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The properties of dilute polymer solutions are governed by the conformational dynamics of individual polymers
which can be perturbed in the presence of an applied flow. Much of our understanding of dilute solutions
comes from studying how flows manipulate the molecular features of polymer chains out-of-equilibrium,
primarily focusing on linear polymer chains. Recently there has been an emerging interest in the dynamics
of non-linear architectures, particularly ring polymers, which exhibit surprising out-of-equilibrium dynamics
in dilute solutions. In particular, it has been observed that hydrodynamics can couple to topology in planar
elongational and shear flows, driving molecular expansion in the non-flow direction that is not observed
for linear chains. In this paper, we extend our understanding of dilute ring polymer dynamics to mixed
flows, which represent flow profiles intermediate between simple shear or planar elongation. We map the
conformational behaviors at a number of flow geometries and strengths, demonstrating transitions between
coiled, tumbling, and stretched regimes. Indeed, these observations are consistent with how linear chains
respond to mixed flows. For both linear and ring polymers, we observe a marked first-order-like transition
between tumbling and stretched polymers that we attribute to a dynamic energy barrier between the two
states. This manifests as bimodal extension distributions in a narrow range of flow strengths and geometries,
with the primary difference between rings and linear chains being the presence of molecular expansion in the
vorticity direction.

I. INTRODUCTION

The conformational dynamics of individual polymer
chains govern the rheological properties of macromolec-
ular fluids, motivating decades of research into develop-
ing molecular theories or single-molecule measurements
that can elucidate the molecular response to an applied
flow.1 The resulting picture of polymer dynamics, both
in and out-of-equilibrium, can now explain a wide variety
of polymer dynamical phenomena; for example, sophisti-
cated theories can describe the dynamics of both dilute
and concentrated polymers, both in their bulk rheolog-
ical response2,3 as well as the implications for molecu-
lar conformation.4 These predictions are consistent with
simulation results, as well as single-molecule and bulk
experiments.4 Inspired by these successes, a significant
amount of recent research has sought to extend these
results for linear polymers to non-linear polymer archi-
tectures such as branched5 or ring polymers.

Ring polymers are of particular interest to the com-
munity, in part due to their ramifications for biomacro-
molecules such as genomic DNA,6–8 which is known to
exhibit ring-like chain statistics. Rings are also useful
model systems for studying the role of polymer chain
topology in polymer melts, where the absence of chain
‘ends’ affects the nature of molecular entanglements be-
tween chains.9,10 The dynamic slowing observed in ring
polymer melts is indeed qualitatively different from en-
tangled rings11–14 and has spurred significant theoretical
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efforts to understand the connection between molecular
conformations and material rheology.10,15 This has conse-
quently led to experimental studies of the rheological11,16

properties of ring polymer melts; however, the impor-
tance and difficulties in synthesizing ‘pure’ rings17 makes
this an unresolved question in polymer physics.

Clues to conformational dynamics and material prop-
erties in ring polymers can also be found in non-
concentrated ring polymer solutions. For example, sin-
gle molecule experiments have demonstrated that diffu-
sion of a trace ring or linear polymer in semidilute solu-
tion depends on the topology of the background solution
molecules.18 In this case, the intermolecular uncrossabil-
ity of polymer rings is implicated in the chain dynam-
ics, which are prohibited from conformations where two
or more rings concatenate. However, it is now appre-
ciated that ring constraints also play a large role in the
intra-molecular interactions within the ring polymer.19,20

These will play a significant role in the dilute solution
structure and dynamics of ring polymers. For example,
rings can contain topological knots, which cannot ‘un-tie’
and thus exhibit non-trivial conformational structure and
dynamics.21–23

Recent works by ourselves and others have demon-
strated that, even in the absence of these topological fea-
tures, ring connectivity constraints lead to altered out-
of-equilibrium polymer dynamics when compared to lin-
ear polymer chains.23–29 This is apparent in experimen-
tal single-molecule studies, which show that there is a
delayed coil-stretch transition in planar extensional flow
for ring polymers;19,20 in simulation, this was attributed
to cooperative hydrodynamic back-flows between the two
stretching ‘strands’ of the rings that aid in molecular re-
laxation. More pronounced is the non-flow (for planar
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extension) or vorticity (for shear flow23) direction exten-
sion of individual rings. This surprising result is due
to the geometry of the hydrodynamic back-flows, which
drive the two adjacent stretching strands in what we will
refer to as the z-direction (with the planar flows occuring
in the x-y-plane).

