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Recent computational and experimental work has established the existence of Asymmetric Rec-
tified Electric Fields (AREFs), a type of steady electric field that occurs in liquids in response to
an applied oscillatory potential, provided the ions present have different mobilities [Hashemi Amrei
et al., Phys. Rev. Lett. 121, 185504, 2018]. Here we use scaling analyses and numerical calcula-
tions to elaborate the nature of one-dimensional AREFs between parallel electrodes. The AREF
magnitude is shown to increase quadratically with applied potential at low potentials, increase non-
linearly at intermediate potentials, then increase with a constant rate slower than quadratically at
sufficiently high potentials, with no impact at any potential on the spatial structure of the AREF.
In contrast, the AREF peak location increases linearly with a frequency-dependent diffusive length
scale for all conditions tested, with corresponding decreases in both the magnitude and number of
sign changes in the directionality of AREF. Furthermore, both the magnitude and spatial struc-
ture of the AREF depend sensitively on the ionic mobilities, valencies, and concentrations, with a
potential-dependent peak AREF magnitude occurring at an ionic mobility ratio of D−/D+ / 5.
The results are summarized with approximate scaling expressions that will facilitate interpretation
of the steady component for oscillatory fields in liquid systems.

I. INTRODUCTION

The application of an oscillatory electric potential
to a liquid is an integral aspect of a wide range
of phenomena, including AC electroosmosis (ACEO)
pumps [1–4], induced charge electrokinetics (ICEK) [5–
14], electrohydrodynamic (EHD) manipulation of col-
loids [15–20] and bioparticles [21–24], dielectric and
impedance spectroscopy [25–28], cyclic voltammetry [29–
31], electro-acoustics [32–34], dielectrophoresis [35–39],
and electroosmotic electrolyte transport through charged
nanopores/nanotubes [40, 41]. In all of these systems, in-
terpretation of the experimental observations depends on
information regarding the dynamic response of the liquid
to the applied potential. In particular, a key question
is the nature inside the liquid of the electric field itself,
which is not directly measurable and thus must be cal-
culated theoretically. Traditionally, the “standard elec-
trokinetic model,” which couples the Poisson equation
with Nernst-Planck ion transport equations, has served
as the starting point for analysis of liquids with dissoci-
ated ions [42]. Because the governing equations are cou-
pled and highly nonlinear, and because under typical con-
ditions large disparities in length and time scales render
the equations extremely stiff, most analyses of the elec-
tric field have focused on asymptotically small applied
potentials [25, 43–46] or on higher applied potentials but
for ions with equal mobilities [47–49].

Despite being widely used, however, these linearized
and equal-mobility models have yielded predictions at
odds with experimental observations in a variety of sys-
tems. For example, researchers investigating ACEO
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pumps have long been stymied by the observed rever-
sal of fluid flow direction upon varying the applied fre-
quency [4, 12, 13]. Likewise, in work examining the EHD
aggregation of colloids near electrodes, the effect of elec-
trolyte type on the aggregation behavior has remained
mysterious despite numerous theoretical and experimen-
tal studies [50–54]. Recent experimental studies revealed
that colloidal particles can levitate several particle diam-
eters upward against gravity in response to an oscilla-
tory field, provided they were suspended in certain elec-
trolytes (e.g., NaOH and KOH) [55, 56], a result also
inexplicable in terms of the traditional solutions to the
standard electrokinetic model.

Recent work by Hashemi Amrei et al. [57] generated a
new possible explanation for the above unresolved ques-
tions. Specifically, they showed that application of a per-
fectly sinusoidal potential to a liquid counterintuitively
yields a long-range steady electric field. This steady field
results from the asymmetry in motion of the positive and
negative ions as they move back and forth in the oscilla-
tory field, a phenomenon explicable even in the limit of
just two isolated ions (Fig. 1). Denoted as an Asymmet-
ric Rectified Electric Field (AREF), the magnitude of the
steady field depends on the ratio δ = D−/D+ of the rel-
ative diffusivities of the ions. We emphasize that AREF
is necessarily a nonlinear effect; any sort of linearization
results in a zero time average solution. Numerical so-
lutions to the full nonlinear electrokinetic model further
corroborated the existence of AREF [57]. The numerical
results show that AREFs persist over large length scales
between parallel electrodes, with a characteristic diffusive
length scale given by `D ∼

√
D/f , where D is a charac-

teristic diffusivity and f is the applied frequency (Fig. 2).
These predictions were shown to be consistent with the
levitation behavior of colloids to extreme distances away
from the electrode; the long range steady field lifts par-
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FIG. 1. Illustration of two-ion model: harmonic oscillations
(yi(t)) of two oppositely charged isolated ions in response to a
sinusoidal electric field for different δ = D−/D+ values. The
generated electric field at an arbitrary location y = yf due to
these harmonic oscillations is asymmetrical and has a nonzero
time average for δ 6= 1. The dotted black curves denote the
oscillations of the center of charge.

ticles electrophoretically upward until the AREF dimin-
ishes sufficiently to balance gravity [57, 58]. As discussed
by Hashemi Amrei et al., the existence of AREFs also
potentially explains the unresolved frequency and elec-
trolyte dependencies observed in ACEO pumps and EHD
aggregation of particles near electrodes [57].

Several fundamental questions about AREFs, however,
to date remain unanswered. Notably, the scaling of the
AREF with the magnitude of the applied potential was
only elucidated for small potentials, and it is unclear how
AREFs scale with larger applied potentials. It is also un-
clear how the spatial structure of the AREF varies with
frequency (and the corresponding diffusive length scale
`D), an important question since the earlier results indi-
cated that even the sign of the AREF (i.e., the direction
of the steady field) changes repeatedly as a function of
frequency. Likewise, although a non-unity diffusivity ra-
tio (δ 6= 1) is clearly necessary for an AREF to occur, it
is unclear how the magnitude and the spatial structure
(shape) of the AREF scale with δ or with the valencies
of the ions themselves.

In this work, we address the above questions by elab-
orating the nature of one-dimensional AREFs between
parallel electrodes. We perform a systematic dimensional
analysis and extensive numerical calculations over a large
parameter space, focusing on the limit of negligible elec-
trochemical and thermal effects. The analysis yields sev-
eral key results:

Potential: The AREF magnitude increases quadrati-
cally with applied potential at low potentials, in-
creases nonlinearly at intermediate potentials, and
increases slower than quadratically at sufficiently
high potentials. The applied potential does not af-
fect the AREF shape.

Frequency: The AREF peak location far from the elec-
trode is linearly proportional to `D =

√
D/f for

all conditions tested, but the magnitude decreases
with a power-law exponent ranging between `−1

D

and `−3
D depending on the applied potential. As `D

decreases (f increases), a series of pitchfork bifur-
cations occur for the number of zeros in the AREF
(i.e., the number of sign changes increases.)

