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Eigenmodes of a broad class of “sparse” random matrices, with interactions concentrated near the
diagonal, exponentially localize in space, as initially discovered in 1957 by Anderson for quantum
systems. Anderson localization plays ubiquitous roles in varieties of problems from electrons in solids
to mechanical and optical systems. However, its implications in neuroscience (where the connections
can be strongly asymmetric) have been largely unexplored, mainly because synaptic connectivity
matrices of neural systems are often “dense”, which makes the eigenmodes spatially extended.
Here, we explore roles that Anderson localization could be playing in neural networks by focusing
on “spatially structured” disorder in synaptic connectivity matrices. Recently, neuroscientists have
experimentally confirmed that the local excitation and global inhibition (LEGI) ring attractor model
can functionally represent head direction cells in Drosophila melanogaster central brain. We first
study a non-Hermitian (i.e. asymmetric) tight-binding model with disorder and then establish a
connection to the LEGI ring attractor model. We discover that (i) Principal eigenvectors of the
LEGI ring attractor networks with structured nearest neighbor disorder are “quasi-localized”, even
with fully dense inhibitory connections. (ii) The quasi-localized eigenvectors play dominant roles
in the early time neural dynamics, and the location of the principal quasi-localized eigenvectors
predict an initial location of the “bump of activity” representing, say, a head direction of an insect.
Our investigations open up a new venue for explorations at the intersection between the theory of
Anderson localization and neural networks with spatially structured disorder.

I. INTRODUCTION

A grand challenge in modern neuroscience is to under-
stand how a population of neurons in the brain collec-
tively integrate sensory information, perform computa-
tions, and give rise to behavior while respecting biologi-
cal constraints. To understand this population dynamics
of immense complexity, one approach is to experimen-
tally construct a complete wiring diagram of neurons, the
“connectome” [1]. However, extracting the full details of
the connectome has been challenging. For example, the
total number of neurons in a human brain is estimated to
be 1011, and there are roughly 1015 connections between
them [2] forming an extremely intricate web.

In the face of such complexity, random matrix the-
ory has allowed theoretical insights capturing statisti-
cal aspects of the connections. In 1988, Sompolinsky,
Crisanti, and Sommers [3] generalized Girko’s circular
law for eigenvalue distribution in the complex plane to ex-
plore the chaotic dynamics of randomly connected neural
assemblies (as might be the case before pruning during
early neural development) as a function of the variance
of the synaptic connection strengths. Later, Rajan and
Abbott imposed Dale’s law (connections from a given
neuron are either excitatory or inhibitory) to take real-
istic constraints for biological neural networks into ac-
count [4]. In the above studies, elements of the random
matrices describing connections between excitatory and
inhibitory neurons are densely and uniformly distributed
across the rows and columns without spatial structures.

Another way of approaching the problem is to study
finely structured neural network models that can achieve
specific tasks. For example, direction-selective cells that
collectively store scalar variable θ ∈ [0, 2π] representing
say, head direction, has inspired theoretical works on ring
attractor networks. The ring attractor neural networks
have been theoretically studied intensively [5–10] includ-
ing diffusion and drift of bump of activity due to disorder
[7, 11–14]. Strikingly, neurobiologists have recently dis-
covered that head-direction cells are anatomically placed
in a ring geometry in the Drosophila melanogaster central
brain and identified the network structure through sys-
tematic perturbations [15]. Key facts derived from a se-
ries of careful experiments and theoretical modeling [15–
18] are the following: (i) In Drosophila melanogaster ’s
central brain, neurons are anatomically placed on a ring
topography and form the ellipsoid body. (ii) There is
a bump of neural activity on the ellipsoid body whose
location around the ring represents the head-direction
θ ∈ [0, 2π]. (iii) Nearest-neighbor excitations of neurons
on the ellipsoid body via E-PG and P-EN neurons are
responsible for sustaining a stationary bump of activity.
(iv) Upon rotation of the head-direction, P-EN neurons
create a nearest-neighbor asymmetric bias to conduct an-
gular velocity integration.