Despite this progress, there remain aspects which have
been studied in-depth for linear polymers but not rings.
One significant case is in planar mixed flows, which rep-
resent flow profiles that are a linear combination of sim-
ple shear and planar elongation described by a mixing
parameter α. These flows generally represent the more
complicated types of situations possible in real processing
flows, and for linear polymers exhibit non-trivial effects
associated with the transition between a variety of con-
formational dynamics related to the limiting flow profiles.
For example, in the limit of a planar elongational flow
(α = 1), a linear polymer is known to undergo a sharp
transition from a coiled to a highly-stretched state.30,31

This transition is known to be weakly first-order, exhibit-
ing hysteresis at large polymer lengths.30,32 To contrast,
in strong shear flows (α = 0) a linear polymer will tumble
between slightly-stretched and coiled conformations.33

When these two flow types are mixed, with 0 < α < 1,
either of these conformational behaviors - tumbling or
stretched conformations - can be observed, with a transi-
tion between the two at high flow strengths. This variety
of coil-stretch transitions has been widely characterized
in theory,30,34 numerical calculations, Brownian dynam-
ics simulations,35–38 and single-molecule measurements
for linear chains.35 However, there remains no compre-
hensive picture of how ring polymers behave in similar
flows, despite individual efforts to understand the limit-
ing flow types.

In this paper, we use Brownian dynamics (BD) sim-
ulations to characterize the out-of-equilibrium dynamics
of dilute ring polymers in the presence of planar mixed
flows. We contrast rings to similarly-sized linear poly-
mers, and demonstrate that the z-direction expansion
observed for rings in pure elongation or shear is similarly
observed in planar mixed flows. Additionally, we cre-
ate a non-equilibrium phase map in α− Wi space where
tumbling, extended, and coiled conformations are present
that is analogous to the behavior of linear chains. We
further note the presence of a first-order-like transition
between tumbling and extended conformations, as evi-
denced by bimodal distributions in the extension length
of the chain in both ring and linear polymers. This tran-
sition becomes sharp as the strength of the shear portion
of the flow increases, which we attribute to the emer-
gence of a dynamic barrier between the two states. In
ring polymers, this bimodal distribution is also observed
in the vorticity direction, which we show is coupled to the
extensional direction. This work shows that the subtle
conformational differences between ring and linear poly-
mers are observed in mixed flows, such as the vorticity
direction stretching of the chain. This demonstrates that
these phenomena are general, and may play an impor-

tant role as polymer molecules increase and the presence
of these ‘stretched’ conformations may promote thread-
ing or hooking in surprising ways, with ramifications on
rheological properties.39

II. SIMULATION METHOD

We perform steady state Brownian dynamics simula-
tions of individual flexible ring polymers in dilute solu-
tion consisting of N coarse-grained beads i at positions
ri. Bead trajectories evolve according the the Langevin
equation:1

dr̃i

dt̃
= −

∑
j

µ̃ij∇r̃j
(Ũ) + Γ̃ · (r̃i − r̃CoM ) + ξ̃i (1)

where tildes indicate dimensionless quantities. Distances
are normalized by the bead radius (r̃i = ri/a), energies

by kBT (Ũ = U/(kBT ), times by the single bead diffuse
time (t̃ = t/τ0, where τ0 = 6πηa3/(kBT ) and η is the sol-
vent viscosity), and the mobility tensor by the drag coeffi-
cient of the spherical beads (µ̃ij = µij/(6πηa)). We have
omitted terms involving the spatial gradient of the mo-
bility tensor because we use the Rotne-Prager-Yamakawa
(RPY) tensor, which has a zero spatial gradient:40,41

µ̃ij =
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32
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32
r̂ij r̂ij , i 6= j, r̃ij ≤ 2

(2)
where r̃ij = |r̃j − r̃i| and r̂ij = r̃ij/r̃ij . Beads interact

via bonded and excluded volume (EV) interactions, Ũ =

Ũ bond+ŨEV . For the bonded potential we use a Hookean
spring with a large spring constant κ̃ = 200 so that the
beads are connected by stiff springs:

Ũ bond =

N∑
i=2

κ̃

2
(r̃i,i−1 − 2)2 (3)

For EV we use a Lennard-Jones (LJ) potential:

ŨLJ = ũ
∑
i>j

[(
2

r̃ij

)12

− 2

(
2

r̃ij

)6
]

(4)

where the strength of interaction ũ = 0.31 is chosen
so that the chain statistics are representative of a θ-
solvent.42 The applied flow is described by the velocity
gradient tensor:

Γ̃ = ˜̇γ

0 1 0
α 0 0
0 0 0

 (5)
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where ˜̇γ is the shear rate and α is the mixed flow pa-
rameter. For α = 0 there is simple shear and for α = 1
there is planar extension with the axis of extension ro-
tated by an angle π/4 from the x-axis (see Figure 1 for
schematic examples). This form is convenient for varying
the ratio of vorticity to extension, which is critical for
understanding the polymer conformation.35–37 A linear
chain undergoes a transition from coiled elliptic rotation
to cyclic tumbling to a stretched conformation over a nar-
row range around α = 0 where vorticity and extension
are equal.35,36

The random velocity ξ̃i is a Gaussian random vari-
able which satisfies the fluctuation-dissipation theorem
〈ξi(t)ξj(t′)〉 = 2kBTµijδ(t − t′) and 〈ξi(t)〉 = 0.1 The

decomposition µij = BBT is accomplished by Cholesky
decomposition. We numerically integrate Equation 1 by
an Euler update with a time step ∆t̃ = 1×10−4, and the
mobility tensor and decomposition are updated every 5
time steps.

Our simulations consider ring and linear polymers of
length N = 120 at a variety of values of the Weissenburg
number Wi = γ̇τZ , which is a dimensionless flow rate
where the shear rate γ̇ is normalized by the longest Zimm
relaxation τZ of either the ring or the linear chain. We
use different values of τZ for linear and ring polymers,
which we determine via the autocorrelation of the molec-
ular extension 〈∆x(t)·∆x(t+T )〉 = Ae(−T/τZ)+B. Here,
∆x = max({xi})−min({xi}) is the maximum span of the
molecule in the x direction, and the autocorrelation func-
tion is determined from equilibrium simulations that are
run for 100 relaxation times. We note that at equilibrium
the polymer conformation is isotropic and the maximum
span in any direction would yield the same result. We
demonstrated in previous work that this reproduces the
expected relaxation time scaling for both rings and lin-
ear chains of varying N ,20 and our value of τz,linear(N =
120) = 260τ0 and τz,ring(N = 120) = 100τ0 is consis-
tent with these results. This yields the same relaxation
time as the more commonly used end-to-end vector auto-
correlation function, which can be obtained from Rouse
and Zimm theory.1 Because the ring polymer lacks chain
ends, however, the extension is more clearly defined and
easily compared to the linear case. For each shear rate
we vary the mixed flow parameter α from 0 to 1 to simu-
late the change in ring conformational dynamics moving
from shear to extensional flow.

III. RESULTS AND DISCUSSION

A. Chain extension

We compare the fractional chain extension for both
ring and linear polymers in the extensional and vortic-
ity (or z-) directions, 〈∆xf/L〉 and 〈∆zf/L〉 respectively,
with a third direction yf that is perpendicular to both
xf and zf that has a corresponding fractional chain ex-
tension 〈∆yf/L〉. This latter direction is the compres-

sional direction at α = 1 and the flow gradient direction
at α = 0. The extension in all directions is normalized
by the contour length L/a = 2N for the linear poly-
mer, or by half the contour length L/a = N for the ring
polymer. The subscripts f on the variables denote that
the fractional extension is measured in relation to the
principal axis of extension, rather than the Cartesian co-
ordinates x, y, and z. We note that the axis of exten-
sion changes with the mixed flow parameter α (Fig. 1),
and is found from the positive eigenvalue of the velocity
gradient tensor to be at an angle tan−1

√
α36 and with

basis vectors x̂f = (1 + α)−1/2x̂ +
√
α(1 + α)−1/2ŷ and

ŷf = −√α(1+α)−1/2x̂+(1+α)−1/2ŷ, where hats denote
unit vectors. We thus project the polymer coordinates
onto this appropriate axis before calculating fractional
extension.

We plot the fractional extension 〈∆xf/L〉 for values of
0 ≤ α ≤ 1, for linear chains. This is plotted in Figure 2a.
Consistent with prior literature, we observe chain stretch-
ing at Wi = 1/2.30 The pure extensional flow (α = 1)
exhibits a sharp transition to the fully stretched state,
where the fully extended chain reaches a fractional ex-
tension of 〈∆xf/L〉 ≈ 1. We note that, by using stiff
Hookean springs, the chain can stretch beyond this value;
we do not expect this to significantly change the loca-
tion or nature of this coil-stretch transition compared to
other choices for springs that are finitely extensible. At
the other limit of α = 0, there is a much more grad-
ual transition to a more extended state, with an average
stretch 〈∆xf/L〉 < 1 even at high values of Wi due to
the presence of molecular tumbling. This is in agreement
with prior studies of polymer extension in Brownian dy-
namics simulations and single-molecule measurements.33