κ−1

κ−1 ∼ 1–100 nm

`D

`D ∼ 1–10 µm

H ∼ 50–1000 µm

y = 0, φ = φ0 sin (ωt), Ji = 0

y = H, φ = 0, Ji = 0

FIG. 2. Schematic diagram of two parallel electrodes and not
to scale comparison of different length scales. AREF varies
over a diffusive length scale of `D =

√
D/f which is several

order of magnitudes higher than the characteristic length scale
of the Debye layer (κ−1).

Ionic strength: The AREF magnitude peaks at ion
concentrations (c∞) similar to those of deionized

water, varying as c−1
∞ and c

−1/4
∞ at low and high

applied voltages, respectively.

Ionic mobilities: The AREF magnitude increases with
δ to a peak value near δ / 5, then decays asymptot-
ically back toward zero. The ion valencies dramat-
ically alter the magnitude and sign of the AREF.

Each of the above points is elucidated in detail below.
We begin with a formal dimensional analysis, and we
demonstrate that under typical circumstances the system
behavior is governed by four key dimensionless groups.
We then present systematic numerical calculations ver-
sus those four parameters to corroborate the above list
of key results. Because the numerical calculations are
non-trivial, we finish by summarizing the results in terms
of approximate scaling expressions that should assist re-
searchers in interpretation of AREF effects in oscillatory
fields.

II. THEORY AND NUMERICAL METHODS

A. Standard Electrokinetic Model

Our starting point is the standard electrokinetic model
[43, 57, 59], which is a continuum-level model that cou-
ples the electric field to the flux of dissociated ions. We
restrict attention to fully dissociated binary electrolytes
between parallel electrodes located at y = 0 and y = H
(cf. Fig. 2). The electric potential is governed by the
Poisson equation

−ε∂
2φ

∂y2 = ρ = e(z+n+ + z−n−), (1)
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relating the free charge density to the gradient of the
electric field. The transport of ions in space is governed
by the Nernst-Planck equations for each ion,

∂ni
∂t

= Di
∂2ni

∂y2 + ezi
Di

kBT

∂

∂y

(
ni
∂φ

∂y

)
. (2)

Here the symbols stand for applied potential, φ0; free
charge density, ρ; elementary charge, e; charge number,
zi; permittivity, ε; electric potential, φ; number concen-
tration of ion, ni; diffusivity, Di; Boltzmann constant,
kB ; and absolute temperature, T .

The first and second terms on the right hand side of
the Nernst-Planck equation (Eq. 2) are the diffusive and
electromigrative contributions of the ion transport, re-
spectively. It is the electromigration term that accounts
for the transport of ions in direct response to the electric
field and is responsible for the nonlinearity of the gov-
erning equations. We assume that the liquid is quiescent
with no convection due to instabilities or flows generated
around suspended objects.

To close the problem, we first subject the potential
distribution to the following initial and boundary condi-
tions:

φ(0, y) = 0, (3)

φ(t, 0) = φ0 sin(ωt), φ(t,H) = 0. (4)

At time equal to zero (t = 0) a sinusoidal electric poten-
tial of amplitude φ0 and angular frequency ω = 2πf is
applied on the lower electrode at y = 0, while the upper
electrode at y = H is kept grounded (Fig. 2).

The ions are initially evenly distributed between the
two electrodes with number concentrations of n∞i ,

ni(0, y) = n∞i . (5)

The initial ion concentrations are related to the bulk con-
centration of the electrolyte (n∞) through their respec-
tive charge numbers:

n∞+ = −z−n∞, n∞− = z+n
∞, (6)

which satisfy the electroneutrality condition, z+n
∞
+ +

z−n
∞
− = 0.

Finally, we assume that the electrodes are fully ‘block-
ing,’ such that the flux Ji of both ions through the elec-
trodes is zero,

Ji = −Di

(∂ni
∂y

+
ezini
kBT

∂φ

∂y

)
y=0,H

= 0. (7)

This assumption might not be justified at high applied
voltages and sufficiently low frequencies. Similarly, we
neglect any complications due to the formation of a com-
pact Stern layer at the electrodes; some results indicate
that a significant potential drop might occur across the
Stern layer [47, 60]. We focus here on the limiting case of
negligible Stern layer effects and negligible electrochem-
istry to provide a reference point for future work exam-
ining those more complicated physics.

TABLE I. Quantities and dimensions in MLTQ system. M:
mass, L: length, T: time, Q: charge. Notation

.
= indicates

dimensional equality.

quantity definition dimension

z+ charge number of + ion dimensionless

z− charge number of − ion dimensionless

ε permittivity F/m
.
= M−1L−3T2Q2

kBT thermal energy N.m
.
= ML2T−2

e elementary charge C
.
= Q

H electrode spacing m
.
= L

f applied frequency 1/s
.
= T−1

D+ diffusivity of + ion m2/s
.
= L2T−1

D− diffusivity of − ion m2/s
.
= L2T−1

φ0 applied electric potential V
.
= ML2T−2Q−1

n∞ bulk concentration of electrolyte 1/m3 .
= L−3

φ electric potential V
.
= ML2T−2Q−1

n+ concentration of + ion 1/m3 .
= L−3

n− concentration of − ion 1/m3 .
= L−3

y location m
.
= L

t time s
.
= T

B. Dimensionless Form

The important parameters and variables in our model
and their corresponding dimensions are listed in Table I.
There are a total of r = 16 quantities and k = 4 in-
dependent dimensions, so by Buckingham’s pi theorem
there are r−k = 12 dimensionless groups. We choose H,
f , kBT , and e as the repeating quantities to define the
dimensionless groups.

We use the gap size H and the inverse frequency 1/f
to scale the independent spatial and temporal variables
respectively as

ỹ = y/H, t̃ = ft = ωt/(2π). (8)

The thermal potential φT = kBT/e is used to nondimen-
sionalize the applied potential φ0,

Φ0 =
φ0e

kBT
, (9)

while the applied potential scales the dependent potential
φ(t, y) as

φ̃ = φ/φ0. (10)
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Note that unlike the traditional linearized case for which
φT is an appropriate characteristic potential, for this non-
linear problem φ can be as high as ∼ 100φT . Hence, the
applied potential φ0 offers a better normalization of the
potential distribution. In addition, the ion concentra-
tions are scaled as

ñ+ = n+/n0, ñ− = n−/n0, (11)

where n0 is given by

n0 = z2
+n
∞
+ + z2

−n
∞
− . (12)

Our numerical results (cf. Sec. III C) suggest the charac-
teristic diffusivity of the problem to be

D̂ =
√
D+D−, (13)

which is used to define the dimensionless diffusive length
scale

LD = `D/H =

√
D̂/f

H
. (14)

The ionic mobility mismatch is denoted by the dimen-
sionless parameter

δ = D−/D+. (15)

Finally, the ionic strength appears in two dimensionless
groups, a dimensionless Debye length scale,

κH =

√
n0e2

εkBT
H, (16)

and an overall dimensionless number concentration,

N∞ = n0H
3. (17)

The dimensionless groups and variables are summarized
in Table II. If we narrow our focus to cases of aqueous
electrolytes at ambient temperature (i.e., if we omit sit-
uations where thermal effects are important), then the

TABLE II. Dimensionless groups (parameters (Π1–Π7) plus
dependent and independent variables (Π8–Π12)). n0 =

z2+n
∞
+ + z2−n

∞
− = n∞(z2−z+ − z2+z−), κ−1 =

√
εkBT/(n0e2),

D̂ =
√
D+D−.

