method of making the 2D
granular crystals must be developed. Methods for gen-
erating granular crystals in experiments include vibra-
tion [22], cyclic shear [23], and combinations of vibration
and shear [24]. However, it is well-known that generat-
ing defect-free granular crystals is difficult, requiring an
exponentially large number of small amplitude vertical
vibrations or shear cycles [25]. Further, one way to gen-
erate a large frequency band gap in granular crystals is to
choose grains with large mass ratios. However, vibration
and shear in systems composed of grains with large mass
ratios often give rise to de-mixing or segregation, where
grains with similar masses cluster together [26, 27], in-
stead of forming the alternating pattern of grains with
large and small masses shown in the inset of Fig. 4 that
maximizes the width of the frequency band gap.

FIG. 17: (a) Snapshot of a disk configuration generated using
the accelerated discrete element simulations after four rounds
of acceleration. The light disks have n = 6 knobs and the
dark disks have zero knobs. The inherent structures with
zero kinetic energy and (b) Nkk = 0 and (c) 7 were obtained
after removing the knobs. Contacts between the light-colored
grains in (c) are indicated by the dotted lines.

In this subsection, we describe a method to enhance
crystallization into the alternating pattern of grains
shown in the inset to Fig. 4, implement it in numeri-
cal simulations, and provide an estimate for how long it
would take to generate the alternating disk pattern in
experiments. We consider mixtures of NL = 21 disks
with diameter σ and NS = 9 disks with the same size
and mass of the others, but they possess small circular
knobs symmetrically placed around their perimeter. (See

Fig. 16.) The knobs have diameter σk = (2
√

3/3 − 1)σ
and the angular separation between the knobs is 2π/n,
where n = 0, 3, and 6 gives the number of knobs. The
size and spacing of the knobs is chosen so that they fit
within the interstices of the circular grains without knobs
arranged on a hexagonal lattice. The knobs will only fit
within the interstices when they are surrounded by grains
without knobs. (See Fig. 17.) Thus, in mixtures of grains
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with and without knobs, there is an effective repulsion
between grains with knobs that enhances crystallization
into the alternating pattern in the inset of Fig. 4.

As we will show below, we are able to create packings in
which grains with knobs and grains without knobs form
an alternating pattern on a hexagonal lattice. If, in ex-
periments, the grains with knobs are made of a composite
material for which part of the material can be preferen-
tially dissolved, the knobs, as well as part of the core of
the grain, can be dissolved after the hexagonal assembly
has been generated. Thus, this procedure can generate
an alternating pattern of light and heavy grains.
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FIG. 18: The average maximum difference between adjacent
eigenfrequencies 〈w〉 of the mass-weighted dynamical matrix
versus the number of contacts between the grains with knobs
Nkk/N for a hexagonal packing with NL = 21 and NS = 9
and mass ratio mL/mS = 100 (circles), 20 (exes), 10 (trian-
gles), and 5 (squares). The means and standard deviations
(error bars) are obtained by averaging over 50 configurations
in which the masses of the grains are chosen randomly as
either mL and mS to yield a given Nkk/N .

To measure the degree to which a disk configuration
in the simulations matches the alternating pattern in the
inset to Fig. 4, we determine the number of contacting
pairs of grains with knobs, Nkk, of the inherent struc-
tures. To calculate the inherent structures, we take in-
stantaneous snapshots from the discrete element method
simulations and perform steepest descent (with the knobs
removed) to reach the nearest local potential energy min-
imum for each snapshot. The alternating pattern in the
inset to Fig. 4 has Nkk = 0, and Nkk > 0 for configu-
rations in which the particle positions differ from those
for the alternating pattern. In Fig. 17, we show an in-
stantaneous snapshot from the discrete element method
simulations (panel (a)) and its associated inherent struc-
ture with Nkk = 0 (panel (b)). Fig. 17 (c) shows a more
disordered inherent structure with Nkk = 7.