As the value of α is increased, a sharp transition emerges
at high Wi to a nearly extended state. This tumbling-
stretch transition proceeds to lower values of Wi as α is
increased and the elongational component of the mixed
flow is increased, in agreement with prior literature on
this system.34–38 Previous arguments attribute this tran-
sition to a stabilization of the stretched state, against the
possibility that chain alignment drives the chain orienta-
tion can fluctuate across an axis where the flow becomes
radially inward and thus driving collapse. We also plot in
Figure 2b and c the fractional extension in the 〈∆yf/L〉
and 〈∆zf/L〉 directions, and demonstrate that the chain
similarly contracts in both directions. This is more pro-
nounced in the yf direction, due to the compressive na-
ture of the flow, but a similar contraction is also observed
in the zf direction at high stretching.

For rings, we plot the fractional extension 〈∆xf/L〉 in
Fig. 3a for the same range of values of α. We observe
conformational dynamics that are similar to linear chains
for all values of α. As expected from previous work on
dilute ring dynamics, pure extensional flows lead to a
sharp transition from the coiled to the stretched state
while the simple shear flow case shows a gradual increase
in extension and a plateau at high Wi associated with
tumbling.20,23 As also observed in linear chains, a tumble-
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FIG. 1. Mixed flows represent linear combinations of shear flow (leftmost flow field, α = 0) and planar elongational flow
(rightmost flow field, α = 1). Streamlines for various α demonstrate that the principal axis of extension (green arrows denoting
xf ) varies in mixed flows 0 < α < 1.

FIG. 2. Linear polymer fractional extension as a function of Weissenburg number and mixed flow parameter α (a) along the
axis of principal extension xf (b) along yf (c) in the vorticity direction zf . For the xf direction, a linear change undergoes a
combination of tumbling or stretching depending on Wi and α. Conversely, the chain contracts in both the yf and zf directions.

stretch transition emerges at high Wi as α increases away
from pure shear flow α = 0. As α increases, the critical
strain rate required to observe the stretched conforma-
tion rather than cyclic tumbling decreases until the tran-
sition resembles that of pure extension. We also note the
suppression of the dip in 〈∆xf/L〉 at high Wi in Fig-
ure 3a compared to the non-negligible non-monotonicity
in Figure 2a. In linear chains, this is a known feature that
arises in bead-rod type models, and is attributed to the
choice of coarse-grained polymer representation.43–47 The
difference in this feature in ring versus linear chains that
we observe is consistent with prior observations that its
presence is sensitive to both hydrodynamic and excluded
volume interactions.

The largest disparity between ring and linear chains
occurs in the values of 〈∆zf/L〉, which decreases with
Wi for linear chains but increases with Wi for rings.
This has been observed in both planar extension and
shear flow, and is shown to be the result of hydrody-

namic backflows.20,23,29 Theoretical arguments demon-
strate that this is primarily due to the zf -component
of these backflows,20 which is not counteracted by the
overall flow and thus acts to stretch the chain in the zf
direction during extension. This does not occur in the
yf -direction, which exhibits the same contracting behav-
ior seen in linear polymer chains for both the yf and
zf -direction (Figure 2b and c). We indeed observe the
zf stretching behavior in Figure 3b and c, which shows
that we observe zf -direction stretching at all values of α
at sufficiently strong values of Wi. This effect is more
pronounced for strongly extensional flows, so when ex-
tension occurs at the tumble-stretch transition there is a
concomitant, strong increase in the value of 〈∆zf/L〉.
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FIG. 3. Ring polymer fractional extension as a function of Weissenburg number and mixed flow parameter α (a) along the axis
of principal extension xf (b) along yf (c) in the vorticity direction zf . Similar to the linear case, ring polymers stretch and/or
tumble at large Wi in the xf direction. In contrast to linear chains, however, stretching is observed also in the zf direction.

B. Conformational phase diagram

We can use the extension data to construct a phase-
like diagram mapping the conformational properties of
a polymers as a function of the dimensionless flow rate
Wi and the mixing parameter α. This is done for both
linear and ring polymers in Figure 4a and b respectively.
The different regions correspond to the coiled, tumbling,
and stretched states, demarcated by transitions and de-
termined via the extension plots in Figure 2 and Figure 3.
To define the various regimes, we consider a ‘stretched’
conformation to have a value of 〈∆xf/L〉 > 0.5, a ‘tum-
bling’ conformation with a value of 0.5 > 〈∆xf/L〉 > 0.2,
and every chain with 〈∆xf/L〉 < 0.2 is considered to be
in the coiled conformation. These criteria are not rigor-
ously derived, but instead reflect direct simulation obser-
vation.