Π1 Φ0 = φ0e/(kBT ) Π2 LD = `D/H =

√
D̂/f/H

Π3 δ = D−/D+ Π4 κH

Π5 z+ Π6 z−

Π7 N∞ = n0H
3 Π8 φ̃ = φ/φ0

Π9 ñ+ = n+/n0 Π10 ñ− = n−/n0

Π11 t̃ = ft Π12 ỹ = y/H

dimensionless groups κH and n0H
3 become dependent

since the only varying quantities in both groups are n0

and H. Therefore, only one of them (κH) is taken here
as a controlling dimensionless group. In other words, the
six dimensionless parameters Φ0, LD, δ, κH, and charge
numbers z+ and z− completely govern the system behav-
ior.

Using the above definitions, the dimensionless govern-
ing equations are written as

− Φ0

(κH)2

∂2φ̃

∂ỹ2 = z+ñ+ + z−ñ−, (18)

∂ñ+

∂t̃
=
L2
D√
δ

[∂2ñ+

∂ỹ2 + z+Φ0
∂

∂ỹ

(
ñ+

∂φ̃

∂ỹ

)]
, (19)

∂ñ−

∂t̃
=
√
δL2

D

[∂2ñ−

∂ỹ2 + z−Φ0
∂

∂ỹ

(
ñ−

∂φ̃

∂ỹ

)]
, (20)

subject to the following dimensionless initial conditions,

ñi(0, ỹ) = n∞i /n0, (21a)

φ̃(0, ỹ) = 0, (21b)

and dimensionless boundary conditions,(∂ñi
∂ỹ

+ ziΦ0ñi
∂φ̃

∂ỹ

)
ỹ=0,1

= 0, (22a)

φ̃(t̃, 0) = sin(2πt̃), φ̃(t̃, 1) = 0. (22b)

In Eq. 21a, the dimensionless initial ion concentrations
can be written in terms of charge numbers (z+ & z−):

n∞+
n0

=
−z−

z2
−z+ − z2

+z−
,

n∞−
n0

=
z+

z2
−z+ − z2

+z−
. (23)

Finally, using the above scalings, all forms of the elec-
tric field E = −∂φ/∂y, including the instantaneous and
time average, become nondimensionalized by the nominal
electric field φ0/H,

Ẽ = EH/φ0. (24)

The time average electric field is obtained by time inte-
gration over one AC cycle of the harmonic solution as

〈Ẽ〉 =

∫ 1

0

Ẽdt̃. (25)

Likewise, the dimensionless free charge density becomes

ρ̃ = ρ/n0 = (z+n+ + z−n−)/n0, (26)

with its time average denoted by 〈ρ̃〉.
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C. Numerical Solution

Following the procedure outlined by Hashemi Amrei et
al. [57], the system of nonlinear partial differential equa-
tions (Eqs. 18–22) was numerically solved using multigrid
finite difference methods [61, 62] and mesh refinement
[63]. Cell-centered finite difference methods were em-
ployed to discretize the governing equations and bound-
ary conditions. A typical minimum cell size used for the
simulations is of order κ−1/128 which, for κ−1 ≈ 13 nm,
is equivalent to ≈ 0.1 nm. Such a small size step (com-
pared to electrodes spacing which can be several hundred
microns) restricts the time marching of the simulation.
In the presence of convective terms (with a velocity of
u), the Courant-Friedrichs-Lewy (CFL) number condi-
tion limits the maximum allowable time step of the nu-
merical solution: |u|∆t/h ≤ 1, with ∆t and h as the
temporal and spatial steps. In dimensional context, the
electromigration term of the species continuity equation
(Eq. 2) can be written as ∂

∂y (uni) with u = eziDi

kBT
∂φ
∂y

([u] = m/s), resembling a convective transport of ions.
Therefore, we require∣∣∣eziDi

kBT

∂φ

∂y

∣∣∣∆t/h ≤ 1. (27)

It is not practical to cover the entire domain with a
uniform cell size that is small enough to resolve the Debye
layer (e.g., covering 100 µm with h ≈ 0.1 nm requires 1
million cells). Therefore, we used mesh refinement near
the electrode surfaces [63].

Operator splitting is employed. For each time step,
the Poisson equation (Eq. 18) is solved for Φ0 (step i),
which is subsequently used to find the ion concentrations
from the Nernst-Plank equations (Eqs. 19 & 20) (step ii).
Our Poisson solver is based on the algorithm of Martin
and Cartwright [63]. With some changes, a similar algo-
rithm is devised to solve the species continuity equation.
The main difference of the algorithm is the inclusion of
the nonlinear electromigration term. To ensure solution
stability, the CFL number is calculated prior to step ii.
While the condition is not met, we set ∆t = ∆t/2 to find
a ∆t = (∆t)c that satisfies the condition. Then step ii
breaks down into ∆t/(∆t)c substeps.

Besides the above-mentioned challenges, achieving a
harmonic solution by solving the dynamical equations
is computationally intensive [47]. The simulation time
tf should be long enough for the ions to transfer back
and forth between the electrodes in order to reach the
harmonic solution. The ions transfer with diffusive and
electromigrative mechanisms with corresponding time
scales of τDi = H2/Di and τei = τDi /(|zi|φ0e/(kBT )).
Therefore, to ensure the harmonic conditions we require
tf � max[τDi , τ

e
i ]. The time scale of the applied potential

is also τAC = 1/f which is, for the range of parameters
used in this study, far less than τDi and τei . Therefore, the
number of AC cycles should be nAC � max[τDi , τ

e
i ]/τAC .