Note that there are some configurations with Nkk = 0
that do not perfectly match the alternating pattern in
the inset to Fig. 4 (e.g. the configuration in Fig. 17 (b)).
However, we show in Fig. 18 that the average width of
the bandgap 〈w〉 is well-defined when we average over an

ensemble of configurations with the same Nkk.
As previously shown in Fig. 4, w increases with the

mass ratio mL/mS . In addition, we find that 〈w〉 in-
creases as Nkk → 0, reaching a maximum that depends
on the mass ratio. Thus, especially for small mass ratios,
it is necessary to have packings with Nkk → 0 to achieve
robust band gaps. In Appendix B, we discuss the per-
formance of acoustic switching devices (made from 2D
granular crystals) with small band gaps.

To generate static packings of grains with and with-
out knobs, we first performed discrete element method
simulations at constant pressure beginning at high tem-
perature in the liquid state and then cooled the system to
low temperature as a function of the cooling rate, which
we adjusted by varying the damping parameter b. The
interactions between the large circular disks, between the
large disks and small knobs, and between the small knobs
have the same form as Eq. 1. Even though we varied the
cooling rate over more than four orders of magnitude,
we did not find a significant decrease in Nkk/N from its
value in the liquid state (Nkk > 6) for n = 0, 3, and 6.
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FIG. 19: The average Nkk/N from inherent structures as a
function of the number of rounds of the accelerated MD sim-
ulations for the systems in Fig. 17 with n = 0 (circles), 3
(exes), and 6 (triangles) knobs. The inset shows a scatter
plot of Nkk versus the number of rounds for the system with
n = 6 knobs.

To obtain configurations with small Nkk/N , we im-
plemented an umbrella sampling method to enhance the
probability of rare events [29–31]. We started with 10 in-
dependent liquid-like configurations with Nkk/N ≈ 0.21
for their inherent structures. For each of the 10 configura-
tions, we generated 10 systems with the same particle po-
sitions, but different random velocities. For each of these
systems, we performd constant pressure simulations at a
sufficiently high temperature to explore different config-
urations over Nsim = 106 time steps. During the simula-
tion, we record the 10 snapshots with the smallest Nkk
for their inherent structures. This constitutes round 1.
For each snapshot, we rescale the temperature by a fac-
tor of 0.95 and use these as initial conditions in constant
pressure simulations and run the simulations at the new
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temperature for Nsim time steps. Successive rounds of
selecting configurations with the smallest Nkk and run-
ning them at lower temepratures are carried out until
Nkk does not further decrease. We show Nkk/N versus
the number of acceleration rounds in Fig. 19 for mixtures
of grains with n = 0, 3, and 6 knobs. We find that hav-
ing six knobs allows the system to reach smaller values
of Nkk than mixtures of grains with n = 0 and 3 knobs.

As shown in Fig. 17, the umbrella sampling method
can achieve configurations with Nkk = 0 for the inher-
ent structures after four acceleration rounds for mixtures
with n = 6 knobs. We will now estimate the time re-
quired to achieve inherent structures with Nkk = 0 in
typical experiments of vibrated granular media. In the
discrete element method simulations, we used a time step
of ∆ts = 1.6× 10−4 s, using the characteristic time scale
τs =

√
mσ/ε = 0.032 s. For mm-sized steel beads fre-

quently used in experiments on granular media, the char-
acteristic time scale is τe =

√
M/Ke ≈ 2.1 µs, where

M = 10 g is the mass, Ke = ER0/(1 − ν2) is the stiff-
ness, R0 ≈ 10 mm is the raidus, E ≈ 200 GPa is the
Young’s modulus, and ν ≈ 0.3 is the Poissons ratio. Us-
ing these values, the simulation time step corresponds to
a time step of ∆te = (τe/τs)∆ts ≈ 0.01µs for experiments
on vibrated mm-sized steel beads.

After four rounds of acceleration, the probability to
achieve an inherent structure with Nkk = 0 is P = 10−8.
Since snapshots from the simulations were recorded ev-
ery 105 time steps out of a total of 106, the elapsed
time between configurations with Nkk = 0 is between
105∆te ≈ 1 ms and 106∆te ≈ 10 ms. Thus, the average
time required to achieve a configuration with Nkk = 0 in
vibration experiments is between 1 ms/10−8 ≈ 1 day and
10 ms/10−8 ≈ 10 days. These time periods are achiev-
able in expermiental studies of granular media, and can
be further reduced by carrying out vibration studies on
multiple experimental set-ups in parallel.