We note a few features common to the two plots be-
tween ring and linear chains. First, at low shear rates
(Wi < 0.5), the polymer remains coiled for all values of
α. In the limit α → 0 polymers show tumbling behav-
ior at Wi ≈ 2 − 5. As α → 1, the polymers undergo
a coil-stretch transition around Wi ≈ 0.5. We do note
that there is a slight quantitative shift in the coil-stretch
Wi at α = 1 observed for the ring polymer in Figure 4b
compared to Figure 4a, which is consistent with previous
reports that the onset of the coil-stretch transition occurs
for slightly higher Wi for ring polymers when compared
to linear polymers.19,20 To demonstrate the extent of this
shift between the α = 1 stretching in the ring and linear
case, we plot both the linear and ring polymer fractional
extension 〈∆xf/L〉 as a function of a flow rate Wi in
Figure 5; however, the Wi for the linear polymer exten-
sion is shifted by a factor β to overlap the ring polymer
extension plot. We use the factor β = 1.45 previously
found from experiment19 and simulation20 and find good
agreement.

While the coil-tumbling and coil-stretch transitions
vary only slightly with α, there is a strong dependence

for 0 < α < 10−2. This transition occurs at progressively
lower values of Wi for larger α as described previously,
and eventually meets with the tumbling transition line
to become the coil-stretch transition curve. At low val-
ues of α, this transition spans a number of values of Wi,
which will be discussed in the next section. We denote
this transition region with orange points in Figures 4a
and b.

In most of the aforementioned features of these phase
diagrams, ring and linear polymers are qualitatively con-
sistent with each other, with only small quantitative dif-
ferences; we explore these differences more in-depth later
in the manuscript. We note that the phase diagrams
do not capture the previously-described hydrodynamic
stretching in the z-direction.

C. Tumble-stretch transitions in ring and linear polymers

In Figure 4, we represent a number of points as or-
ange symbols around the tumble-stretch transitions, for
both ring and linear polymers. These points denote
the presence of strong first-order-like transition that is
observed in the tumble-stretch behavior of these poly-
mers. Our use of the term ’first-order-like’ is inspired
by prior work that has used phase transition concepts
to understand coexisting conformational states in out-
of-equilibrium polymer systems.30,32,34 These transitions
manifest as a rapid but infrequent interconversion be-
tween tumbling and stretched states observed in the poly-
mer stretching dynamics, which is demonstrated in Fig-
ure 6. Here, the values ∆xf/L and ∆zf/L are plotted
as a function of time for a ring polymer at a series of Wi
and α = 0.001. These time evolution plots demonstrate
the presence of two coexisting dynamic states, one state
where the polymer is tumbling with a value of ∆xf/L
that oscillates within a range of ca. 0.2 < ∆xf/L < 0.6,
and one state where the polymer is nearly fully extended
at ∆xf/L ≈ 0.8 − 1.0. As the value of Wi is increased
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FIG. 4. (a) Linear and (b) ring polymer conformational phase diagrams as a function of strain rate Wi and the mixed
flow parameter α. Points correspond to simulations, which are categorized by the criteria described in the text. Coiled
chains are near-equilibrium conformations, tumbling chains are rapidly oscillating between slightly-stretched and un-stretched
conformations, and fully stretched chains are stable near ∆x ≈ 0.8 − 1.0. We find a coexistence-like region, which is colored
in orange, where there is a bimodal distribution of chain extensions ∆xf/L. Boxed points correspond to the probability
distribution functions in Figures 7 and 8.
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FIG. 5. Fractional extension as a function of shifted βWi
for ring and linear polymers with α = 1. The linear data is
shifted by a factor β = 1.45, whereas for the ring data β = 1.0

from Figure 6a-c, the length of time that the polymer
spends in the fully extended state increases drastically,
with only a few stretching events in Figure 6a that are
short-lived, all the way to long-lived extended states in
Figure 6c; in these examples, the transition from tum-
bling to stretching occurs as a transition ‘event’ much
longer-lived than the relaxation time of the molecule. For
example, the ring relaxation time τ̃z,ring = 100 is signif-
icantly less than the extended runs of ca. τ̃ext ≈ 1000.