We performed several consistency checks. In this re-
gard, an important issue to consider was the crowding ef-

fect [64]. The finite size of ions enforces a cutoff number
concentration of nmax = 1/l3, where l is a characteristic
length of the dissolved ions (nmax ≈ 60 M for l = 0.3
nm). We never observed concentrations higher than the
maximum packing value. As another consistency check,
the instantaneous electric field at the electrode surface
was compared to the typical Debye layer field strength
κH. Similarly, the maximum instantaneous induced zeta
potential ζ on the electrode surface was of the same order
of magnitude as the applied potential (i.e., ζ ∼ φ0). In
other words, all of the potentials, field strengths, and ion
concentrations are physical. Please see the supplemental
material in Hashemi Amrei et al. [57] for further details.

III. NUMERICAL RESULTS

In this section, we systematically investigate the ef-
fect of the different system properties on the AREF. The
results are provided at ambient temperature for 1-1 aque-
ous electrolytes, unless otherwise stated (cf. Sec. III F).
We first analyze univalent electrolytes (z+ = |z−| = 1),
so that the contributing dimensionless parameters are Φ0

(dimensionless applied potential), LD (dimensionless dif-
fusive length scale), δ (ionic mobility mismatch), and κH
(dimensionless Debye parameter). Then we discuss the
complications that charge numbers (z+, z−) and their
potential asymmetry bear to the analysis.

A. Representative field and charge distributions

Figure 3 shows representative time variations of the
instantaneous electric field Ẽ and free charge density ρ̃
for two different values of LD and different Φ0 values. At
low applied potentials, the system behaves linearly and
a single-mode sinusoidal solution is obtained (Φ0 = 1,
dotted red curves), consistent with linearized asymptotic
analyses [25, 46]. As the applied potential increases,
the nonlinear contribution gradually dominates, yielding
multimodal solutions. This behavior is in marked con-
trast to that of linearized solutions, where regardless of
the applied potential the solution is invariably a sinusoid.
A comparison between the cases of different LD values
reveals an increase in the amplitude of the harmonic so-
lutions for smaller dimensionless diffusive length scales.
For instance, increasing the applied frequency, which re-
sults in lower values of LD, increases the AREF ampli-
tude. The shape of the harmonics is also affected by LD,
i.e., the curves for different LD values do not collapse.

In this example the ionic mobility mismatch is held
constant at δ = 3; hence the time averages are nonzero
and a net steady field (〈Ẽ〉, AREF hereafter) exists
within the liquid [57], as shown in Fig. 4(a). The corre-
sponding time average of the free charge density (〈ρ̃〉) is
provided in Fig. 4(b). Interestingly, the spatial distribu-
tions of AREF and 〈ρ̃〉 are, respectively, anti-symmetrical
and symmetrical with respect to the midplane as a con-
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FIG. 3. Representative time variations of the electric field (Ẽ)
(a & b) and free charge density (ρ̃) (c & d) at ỹ = 0.04 for
different values of Φ0 and LD. For all plots, δ = 3, κH = 2600.

sequence of the mathematical structure of the governing
equations. We emphasize that swapping the grounded
and powered electrodes does not change the sign or mag-
nitude of 〈Ẽ〉 or 〈ρ̃〉; the symmetry of the system is bro-
ken by the ionic mobility mismatch, not the relative ori-
entation of the electrodes. The magnitudes of both the
time averages of electric field and free charge density in-
crease with the applied potential. Note that wherever
the gradient of AREF is zero, there is likewise a zero
time average free charge density, consistent with Gauss’s
law (Eq. 1). In addition, the general shape of the AREF
distribution is the same for different applied voltages. In
other words, the curves for different Φ0 values in Fig. 4(a)
collapse under appropriate scaling, although as discussed
below, the appropriate scaling is non-obvious.

Magnification of the AREF and 〈ρ̃〉 distributions near
the electrode, on the Debye length scale, are shown in
Figs. 4(c) and (d), respectively. The electric field starts
from a nonzero value (indiscernible at this scale) at the
electrode (ỹ = 0), then rises to an absolute maximum be-
fore decaying to the solution at the micron scale shown
in Fig. 4(a). The free charge density has an absolute
nonzero value near the electrode (negative in this repre-
sentative example), consistent with the nonzero gradient
of the AREF at ỹ = 0 based on Gauss’s law. The mis-
match in ionic mobilities yields a net accumulation of ions
near the electrodes which subsequently results in AREF.

We focus throughout this section on the AREF behav-
ior at the micron scale, far outside of the Debye layer im-
mediately next to the electrode, since it is in this regime
where a steady field will most readily induce experimen-

FIG. 4. Representative spatial distribution of AREF (〈Ẽ〉)
and time average free charge density (〈ρ̃〉) at micron scale (a
& b) and close to the electrode surface (c & d) for different
values of Φ0. For all plots, LD = 0.17, δ = 3, κH = 2600.

tally observable behavior with micron scale or larger ob-
jects.

B. Effect of applied potential (Φ0)

To further analyze the effect of applied potential, con-
sider an illustrative example of an AREF distribution
depicted in Fig. 5(a). We denote the first peak of AREF

outside the Debye layer as 〈Ẽ〉peak, and ỹpeak is the cor-
responding dimensionless location of the peak. As dis-
cussed in Fig. 4(a), the general shape of the AREF dis-
tribution is insensitive to the applied voltage; as a result,
the peak location of AREF remains the same at different
Φ0 values. The peak magnitude however is significantly
affected by Φ0. Figure 5(b) shows 〈Ẽ〉peak versus Φ0 for
different values of LD. Regardless of LD, at low voltages
(Φ0 < 1), 〈Ẽ〉peak increases as the first power of Φ0. Re-
call that the electric field is scaled by φ0/H; hence, the di-
mensional AREF accordingly varies as φ2

0. At higher Φ0

values, the behavior becomes more intricate. The power-
law exponent a (local slope of the curves) initially in-
creases due to the contribution of nonlinear terms. How-
ever, upon further increasing Φ0, a starts dropping to
reach a final constant, the value of which depends on
the other dimensionless parameters. A representative ex-
ample of this behavior is demonstrated in Fig. 5(c) for
LD = 0.24. By increasing Φ0, the power-law exponent
a dramatically ascends from 1 and then drops to a con-
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FIG. 5. (a) Illustrative example of AREF distribution with its peak magnitude (〈Ẽ〉peak) and the corresponding peak location
(ỹpeak) for δ > 1. (b) AREF peak magnitude versus Φ0 for different values of LD. (c) Effect of Φ0 on the power-law exponent
a (LD = 0.24) . For all plots, δ = 3, κH = 2600.

stant value below 1. Qualitatively similar results were
obtained for different δ and κH values, but the exact de-
pendence of the power a on the applied voltage and other
controlling parameters is unclear. Overall, we could not
find a universal scaling argument at intermediate/high
applied voltages (cf. Sec. IV).