IV. CONCLUSIONS AND FUTURE
DIRECTIONS

In this article, we describe active acoustic transistor-
like devices that can switch from the on to off states or
vice versa using 2D granular crystals. We focus on sys-
tems composed of two types of grains with the same size
but different masses, since they possess frequency band
gaps in the vibrational density states that can be tuned
by the mass ratio mL/mS and arrangement of heavy and
light grains. The input signal is generated by oscillating
a grain at one side of the device and measuring the re-
sulting output signal from a grain on the other side of the
device. The device can be switched between the on and
off states by changes in the size of one or many grains,
which controls the pressure. Switching can be achieved
through two mechanisms: 1) pressure-induced switching
in which the on and off states have the same interparticle
contact networks and 2) switching with contact breaking,

where the interparticle contact networks are different in
the on and off states. In general, we find that the perfor-
mance of pressure-induced switching is better, with larger
gain ratios between the on and off states, than those
for switching with contact breaking. However, there is
a tradeoff between large gain ratios and fast switching
times. Large gain ratios occur at small damping param-
eters and fast switching times occur at larger damping
parameters. Even so, for pressure-induced switching, 2D
granular crystals can achieve gain ratios greater than 104,
and switching times ω0ts that represent 103 oscillations
at the driving frequency. This switching time is compa-
rable to that obtained recently for sonic crystals [1] and
less than that for photonic transistor devices [32].

Granular crystals are difficult to make in an automated
way in experiments. We thus developed techniques to
improve the efficiency of making hexagonal crystals with
an alternating pattern of heavy and light grains. The
first improvement involved studying mixtures of grains
with and without small knobs arranged on their perime-
ter. The size and arrangement of the knobs are chosen so
that they fit in the intertices between contacting grains
without knobs. Since the grains with knobs do not pack
efficiently when they are next to each other, there is an
effective repulsion between the grains with knobs. The
similarity between a given configuration and the optimal
configuration with an alternating pattern can be mea-
sured using the fraction of contacts between grains with
knobs, Nkk/N .

Using conventional discrete element method simula-
tions of these mixtures undergoing cooling at fixed pres-
sure, Nkk does not decrease significantly with tempera-
ture. However, when we apply an umbrella sampling-like
technique, we find that we can achieve Nkk/N → 0. Fur-
ther, we show that grains with n = 6 knobs leads to
smaller values of Nkk than that with n = 3 when cool-
ing with umbrella sampling. Based on the probability for
obtaining configurations with Nkk = 0 in the accelerated
simulations, we estimate that it will take from 1-10 days
to achieve an Nkk = 0 packing of mm-sized sized steel
beads using vibration experiments. This time period can
be further reduced by running a number of vibration ex-
periments in parallel.

Thus, these results will encourage experimental studies
of mixtures of grains with and without knobs undergo-
ing vibration or cyclic shear to study crystallization into
hexagonal crystals. After generating the alternating pat-
tern of grains with and without knobs, the core regions of
the grains with knobs and the knobs themselves can be
dissolved away, yielding mL/mS > 1. Experiments can
then be performed to measure the vibrational density of
states in these crystalline granular assemblies.

There are a number of important directions that we
will pursue in future studies. First, we will consider 3D
granular crystals, which have a broader range of me-
chanically stable crystal structures with different sym-
metries, packing fractions, and numbers of nearest neigh-
bors. For example, we will determine the performance of
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FCC, BCC, and HCP crystals with different mass dis-
tributions. Second, in the current study, both the input
and output signals oscillated in the x-direction. In fu-
ture studies in 3D, we can consider an input signal that
oscillates in a different direction than the measured out-
put signal. A key aspect of these studies will be to un-
derstand the spatial structure of the eigenmodes of the
mass-weighted Hessian of the device, and their overlap
with the input and output signals. Third, in the current
modeling studies, we neglected static friction. However,
granular crystals in experiments have finite friction, and
thus it is important to understand how static friction and
the coupling of particle rotation and translation affect the
switching performance of the device. Fourth, an interest-
ing application is to create logical circuits from coupled
acoustic switches that connect the output of one device
to the input of another. In future studies, we will de-
velop numerical implementations of coupled 2D granular
crystals that can perform logical operations.