In this article, inspired by the above discoveries, we
focus on the interplay between spatial structure and ran-
domness in structured neural networks. The Ander-
son’s theory of the localization of quantum mechanical
eigenfunctions is perhaps the most famous example of
this interplay [19]. Initially, Anderson introduced a ran-
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dom tight-binding model to study electron conduction
of one-dimensional solids with impurities. The striking
discovery is that even small amount of disorder makes
essentially all the eigenstates exponentially localized in
space and turns conductors into insulators in one and
two dimensions [20, 21]. This picture is now known to
have ubiquitous implications for wide varieties of phys-
ical systems from ultracold atoms and optical systems
to mechanical systems with random spring contacts [22–
26]. However, recently two works have addressed the
implications for neuroscience[27, 28]. Motivated by the
above theoretical insights and recent experimental devel-
opments in neuroscience, we ask “What role can Ander-
son localization play for neural networks with a spatially
structured disorder?”.

In the following, first, we define a fairly general class of
a one-dimensional non-Hermitian random tight-binding
models, with tunably asymmetric couplings between
neighboring neurons [28], and investigate its complex
eigenvalues and the localization properties. We also
apply an extension of the sparse matrix to model the
ring attractor dynamics of head direction cells governed
by dense, structured synaptic connectivity matrix. As
mentioned above, neurobiologists have found that the
head direction cells of Drosophila melanogaster are topo-
graphically placed on a ring. A recent study conducted
perturbation-response experiments and, by comparisons
with theoretical predictions, argued that the network
structure is local excitation with flat global inhibition
[15]. Remarkably, we have found for a simple model
with a quenched random disorder in the excitatory con-
nections a parameter range such that the principal (i.e.,
most rapidly growing) eigenvectors are nevertheless still
”quasi-localized”, even when we add uniform global in-
hibitory connections that make the synaptic connectivity
matrix fully connected. We then demonstrate that such
localized principal eigenvectors dominate the initial dy-
namics before saturation.

II. NON-HERMITIAN LOCALIZATION IN A
RANDOM TIGHT-BINDING MODEL

First, we define the one-dimensional non-Hermitian
tight-binding matrix model M as

M =

N∑
i=1

(
s+
i e

+g|i+ 1〉〈i|+ s−i e
−g|i〉〈i+ 1|

)
, (1)

with a periodic boundary condition |i+N〉 = |i〉. The
ket vector |i〉 is the basis to represent the neural ac-
tivity of a neuron i. The strengths of each nearest-
neighbor connection s±i are independent and identically
distributed (i.i.d.) random value drawn from double box
probability distribution with width u, and the sign of a

connection can be either excitatory or inhibitory,

Ps(s|u, f) =

f/u, for 1− u/2 < s < 1 + u/2
(1− f)/u, for− 1− u/2 < s < −1 + u/2
0, otherwise.

(2)
The parameter f ∈ [0, 1] controls the ratio of excitatory
to inhibitory connections. Although this model, strictly
speaking, violates Dales law, it was shown in [28] via
a similarity transformation that its spectra are identical
for large rank sparse random matrices to a closely related
model that does obey this constraint. Our parametriza-
tion is slightly different from a previously studied model
[28], to avoid numerical instability after a similarity
transformation. When f = 1 and 0 < u < 1, it is closely
related to a model which was studied earlier to under-
stand the statistical physics of vortex lines in supercon-
ductors with random columnar pins [29] and the spread of
biological organisms through random environments [30].
More recent work [28] has focused on the case of com-
pletely random sign connections (f = 1/2, u = 0) while
varying the non-Hermitian asymmetry parameter g. For
g ≥ 0, the magnitude of connections clockwise around the
ring (excitatory or inhibitory) are systematically stronger
than those in the counterclockwise direction. In the fol-
lowing, we set the connection variance of the excitatory
and inhibitory connections to be u = 0.5 and investigate
properties of the resulting one-dimensional sparse ran-
dom matrices on the full (f, g) plane. Thus, our investi-
gation allows us to interpolate between these two previ-
ously studied limiting cases, including parameter regimes
closely related to a ring attractor model with disorder.