Although the exact mathematical scaling is compli-
cated, the overall physical picture is clear: higher applied
oscillatory potentials invariably yield a higher steady field
in the bulk. Any physical phenomena directly propor-
tional to the magnitude of the AREF, such as instan-
taneous electrophoretic velocities, will likewise increase
with the applied potential, following dependencies simi-
lar to those plotted in Fig. 5(b). Importantly, however,
increases in the applied potential have no effect on the
spatial structure of the steady AREF. This aspect has a
key physical implication: any experimental observables
that depend on the zeros in the AREF, such as the equi-
librium heights of particles moving electrophoretically in
response to the AREF, will be independent of the applied
potential. Indeed, such behavior is observed experimen-
tally with colloids balancing between gravity and elec-
trophoresis [58].

C. Effect of diffusive length scale (LD)

The second key dimensionless parameter is LD, the
frequency-dependent diffusive length scale. Figure 6(a)
shows the effect of the dimensionless diffusive length scale
LD on the spatial distribution of AREF. In contrast to
Φ0, which had no impact on the spatial structure of the
AREF, LD has a tremendous impact on the shape of
the AREF. By increasing the LD value, the AREF shifts
away from the electrode surface and its peak value de-
creases (Fig. 6(a)). At higher LD values the ions move
longer distances during each AC cycle; therefore, the
nonlinear effects extend farther away from the electrode
surface, with the AREF peak location shifting toward
the midplane. Quantitative analysis of the peak loca-
tion ỹpeak reveals that it is linearly proportional to LD

(Fig. 6(b)). The AREF peaks at the same location for
different voltages, consistent with the results presented
in Fig. 4(a), where the general shape of AREF is con-
served regardless of the applied potential. Further in-
creasing the dimensionless diffusive length scale beyond
the case of LD = 0.37 (Fig. 6(a), dotted red curve) even-
tually results in a curve with no peak outside the Debye
layer. To be more precise, for a peak to exist, we require
LD < 1/2 → `D < H/2, i.e., the diffusive length scale
should not be larger than half of the domain size. Oth-
erwise, the antisymmetric nature of AREF rules out the
existence of a peak.

FIG. 6. Effect of LD on AREF behavior. (a) Spatial distri-
bution of AREF for different LD values (Φ0 = 10). (b) Peak
location of AREF (ỹpeak) versus LD. (c) Peak magnitude of

AREF (〈Ẽ〉peak) versus LD. (d) Effect of Φ0 on the power-law
exponent b. For all plots, δ = 3, κH = 2600.
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The peak magnitude of AREF is also plotted versus
LD in Fig. 6(c). The general trend is descending. This
observation can be understood considering a case where
the ions move much faster than the AC time scale (i.e.,
LD � 1). Under such conditions, on changing the ap-
plied potential with the time scale 1/f , ions have enough
time to spatially transfer and screen out any changes in
the potential distribution. It is feasible to argue that
for AREF to occur, the ions should only partially screen
the applied potential. In other words, the ions should
fall behind the AC potential in oscillation. Therefore at
very high LD values AREF is expected to eventually de-
scend to zero. The power-law exponent b of this descend-
ing trend, however, is a function of the applied voltage
(Fig. 6(d)). The power-law exponent of the AREF mag-
nitude on LD is −3 in the linear regime of low applied
voltages and approaches to −1 at high voltages. Qual-
itatively similar results are obtained for different δ and
κH values. Despite the uncertainty in underlying impact
of the applied voltage, asymptotic scaling arguments are
straightforward:

〈Ẽ〉peak ∝ LbD, (28)

where b = −3 and −1 for Φ0 ∼ 1 and Φ0 � 1, respec-
tively. It appears that by increasing the applied voltage,
AREF becomes less sensitive to LD value, or in dimen-
sional context, to the applied frequency and ion diffu-
sivities. The underlying reasons for the precise scaling
exponents, however, remain obscure.

D. Effect of ionic mobility mismatch (δ)

The ionic mobility mismatch (δ = D−/D+) is perhaps
the most intriguing parameter of the AREF effect. The
AREF is plotted versus position for different δ values in
Fig. 7(a). The effect of δ is non-monotonic: by increas-
ing the ionic mobility mismatch from δ = 1, the peak
magnitude of AREF increases initially and then starts
decaying. Hashemi Amrei et al. [57] showed that for
δ < 1, the AREF distribution would be the exact mirror
of the displayed curves with respect to the zero line, i.e.,
it is antisymmetric. While δ has a considerable impact
on the oscillatory behavior of AREF and its shape, it
does not alter the peak location. A quantitative analysis
of the peak magnitude for different conditions in which
we change the LD and κH values reveals that the non-
monotonic trend is robust (Fig. 7(b)).

The observed decay of the peak value can be explained
via an asymptotic analysis of the problem. In the limit
of δ → ∞ or δ → 0, one of the ions is extremely fast
compared to the other nearly unmoving one. Under such
conditions, the two-ion model (Fig. 1) predicts a zero
time average electric field. In other words, the harmonic
oscillations of the two ions are prerequisites of AREF
effect: a single oscillating ion would not induce AREF as
the time average of its sinusoidal oscillation is invariably
zero.

The exact δ value at which 〈Ẽ〉peak reaches its max-
imum (δmax) is however less straightforward. Based on
the results shown in Fig. 7(b), δmax is unresponsive to LD
and κH values; the curves collapse under normalization.
However, δmax significantly depends on the applied po-
tential. As depicted in Fig. 7(c), by increasing the applied
potential, the summit of the curve shifts toward δ = 1.
This shift is quantitatively demonstrated in Fig. 7(d) for
a range of Φ0 = 0.1 to Φ0 = 100. As shown in this figure,
δmax indefinitely decays from ≈ 5.25 toward δ = 1 by
increasing the applied voltage.

Physically, one way to understand this impact of the
applied potential on the peak ionic mobility mismatch
is as a measure of how far the ions displace during each
cycle. At higher applied potentials, the ions are able to
move further away from each other, and accordingly a
higher fraction of the faster moving ions are able to ‘es-
cape’ from the bulk into the double layers adjacent to
each electrode. Since the existence of AREF depends on
the mismatch between the two species of ions, the de-
crease in concentration of the speedier ions correspond-
ingly decreases the magnitude of the AREF. At higher
applied potentials, only smaller values of delta allow for

FIG. 7. Effect of δ on AREF behavior. (a) Spatial distri-
bution of AREF for different δ values (Φ0 = 10, LD = 0.2,

κH = 2600). (b) Peak magnitude of AREF (〈Ẽ〉peak) ver-
sus δ for different conditions; markers: red circles, Φ0 = 10,
LD = 0.2, κH = 2600; blue squares, Φ0 = 10, LD = 0.14,
κH = 2600; green triangles, Φ0 = 10, LD = 0.2, κH = 822;
dashed black curves are empirical fits; cf. Sec. IV. (c) Nor-

malized peak magnitude of AREF (〈Ẽ〉peak/max (〈Ẽ〉peak))
versus δ for different Φ0 values (LD = 0.2, κH = 2600). (d)
δmax versus Φ0 (LD = 0.2, κH = 2600); dashed black curve
is an empirical fit; cf. Sec. IV.