To characterize the nature of this interconversion, we
plot three measures of polymer conformation as a func-
tion of Wi and α for both linear and ring polymers:

(i) the probability distribution functions (PDFs) of the
single-chain extension, P (∆xf/L) (Figure 7 and 8) (ii)
the probability distribution of extended state lifetimes
(Figures 9) (iii) the power spectral density (PSD) of the
polymer orientation angle (Figure 10).

We first show the nature of this tumble-stretch transi-
tion in the context of probability distribution functions,
focusing specifically on values of α and Wi near the
tumble-stretch transition denoted by boxes Figures 4a
and b. Both linear (Figs. 7a) and ring (8a) PDFs at
low values of α show how this transition, with increasing
Wi, is characterized by a bimodal distribution of molec-
ular extensions. One of the peaks in the PDF is broad
and at relatively low extensions (0.2 < ∆xf/L < 0.6),
which corresponds to the tumbling behavior; the other
PDF peak is narrow and around ∆xf/L ≈ 1, which cor-
responds to the stretched state of the chain. In these
low-α plots, this bimodal behavior extends throughout
the transition from tumbling to extension, shifting from
the tumbling peak being more prominent at lower Wi to
the extension peak being more prominent at higher Wi.

At larger values of α, these bimodal PDFs P (∆xf/L)
only occur in the center of the transition between the
two states, rapidly becoming less pronounced (Figs. 7b
and 8b) as α is increased to the point that we do not
observe bimodal PDFs anywhere in the tumbling-stretch
transition (Figs. 7c and 8c). We thus observe two differ-
ent types of tumbling-stretch transitions; a first-order-
like transition with a coexistence between tumbling and
stretch states at low α, and a second-order-like transition
where the chain extends rapidly but without any coexis-
tence at higher α. To indicate the location of these dif-
ferent transitions on the phase diagram, we denote con-
ditions where P (∆xf/L) exhibits a bimodal distribution
as orange symbols. This thus shows a narrow coexistence
region between the tumbling and stretched states, which
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FIG. 6. Simulation traces of ring polymer extension in xf
(black squares) and zf (red circles) for α = 0.001 and (a)
Wi = 630 (b) Wi = 794 (c) Wi = 1000 (corresponding to
the probability distribution function in 8a). We note the co-
existence of two distinct conformational behaviors; a rapidly
fluctuating extension length ∆xf/L and ∆zf/L that corre-
sponds to molecular tumbling, and a stretched conformation
at high values of ∆xf/L and ∆zf/L. (d) Snapshots at Wi
= 794 are indicated by the numerals in (b), and show the
unextended (i) and extended (ii) tumbling rings, and a fully
stretched ring (iii).

disappears at a critical value of α.

We further quantify the distinction between stretched
and tumbling regions of the phase diagram by charac-
terizing the duration of long-lived extended states that
can coexist with tumbling dynamics at the same α-Wi
conditions. While the polymer can reach large exten-
sions during the tumbling cycle,33 these conformations
are unstable and will return to the coiled state in the
presence of sufficiently strong rotational flow (low α) fol-
lowing a thermal fluctuation away from the axis of princi-
pal extension. Typically, they do not survive longer than
the characteristic polymer tumbling time scale τtumble,
defined below. In contrast, polymers in the stretched
conformation must overcome a relatively large dynamic
barrier to collapse and thus survive for time scales much
greater than τtumble. Considering traces of ∆xf/L as
seen in Figure 6, we define a polymer to be extended

when ∆xf/L > 〈∆xf/L〉min + 0.1, where 〈∆xf/L〉min
is the minimum in the extension PDF, which is gener-
ally in the range of 0.6-0.9. Then, we measure the time
which a polymer remains extended, τext, before return-
ing to a coiled state. We determine the probability dis-
tribution of extended state lifetimes, P (τext), for slices of
the conformational phase diagram passing through the
tumble-stretch region.

The distributions P (τext) of all α−Wi conditions in the
tumbling and tumble-stretch region show similar behav-
ior: the highest probability occurs at times shorter than
the polymer relaxation time, followed by an exponential
decay which is slower for higher α. For α ≥ 0.01 the
polymer remains extended for the duration of the simu-
lation, and thus the distribution is not shown. Examples
of these distributions for varying Wi at constant α and
varying α at constant Wi for linear polymers are shown in
the insets of Figure 9. Ring polymers show qualitatively
similar distributions.