III. LOCALIZED EIGENVECTORS AND
COMPLEX EIGENVALUE SPECTRA

We first display the complex eigenvalue spectra and
the inverse localization length of the random tight bind-
ing model in the (f, g) plane in Fig. 1. We fixed the size
of matrices to be N = 500, randomness in magnitude to
be u = 0.5, and varied the excitatory/inhibitory ratio f
and the clockwise bias parameter g > 0. The row with
(f = 0.5, g) was studied in Ref. [28] without magnitude
randomness (u = 0) focusing purely on sign randomness
(with f = 1/2); Here we provide investigations of the
properties of the matrix M in Eq. (1) over full param-
eter space on the (f, g) plane with finite u = 0.5. We
calculated the inverse localization length (in inverse lat-
tice spacings, indicated by the heat map) by the trans-
fer matrix method, as explained in the Appendix A. In
Fig. 1, we see that the complex eigenvalue spectra ob-
served for f = 0.5 studied in [28] are qualitatively robust
up to f = 0.75; in fact, we find similar spectra all the
up to f ≈ 0.90. Importantly, as in Hermitian systems,
the principal eigenvectors that play dominant roles in lin-
ear dynamics (i.e., those eigenvalues with the largest real
parts) are most strongly localized ones, i.e., those with
the shortest localization lengths 1/κeff

λ .
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FIG. 1. Heat maps of the effective inverse eigenfunc-
tion localization lengths
Heat maps of the effective inverse eigenfunction localization

lengths κeff
λ =

2κ+
λ
κ−
λ

κ+
λ

+κ−
λ

of one-dimensional sparse random ma-

trices for various values of the excitatory/inhibitory balance
f , and clockwise bias g. (See Appendix A for the details be-
hind our definition of κeff

λ .) The size of these sparse random
matrices is N = 500 and the strength of randomness of the
matrix M in Eq. (1) is fixed at u = 0.5, while the excita-
tory/inhibitory balance f and clockwise bias g are varied in
0.25 and 0.1 increments respectively. No states are possible
in the regions where κeff

λ < 0; these white regions correspond
to energy gaps in the complex plane. Eigenvalues obtained
from numerical diagonalization of one particular realization
are superimposed as black dots. As in Hermitian systems,
the inverse localization length κeff

λ is the largest, i.e., the ef-
fect of localization is the strongest, at the outer boundaries of
these eigenvalue spectra, including the modes with the largest
real parts that (as discussed below) dominate the neural dy-
namics. See Fig. 2(b) for representative principal eigenvectors
that are strongly localized. As discussed in Ref. [28], the lo-
calization length diverges near the origin without clockwise
bias g = 0.0, and as one approaches the rim of the hole (i.e.,
energy gap) in the spectra for finite clockwise bias g > 0.
These spectra are invariant under the transformation g → −g
and f → (1− f).