9

FIG. 8. Effect of κH on AREF behavior. (a) Spatial distri-
bution of AREF for different κH values (Φ0 = 10, LD = 0.24,
δ = 3). (b) Peak location of AREF (ỹpeak) versus κH for two
different values of LD (Φ0 = 10, δ = 3). (c) Peak magnitude

of AREF (〈Ẽ〉peak) versus κH for four different electrolytes
of δ = 3 (LD = 0.24), NaCl (δ = 1.52, LD = 0.23), KOH
(δ = 2.7, LD = 0.32), and NaOH (δ = 3.95, LD = 0.29)
(Φ0 = 10). (d) Effect of Φ0 on the power-law exponent c
(LD = 0.24, δ = 3).

the two ionic species to coexist at comparably high con-
centrations without one species escaping from the bulk,
and δmax decreases accordingly.

E. Effect of dimensionless Debye parameter (κH)

The dimensionless Debye parameter, which can be
thought of as a measure of the ionic strength, also
strongly affects the AREF behavior. As demonstrated
in Fig. 8(a), upon changing the κH value, the general
shape and peak location of the AREF distribution is
conserved (similar to the effect of Φ0). Recall that our
focus is on the micron scale behavior of AREF; chang-
ing the κH value can alter the shape of AREF near the
electrodes and within the Debye layer (not shown here).
A more accurate analysis of the peak location however
shows that the peak location depends only weakly on
κH (Fig. 8(b)). A transition in the AREF behavior oc-
curs at 10 . κH . 100 that abruptly changes the peak
location. As an illustrative example, consider the case of
LD = 0.24 in Fig. 8(b). For κH & 100, AREF peaks at
ỹpeak ≈ 0.2 (compare to curves in Fig. 8(a)). By decreas-
ing the κH value, the peak location experiences a signif-
icant jump to ≈ 0.34 for κH . 10. Still, for practical

conditions of electrokinetic systems where H ∼ 100 µm
and c∞ > 10−5 M, κH � 100 for aqueous electrolytes
and the peak location remains unresponsive to changes
in κH. So, in experiments such as particle height bifur-
cation [55, 56, 58], where the location of the peak is far
more important than its magnitude (as long as it is large
enough to result in electrophoretic levitation of colloidal
particles), the results are not affected by κH.

Note that the transition in ỹpeak occurs near κH = 1
to 10, i.e., in a range where the Debye layer is compa-
rable in size to the electrodes spacing itself. Physically
this suggests that the AREF spatial structure has two
regimes: one in which the diffusive length scale interacts
with the nature Debye length scale, and one in which
they act more independently. Since κH � 1 for many
aqueous systems, it is the latter regime that is more rel-
evant experimentally.

Figure 8(a) shows that how lower values of κH result
in higher AREF magnitudes. This behavior is demon-
stratd in Fig. 8(c) for a wide range of κH values and four
different electrolytes of δ = 3 (D+ = 1 × 10−9 m2/s),
NaCl, KOH, and NaOH. The results for all four elec-
trolytes show that for practical electrolyte concentrations
and electrode spacings, the AREF magnitude is inversely
proportional to κH. The power-law exponent c however
is a function of applied voltage (Fig. 8(c)). At low Φ0

values, c = −2 and approaches to −0.5 at higher applied

voltages, which translates to c−1
∞ and c

−1/4
∞ dependencies

of the peak AREF magnitude on the electrolyte concen-
tration, respectively. By decreasing κH to values where
the Debye length is comparable to electrodes spacing,
the peak magnitude starts dropping. This drop can be
explained through the ionic strength; low κH can be a
result of low electrolyte concentration and in asymptoti-
cally diluted solutions, the system is depleted of dissolved
ions which drive the AREF effect.

F. Effect of ionic valences (z+ & z−)

The preceding sections focused on 1-1 electrolytes
where z+ = |z−| = 1. We can introduce more asymme-
try to the system by considering nonidentical valences
(charge numbers) for the ions. Similar to the defini-
tion of δ = D−/D+, we define Z =| z−/z+ | as the
valence mismatch of the ions. Figures 9(a) & (b) present
the AREF distribution for different combinations of z+

and z− values and two different δ values. For δ = 3
(Fig. 9(a)), decreasing the Z value from 2 to 1/3 (dot-
ted red curve to solid black curve) the peak magnitude
of AREF decreases. This descending impact of the Z
value on the AREF peak magnitude is more significant
when δ is smaller (Fig. 9(b)), where changing the Z can
even change the AREF direction. The results shown in
Figs. 9(a) & (b) suggest that δ and Z affect AREF in the
same qualitative way. In both cases of δ = 3 and δ = 1.5,
decreasing the Z appears to reduce the impact of ionic
mobility mismatch. However, if Z is small enough com-
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FIG. 9. Effect of the ion valences (z+ and z−) on the AREF behavior. (a & b) Spatial distribution of AREF for different

z+, z− combinations and two values of δ. (c) Normalized peak magnitude of AREF (〈Ẽ〉z+,z−
peak /〈Ẽ〉1,−1

peak) for different z+, z−
combinations and δ = 1.5. Parameters: Φ0 = 10, LD = 0.17, κH = 2600 for z+ = |z−| = 1 (H = 25 µm, 1 mM electrolyte).

pared to 1/δ (equivalently, if Z is large enough compared
to 1/δ when δ < 1), it can even qualitatively deform
the AREF distribution (Fig. 9(b)). This behavior is an-
alyzed more systematically in Fig. 9(c), which demon-
strates the normalized magnitude and sign of the AREF
peak for various combinations of z+, z− and a constant
ionic mobility mismatch of δ = 1.5. Note how changing
the Z from 2 (z+, z− = 1,−2) to 1/2 (z+, z− = 2,−1)
changes the AREF direction. Also note that for the case
of z+, z− = 3,−2 which yields δZ = 1, the AREF peak
magnitude is very close to zero. Another interesting ob-
servation is that increasing the valences at a constant Z
(possible only for z-z electrolytes, assuming a maximum
valence number of 3), appears to significantly increase
the AREF peak magnitude (e.g., compare the cases of
z+, z− = 1,−1 and z+, z− = 3,−3.).