Because the distributions P (τext) are qualitatively sim-
ilar, we instead focus on the rate of decay of probability
density, λext, which is obtained by an exponential fit to
the distribution data of the form P (τext) = Ae−τext/λext ,
where A is a constant. This represents a characteris-
tic lifetime of an extended state, with the limit in the
stretched region at high α given by limα→1 λext =∞.

We find that the characteristic lifetime λext is approx-
imately constant at low α and Wi, followed by a sharp
increase and divergence at high α−Wi approaching the
stretched limit. The low α−Wi values correspond to
rapid tumbling cycles in the tumbling region of the phase
diagram, which vary only slightly in frequency. As α and
Wi increase, the characteristic lifetime increases as the
extended state becomes more stable to fluctuations. For
conditions where the characteristic lifetime is very long
(λext > 103τ0) or not measurable, we consider the poly-
mer to be in the stretched region.

In between these two limiting cases, stretched and tum-
bling conformations coexist. There are long lasting ex-
tended states which cannot be included in the tumbling
cycle, but it is also possible to return to the tumbling
state by a thermal fluctuation which perturbs the poly-
mer from the principal axis of extension. Notably, these
measures are quantitatively consistent with the phase
boundaries as determined by the extension PDFs.

In addition to the PDFs and lifetime distribution anal-
ysis, we can also quantify the polymer tumbling time
scale by a peak in the power spectral density of the poly-
mer orientation angle, which has previously been used
to identify characteristic periodic time scales in experi-
ment and simulation.33 The polymer orientation angle θ
is defined as

tan(2θ) =
2Gfxy

Gfxx −Gfyy
(6)

where Gfij is the radius of gyration tensor rotated by

an angle tan−1
√
α consistent with the rotation applied
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to the fractional extension data. The gyration tensor

is defined as Gij =
∑N
m=1R

m
i R

m
j /N , where Rmi =

rmi − ri,CoM is the displacement in the i direction from
the chain center of mass to the position of bead m.
The power spectral density (PSD) of the orientation an-
gle P(ω) =

∫∞
−∞ Cθ,θ(T )e−2πiωT dT is the Fourier trans-

form of the time autocorrelation function Cθ,θ(T ) =
〈θ(t)θ(t + T )〉. A peak in the PSD gives the time scale
of tumbling. We present the PSD for the same slices in
and as in the lifetime distribution analysis. For low α
and Wi, there is a clearly identifiable peak. The peak is
more pronounced for the ring polymer, as expected be-
cause the lack of chain ends restricts the conformational
degrees of freedom of the polymer and reduces the diver-
sity of conformations observed during a tumbling cycle.
Both cases are qualitatively similar, however. As Wi in-
creases at constant α, the tumbling frequency shifts to
the right corresponding to faster tumbling cycles because
of the increased flow rate. As α increases at constant Wi,
the height of the peak decreases and remains at approx-
imately the same frequency. In this case the rotational
component of flow remains comparable so the frequency

is constant, but tumbling becomes less common because
of enhanced extensional flow, leading to a weaker peak.
At sufficiently high α or Wi, the peak is not identifi-
able, and the PSD is flat on frequencies comparable to
the polymer relaxation time. In this case, the orientation
angle is similarly correlated for a wide range of frequen-
cies, indicating long-lived extended states as quantified
by the lifetime distribution analysis.

The PSD is quantitatively consistent with both the life-
time distribution and extension distribution. The condi-
tions with an identifiable peak correspond to tumbling or
tumble-stretch regions of the phase diagram where peri-
odic tumbling occurs. As tumbling becomes rare the peak
shifts to the right and vanishes, corresponding to a tran-
sition into the stretched region. This transition is less
drastic than in the lifetime distribution, but the results
are qualitatively similar. Additionally, we see that the
tumbling timescale is consistent with lifetime of extended
states at low α−Wi conditions in the tumbling region.
From visual inspection of peaks, the linear polymer tum-
bling time scale at α = 0.001 is τtumble ≈ 0.01 − 0.05τZ
for Wi = 327−1035 . For the ring polymer at α = 0.005,
we find τtumble ≈ 0.3− 0.5τZ for Wi = 51− 128.
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The analogy of the low-α tumble-stretch transition to
a first order phase transition suggests the presence of
a significant dynamic free energy barrier between the
two states. We postulate that this barrier is signifi-
cant in both the tumble-stretch and stretch-tumble di-
rections, and emerges due to the particular combination
of shear and elongational flows present in the mixed sys-
tem. The stretch-tumble barrier is due to the stabiliz-
ing effect of the elongational portion of the mixed flow,
which ‘stretches’ the chain and prevents it from fluctu-
ating into a compression region of the flow field. This
argument has been suggested previously, for both linear
coils36 and globules.38 We attribute the dynamic compe-
tition between stretching and tumbling of a coil as the ori-
gin of the tumble-stretch barrier, which should increase
as the strength of the shear component increases (or as
α→ 0). In this limit, there is only a limited opportunity
for the polymer molecule to accumulate enough strain
that it is in a sufficiently ‘stretched’ conformation be-
fore a tumbling event occurs. This opportunity decreases
with decreasing α, resulting in an increasing barrier.