10 -3 10 -2 10 -1 100

10 -4

10 -2

100

104 105
10-8

10-7

10-6

FIG. 20: The gain G(ω0) for the acoustic device as a func-
tion of pressure p (for a system with no contact breaking)
using a total simulation time ω0T/2π = 104 (circles) and 105

(squares). The inset shows the Fourier transforms of the out-
put and input signals, F1(ω0) (exes) and F3(ω0) (circles), as a
function of ω0T/2π for the device with pressure p = 10−1. For
all data, ω0 = 14.9, A0 = 10−6, b = 10−3, and the sampling
time ω0∆/2π=5.9× 10−3.

Appendix A: Robustness of the Measurement of the
Fourier Transforms of the Input and Output Signals

Many of the results reported in this article depend on
the accurate calculation of the Fourier transform of the
input and output signals from particles 1 and 3, x1,3(t)−
x0

1,3, respectively, where x0
1,3 is the x-position of particles

1 and 3 in the initial mechanically stable packing. We
calculate the Fourier F1,3(ω) =

∫∞
0

[x1,3(t) − x0
1,3]eiωtdt

numerically via the discrete Fourier transform:

F1,3(ω(l)) =

M−1∑
n=0

[x1,3(n∆)− x1,3(0)]e−i·2πln/M , (5)

where ω(l) = 2πl/T , M = T/∆, l, and n are integers,
T is the total time of the input/output signals, and ∆ is
the time interval between samples. In this Appendix, we
calculate the gain G(ω0) as a function of the total time
T and sampling time ∆ of the input and output signals
to show that our calculations do not depend strongly on
these parameters.
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FIG. 21: The gain G(ω0) for the acoustic device as a func-
tion of pressure p (for a system with no contact breaking)
measured with sampling interval ω0∆/2π = 4.7 × 10−2 (cir-
cles), 2.4× 10−2 (exes), 5.8× 10−3 (triangles), and 2.9× 10−3

(squares). The inset shows the Fourier transforms of the out-
put and input signals, F1(ω0) (exes) and F3(ω0) (circles), as
a function of ω0∆/2π for the device with pressure p = 10−1.
For all data, ω0 = 14.9, A0 = 10−6, b = 10−3, and the total
simulation time ω0T/2π=5.9× 104.

In the inset to Fig. 20, we show the Fourier transforms
for the output and input signals, F1(ω0) and F3(ω0), as
a function of the total time ω0T/2π when the system in
the inset to Fig. 4 with N = 30 is driven at frequency
ω0 = 14.9 and amplitude A0 = 10−6. We find only weak
dependence of the Fourier transform on the total time in
the range ω0T/2π & 104.5. In the main panel of Fig. 20,
we show that the gain G(ω0) versus pressure p is nearly
identical for ω0T/2π = 104 and 105. Thus, we selected
ω0T/2π = 5.9×104 to calculate all of the discrete Fourier
transforms. In the inset to Fig. 21, we show the depen-
dence of the Fourier transforms F1(ω0) and F3(ω0) on the
sampling time ω0∆/2π. For ω0∆/2π . 10−2, F1(ω0) and
F3(ω0) do not depend strongly on the sampling time. In
the main panel of Fig. 21, we show that for most pres-
sures the gain G(ω0) does not depend on ∆. However,
at pressures for which there is large gain, we find that
we need to use ω0∆/2π ≤ 5.8 × 10−3 to reach conver-
gence. Thus, we used this value of ∆ to calculate all of
the discrete Fourier transforms.
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FIG. 22: Spectrum of eigenfrequencies for the mass-weighted
dynamical matrix for the hexagonal lattice in the inset to
Fig. 4 with NL = 21 and NS = 9 for mass ratios (a)
mL/mS = 10, (b) 3, and (c) 1. The horizontal dashed lines
indicate the frequencies at which we seek to drive the acoustic
switching device. The insets of each panel show the frequency-
dependent gain G(ω0) (ratio of the Fourier transforms of the
output and input signals) for the respective mass ratios. For
all systems, the pressure p = 10−1.
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FIG. 23: The ratio of the gain Gon(ω0)/Goff(ω0) in the on
state to that in the off state as a function of the normalized
difference in pressure (pon − poff)/pon between the on and off
states for mass ratios mL/mS = 10 (circles), 3 (exes), and
1 (triangles). The devices are driven at the frequencies ω0