A rough approximation is that the product δZ deter-
mines the AREF direction. In the two ion model (Fig. 1),
this idea can be incorporated easily by redefining the
ionic mobility mismatch as δ =| D−z−/(D+z+) |. With
the standard electrokinetic model however, the problem
is more delicate. Although the electromigration term of
the Nernst-Planck equation includes the product Dizi,
the diffusivity and charge number appear separately in
the diffusive contribution of the Nernst-Planck equation
and free charge density term of the Poisson equation, re-
spectively. In other words, the problem cannot be formu-
lated by δZ as the sole term responsible for asymmetry.

IV. SCALING EXPRESSIONS

The preceding numerical results indicate that both the
spatial structure and the magnitude of AREFs depend
in a complicated fashion on the system parameters. In
this section, we further elaborate the spatial structure,
with an emphasis on identifying scaling expressions for
where the AREF peaks in magnitude and how often it
changes direction with respect to position. Furthermore,
we present scaling expressions for the magnitude of the
AREF in various asymptotic limits. For simplicity, the

analyses are performed for 1-1 electrolytes.

A. AREF length scale and structure

The dimensionless analysis indicates that LD is the
only dimensionless parameter that affects the first peak
location of AREF. This result is corroborated by a com-
parison of the numerically observed peak locations of
AREF, ỹpeak plotted simply against the dimensionless
diffusive length scale (Fig. 10). As shown in this figure,
the diffusive length scale nicely predicts the peak loca-
tion of AREF over a wide parameter space (more than
5000 numerical results). In other words, the peak loca-

FIG. 10. Numerically observed peak location of AREF (ỹpeak)
versus the predictions of the empirical formula KLD =

K
√
D̄/f/H for conditions that LD < 1/3. The correc-

tion coefficient is K ≈ 0.83. Range of dimensional pa-
rameters (≈ 5000 data points): 0.1 ≤ φ0 ≤ 100 kBT/e,
1 ≤ f ≤ 30000 Hz, 2 ≤ H ≤ 100 µm, 0.01 ≤ δ ≤ 100,
5× 10−10 ≤ D+ ≤ 5× 10−9 m2/s, 10−5 ≤ c∞ ≤ 2× 10−2 M.
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FIG. 11. Oscillatory behavior of AREF for different values
of LD. Filled black and empty red circles are the points that
AREF passes zero with positive and negative slopes, respec-
tively. Parameters: Φ0 = 10, δ = 3, κH = 2600.

tion scales as

ỹpeak = KLD, (29)

where the fitting prefactor K ≈ 0.83 is obtained by linear
regression. This result is significant since it provides an
accurate and straightforward prediction for the AREF
peak location for any condition (at least, over the wide
range of values tested here). This finding also justifies

D̂ =
√
D+D− as the correct characteristic diffusivity

governing the AREF behavior.
Another important point to consider is the spatially os-

cillatory behavior of AREF (Fig. 11), which is controlled
by the dimensionless parameters LD and δ; as demon-
strated in Secs. III B & III E, Φ0 and κH do not affect
the spatial structure of the AREF. For large values of LD,
AREF passes zero only once with no peak outside the De-
bye layer (Fig. 11(a), LD = 0.74). Upon decreasing LD
(or equivalently, increasing the frequency), first a peak
appears with AREF passing zero three times (Fig. 11(b),
LD = 0.24). Further decreasing the LD value results in
5 and then 7 zeros (Figs. 11(c) & (d)). In other words,
when LD decreases, there is more space for AREF to os-
cillate and change sign. Note that AREF is always zero at
the midplane. The oscillatory behavior of the AREF can
be further analyzed by the bifurcation diagram demon-
strated in Fig. 12(a). Consistent with the results pro-
vided in Fig. 11, at high LD values, there is only one
zero which occurs at the midplane. As LD decreases,
pitchfork bifurcations [65] occur at the midplane. After
each bifurcation, two more zeros are added to the system

FIG. 12. Bifurcation diagrams of AREF for LD (a) and δ (b)
as varying parameters. Filled black and empty red circles are
the points that AREF passes zero with positive and negative
slopes, respectively. Parameters: Φ0 = 10, LD = 0.2 (b),
δ = 3 (a), κH = 2600.

while the slope of the AREF at the midplane switches.
Despite the fact that LD determines the peak loca-

tion of AREF, it is not the only dimensionless parameter
controlling the number of zeros. Fig. 7(a) shows that,
for constant LD, the first AREF peak is independent of
the precise δ value. However, the δ value can shift and
deform the smaller peaks of the distribution and con-
sequently the overall number of zeros (cf. the cases of
δ = 1.5 and 10 in Fig. 7(a)). This behavior is plotted
quantitatively in the bifurcation diagram in Fig. 12(b),
showing the number of zeros for different δ values. For δ
values close to 1, the AREF passes zero three times; by
increasing/decreasing the δ value from 1 pitchfork bifur-
cations happen at the midplane.

B. AREF magnitude scaling

Based on the results presented in Sec. III, 〈Ẽ〉peak ∝
Φa0 , 〈Ẽ〉peak ∝ LbD, and 〈Ẽ〉peak ∝ (κH)c. Here the power
a increases non-monotonically from 1 in the linear regime
(Φ0 ∼ 1) to a maximum in the nonlinear regime, before
decaying to a small constant value at very high applied
voltages (cf. Fig. 5(c)). The powers b and c are -3 and
-2 for Φ0 ∼ 1 and approach to -1 and -0.5 for Φ0 � 1,
respectively.

The effect of δ is more complicated. The non-
monotonic behavior demonstrated in Fig. 7(b) may be
approximated by the empirical fits

〈Ẽ〉peak = c1α exp (−c2|α|), (30)

where

α =
√
δ − 1/

√
δ = (D− −D+)/D̂. (31)

Knowing δmax, one can easily find the coefficient c2 by dif-
ferentiation of the fitting curve formula as c2 = 1/αmax,
where

αmax =
√
δmax − 1/

√
δmax. (32)
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Finally we get

〈Ẽ〉peak ∝ α exp (−|α|/αmax), (33)

where αmax is a function of the applied voltage
(Fig. 7(d)). Unlike b and c, δmax does not appear to ap-
proach a certain value at high voltages. Hence, to provide
scaling expressions at high voltages, we use an empirical
formula to fit the δmax vs Φ0 data. The fitting curve in
Fig. 7(d) is a sigmoid function

δmax = k1 − k2
ek3Φ0

1 + ek3Φ0
. (34)

We can find the coefficients k1 and k2 enforcing the condi-
tions δmax → 5.25 as Φ0 → 0 and δmax → δ∞ as Φ0 →∞.
The final value of δmax = δ∞ is unclear, due to the lack of
numerical results at extremely high voltages. However,
we can make a reasonable assumption: note that δmax

indefinitely gets closer to 1 by increasing the Φ0; consid-
ering this descending trend, along with the fact that it is
already below 2 for Φ0 = 100, we hypothesize that δmax

eventually approaches 1. Using these conditions, we find
the coefficients k1 = 9.5 and k2 = 8.5. The last coefficient
k3 is found by fitting as k3 ≈ 0.03. Of course a better
fitting formula could be employed but at the expense of
simplicity.