In Figures 7 and 8, only quantitative differences are
apparent in the distributions P (∆xf/L) for ring versus
linear chains. However, we can also consider distribu-
tions in the vorticity-direction extension P (∆zf/L) for
both linear and ring chains. We plot both types of distri-
butions for both types of chains in Figure 11a, revealing
a distinct difference in P (∆zf/L) for linear versus ring
chains; namely, the ring chains also exhibit a distribution
in ∆zf/L that has a shoulder that is commensurate with
the bimodal distribution in ∆xf/L. To contrast, lin-
ear chains do not have this same shoulder in the ∆zf/L

distribution, and instead P (∆zf/L) only shows a single
peak at low ∆zf/L. The shoulder of the distribution in
the ring chains is due to the previously described vorticity
extension that arises due to hydrodynamic interactions,
which occurs when the ring is fully extended in the x-
direction. This is apparent in the time-plots of ∆zf/L
in Figure 6, which exhibit a correlation between the ex-
tension in the xf and zf directions. This is reinforced by
simulation snapshots, with a few examples in Figure 6d
shown in the x− z plane and corresponding to indicated
points on the time-plots in Figure 6b. Here, snapshots i
and ii represent different conformational extremes dur-
ing the tumbling process, and show very little extension
in the z-direction. In Figure 6d, iii, however, the chain
stretches considerably in the z-direction.

To quantitatively show the strength of this correlation,
we plot in Figure 11b a contour plot of the values of
∆xf/L versus ∆zf/L sampled over the course of the sim-
ulation of both ring and linear chains used to create the
probability distribution functions in Figure 11a. In both
cases, the probability is non-zero over almost the entire
space of ∆xf , but the locations of the high probabil-
ity regions are distinctly different. For the linear chain
in Figure 11b, P (∆xf/L) is only marginally bimodal,
so there is a high probability region at high extension
∆xf/L > 0.6 that is also at low ∆zf/L. The tumbling
state occurs in a more diffuse region of increased proba-
bility at low ∆xf/L < 0.6 and at a slightly higher value
of ∆zf/L. To contrast, the ring polymer in Figure 11b
shows two distinct regions of high probability , one at
low ∆xf/L and low ∆zf/L, and another at high values
of both ∆xf/L and ∆zf/L. This second, high extension
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region corresponds to the upper peaks in the bimodal dis-
tributions, and shows that extension in both the stretch
and vorticity direction are coupled.

IV. CONCLUSIONS

We have mapped out the conformational properties
of polymer rings in the presence of mixed planar flows,
elucidating a series of intermediate flow states between
the limiting cases of simple shear and planar elongation.
We demonstrate features similar to those found in lin-
ear chains, primarily the presence of a transition be-
tween shear-induced tumbling and elongational-induced
stretching that occurs at intermediate values of α and Wi.
In this regime, we observe the emergence of a bimodal
distribution of molecular lengths that we attribute to a
first-order-like transition that becomes increasingly pro-
nounced as the value of α is increased. This is observed
in both linear and ring polymers. In all ring stretching

regimes, we observe the z-direction extension that has
previously been reported for limiting shear and elonga-
tional flows, and that this is also observed in bimodal
conformation distributions that occur at the tumbling-
extension transition.

This work shows that topological differences, in par-
ticular the coupling of topology to hydrodynamic inter-
actions, can extend beyond the most simple flow profiles
and can be observed in increasingly complicated flow sit-
uations. This likely affects the behavior of molecular
rings in real processing situations, where the nature of
polymer-polymer interactions will be governed by their
flow-driven conformational properties and subsequently
affect rheological properties. Nevertheless, it is unclear
how these hydrodynamic effects will extend to non-dilute
systems and complicated flows. This work suggests that
the extended conformation of ring polymers in a variety
of flows may facilitate topological interactions, such as
linear-ring or ring-ring threading or hooking in semidi-
lute systems.
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