indicated by the dashed lines in Fig. 22 (a)-(c).

Appendix B: Performance of Acoustic Switching
Devices with Small Band Gaps

In the main text, we described acoustic switching de-
vices that possess large frequency band gaps in their vi-
brational density of states. However, we have not yet dis-
cussed how the performance of the devices change with
the size of the band gap. In Fig. 22, we show the eigenfre-
quency spectrum of the mass-weighted dynamical matrix
for three mass ratios, mL/mS = 10, 3, and 1. As shown
previously in Fig. 4, the maximum difference between
adjacent eigenfrequencies w decreases as mL/mS → 1.
When there is a large band gap, we expect that we can
generate a well-defined on state by driving the system
at an eigenfrequency that populates the vibrational den-
sity of states. In addition, we expect that we can create
a well-defined off state, e.g. by decreasing the pressure
of the system (which increases all of the eigenfrequen-
cies) so that the driving frequency now occurs within the
band gap. (See the difference between the exes and cir-
cles in Fig. 7.) The frequency-dependent gain (ratio of
the Fourier transforms of the output to the input sig-
nal) for a system with a large band gap is shown in the
inset to Fig. 22 (a). Indeed, the gain at ω = 14.9 is
≈ 10, while the gain at nearby lower frequencies is sev-
eral orders of magnitude lower. Thus, it is clear that
an acoustic switch can be created by choosing the on
state as the system with reference pressure (p = 10−1) in
Fig. 22 (a) driven at frequency ω0 = 14.9 and choosing
the pressure for the off state so that G(ω0) . 10−2. Sim-
ilar behavior is shown in Fig. 22 (b) for a system with a
smaller band gap at mass ratio mL/mS = 3. For exam-
ple, the on state can be generated by driving the system
at ω0 = 15.5, where the gain possesses a peak. The gain
at nearby lower frequencies is smaller, but the gain has
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another peak at ω0 = 13.2. Thus, the operating range
of the pressure difference of the acoustic switch decreases
as the band gap decreases.

We now focus on the continuous eigenfrequency regime
near ω0 = 14.0 for systems with mL/mS = 1 in Fig. 22
(c). The frequency-dependent gain possesses a peak at
ω0 = 14.0, but the next peak in G(ω0) at lower frequency
does not occur until ω0 = 12.6, even though the eigen-
frequency spectrum includes 3 eigenfrequencies between
12.6 and 14.0. For these eigenfrequencies, the overlap
between the eigenmodes and either the input or output
signal is small, and thus the output signal is weak when
the system is driven at these eigenfrequencies. As a re-
sult, the gain ratio can be large even for systems with a
continuous eigenfrequency spectrum. In Fig. 23, we show
that the device with mL/mS = 1 can achieve a gain ratio
Gon(ω0)/Goff(ω0) > 102.

Thus, we have shown that the vibrational response of
the device at a given eigenfrequency depends on the over-
lap between the eigenmodes near the driving frequency
and the input and output signals. A robust acoustic
switch can always be produced using a system with a
finite frequency band gap. However, an acoustic switch
can also be created using a system with a continuous

eigenfrequency spectrum if the driving frequency is cho-
sen such that the eigenmodes of the corresponding nearby
eigenfrequencies do not couple to the input and output
signals. Such acoustic switching devices are more difficult
to design since one needs to control the spatial structure
of the eigenmodes, as well as the eigenfrequency spec-
trum.
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