A possible scaling of the AREF peak magnitude can
then be obtained by multiplication of all scaling argu-
ments as

〈Ẽ〉peak ∝ Φa0LbD(κH)cγ, (35)

where γ = α exp (−|α|/αmax) with αmax =
√
δmax −

1/
√
δmax and δmax given by the empirical formula in

Eq. 34.
Although the complicated impact of Φ0 obscures any

generalized scaling analysis, asymptotic expressions can
be obtained. We consider two different regimes of ap-
plied voltages as low-intermediate (0 < Φ0 ≤ 20) and
intermediate-high (20 ≤ Φ0 ≤ 100). The underlying rea-
son of this division is the variations of b, c, and δmax with
Φ0. The applied voltage of Φ0 = 20 is approximately at
the middle of transition from low to high applied volt-
ages regimes (cf. Figs 6(d), 7(d), & 8(d)). Besides, the
summit of power a in Fig. 5(c), occurs around Φ0 ≈ 20,
regardless of the system properties.

Substituting a = 1, b = −3, c = −2 gives the simplified
scaling argument at low-intermediate applied voltages:

Φ0 ≤ 20: 〈Ẽ〉peak ≈ K
Φ0γ

L3
D(κH)2

, (36)

where the coefficientK is obtained by fitting asK ≈ 0.19.
Figure 13(a) shows a comparison between the numer-
ically observed peak magnitude of AREF and predic-
tions of Eq. 36. Note that Eq. 36 captures the AREF
peak magnitude extremely well for Φ0 < 5 (blue points
in Fig. 13(a)). For intermediate voltages, it is only the
power a that is increasing from 1, while the data points

FIG. 13. Numerically observed peak magnitude of AREF
(〈Ẽ〉peak) versus the predictions of the empirical formula

〈Ẽ〉peak ≈ Φa
0Lb

Dγ(κH)c for conditions that LD < 1/3. (a)
Low to moderate voltages (0 < Φ0 ≤ 20): fitting is performed
using low voltage data (Φ0 < 5, K ≈ 0.19). (b) Moderate
to high voltages (20 ≤ Φ0 ≤ 100): fitting is performed us-
ing all data points (K ≈ 2 × 10−4). Range of dimensional
parameters (≈ 5000 data points): 0.1 ≤ φ0 ≤ 100 kBT/e,
1 ≤ f ≤ 30000 Hz, 2 ≤ H ≤ 100 µm, 0.01 ≤ δ ≤ 100,
5× 10−10 ≤ D+ ≤ 5× 10−9 m2/s, 10−5 ≤ c∞ ≤ 2× 10−2 M.

are still nicely linear. Recall that the power a increases
monotonically from 1 at low-intermediate values of Φ0

(cf. Fig. 5(c)).

Similarly, we can insert b = −1, c = −0.5 to find the
scaling expression at intermediate-high applied voltages.
Since this range of applied voltage (0.5 ≤ φ0 ≤ 2.5
volts, or peak-to-peak applied voltages of 1–5 volts) is
frequently used in electrokinetic experiments we prefer to
fit the data using all results. So instead of substituting
an a value below 1 (cf. Fig. 5(c) at very high Φ0 values),
we heuristically find a value that collapse all data points.
Our analysis shows that an average of summit and final
a values (a ≈ 2) is a good choice. Hence, the scaling
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expression at intermediate-high applied voltages can be
written as

Φ0 ≥ 20: 〈Ẽ〉peak ≈ K
Φ2

0γ

LD
√
κH

, (37)

with K ≈ 2.1×10−4 obtained from linear regression. The
corresponding comparison provided in Fig. 13(b) shows
that the prediction of Eq. 37 is in the right neighbor-
hood, (R-square ≈ 0.9), differing by at most a factor of 2
over the entire range of parameters tested. This scaling
estimate should help in interpretation of experimental
results involving AREFs.

V. CONCLUSIONS

In summary, we have comprehensively investigated the
AREF phenomenon reported recently by Hashemi Amrei
et al. [57]. The effects of various parameters including
the applied voltage and frequency, ionic mobility mis-
match, mobilities of the dissolved ions, ionic strength,
electrodes spacing, and valences of the ions on the spa-
tial structure and magnitude of the AREF were analyzed
in detail.

Dimensionless analysis of the problem shows that the
diffusive length scale `D, with

√
D+D− as the character-

istic diffusivity, can accurately predict the peak location
of the AREF in a wide spectrum of system properties.
The AREF magnitude, in contrast, is found to be more
complicated, mainly due to the confounding nonlinear
impacts of the applied voltage. Regardless of the system
properties, at low applied voltages the peak magnitude
of AREF varies as the square of the applied potential.
No universal correlation is found for larger voltages, i.e.,
no simple power law behavior is observed. This peculiar
influence of the applied potential complicates the analy-

ses of the other dimensionless parameters. Our observa-
tions indicate that the AREF peak magnitude decreases
by increasing the diffusive length scale (i.e., decreasing
the frequency), with the rate of decrease sensitive to the
applied voltage. The analysis indicates that the AREF
magnitude becomes less sensitive to LD at higher volt-
ages, for reasons that remain obscure. The ionic mobility
mismatch has a pronounced non-monotonic impact on
the AREF magnitude, increasing from zero at δ = 1 to a
maximum at a voltage-dependent δmax. Physically, this
result stems from the necessity for the two ionic species
to oscillate asymmetrically; in the limit where δ = 1 there
is no asymmetry (and hence no AREF), and as δ → ∞
effectively only one ion oscillates appreciably, again yield-
ing no AREF. Finally, we find that for most aqueous sys-
tems the AREF magnitude decreases inversely with the
ionic concentration at low applied voltages, or as the in-

verse one fourth power (c
−1/4
∞ ) at higher voltages. Com-

bining the obtained results from the numerical analyses
for the various parameters yields simplified approximate
scaling arguments that should assist researchers in inter-
pretation and control of experiments.

While the above-mentioned results were obtained for
univalent electrolytes, we also demonstrated that intro-
ducing asymmetry through nonidentical ion valences is
as important as the ionic mobility mismatch. Further-
more, the results presented here are limited to situations
where electrochemical, Stern layer, and convective con-
tributions to the flux are negligible. These more compli-
cated effects are deferred to future studies.
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