IV. QUASI-ANDERSON LOCALIZATION IN
LOCAL EXCITATION/GLOBAL INHIBITION

(LEGI) RING ATTRACTOR NEURAL
NETWORKS

Here we establish a connection between M defined as
in Eqs. (1), (2) and a model of the head direction cells
recently observed in the Drosophila melanogaster cen-
tral brain [15, 31]. Computational neuroscientists have
theoretically studied ring attractor networks to model
head direction cells for many years [5–9]. While exper-
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FIG. 2. Principal eigenvectors quasi-localize even with
global inhibitory connections
(a) “Localized bump of activity” (The blue lines feeding
through the blue dot at the center represent a one-to-many
inhibitory connection from each neuron on the ring to all
other neurons) within a ring attractor neural network de-
signed to model Drosophila melanogaster ’s central brain that
represents the head direction θ ∈ [0, 2π] [15]. (b) First, sec-
ond, and third right principal eigenvectors (i.e. those whose
eigenvectors have the largest real part) of the synaptic connec-
tivity matrix M (Eq. (1)) with excitatory/inhibitory balance
f = 1.0, clockwise bias g = 0, and randomness u = 0.5, for
a ring with N = 200 sites. Each neuron has excitatory con-
nections with random strengths to its two nearest neighbors
(red lines in (b)). The system is a strictly one-dimensional
ring, and the principal eigenvectors are localized due to the
random nearest-neighbor excitations with the same sign. (c)
Same three principal eigenvectors of a ring attractor neural
network J without disorder, with a uniform set of inhibitory
interactions (including self-inhibition) in blue. Without ran-
domness, the synaptic connectivity J is a circulant matrix,
and the eigenvectors are spatially extended around the ring
in the form of sines and cosines. (d) Principal eigenvectors of
the ring attractor neural network J ′ with the same random
nearest neighbor connections as in (a) and (b). Each neuron
has two nearest-neighbor excitatory connections (red) with
the same random strength (u = 0.5) as in (b), with the addi-
tion of flat global inhibitory connections (blue) without ran-
domness (w = 0). With the flat global inhibitory connections,
the synaptic connectivity matrix is fully dense. However, the
principal eigenvectors are nevertheless ”quasi-localized” with
only small deviations from the eigenvectors shown in (a). (e)
The quasi-localization in (d) is destroyed when the random-
ness of the global inhibitory connections w are as strong as
the one of local excitatory connections u. The nearest neigh-
bor excitation parameter is α = 1 and the global inhibition is
β = 0.5.

imental results have confirmed some of the predictions
based on single neuron recordings, direct observation of
the anatomical and functional network structure have
been limited until quite recently [32]. In 2015, Seelig
and Jayaraman [16] employed the two-photon excitation
microscopy to discover that the head direction cells in the
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Drosophila central brain are in fact anatomically placed
with a ring topology and connectivity. (See Fig. 2(a))
Very recently, this group further applied simultaneous
optogenetic perturbation and two-photon calcium record-
ings to conclude that the properties of the recurrent neu-
ral network agrees well with theoretical predictions as-
sociated with a “local excitation and global inhibition”
(LEGI) model [15]. (see the inset of Fig. 2(a).)
Mathematically, the synaptic connectivity matrix of the
non-random LEGI model J can be written in a conve-
nient bra-ket notation,

J =

N∑
i=1

[
γ|i〉〈i|+α

(
e+g|i+1〉〈i|+e−g|i〉〈i+1|

)]
−β

N∑
j,k=1

|j〉〈k|.

(3)
The first-term represents self-excitation γ, the second
term represents the nearest neighbor excitation α, and
the last term is the fully connected global inhibition
β. We note that we added the factors of e±g to phe-
nomenologically represent asymmetric bias for angular
integration. The continuous analogue of the above dis-
crete model, after proper reparameterization to produce
coupling constants (α̃, β̃, γ̃, ṽ) is (See Appendix B for de-
tails) is,

τ∂tr = −r + f

[
γ̃r − ṽ(t)∂θr + α̃∂2

θr − β̃
∫ 2π

0

rdθ

]
, (4)

where r(θ, t) is the firing rate at time t for a neuron at
location θ, 0 ≤ θ < 2π, around the ring. Next, to study
the role of disorder in the synaptic connections, we intro-
duce random variables s±i for the local excitations, and
β′jk for the global inhibitions respectively,

J ′ =

N∑
i=1

[
γ|i〉〈i|+ α

(
s+
i e

+g|i+ 1〉〈i|+ s−i e
−g|i〉〈i+ 1|

)]
−

N∑
j,k=1

β′jk|j〉〈k|.

(5)

The strengths of the disorder are characterized by u, w
with the probability density functions as below,

Ps(s|u, f = 1) =

{
1/u, for 1− u/2 < s < 1 + u/2
0, otherwise.

(6)

for s = s+ or s = s−, excitatory connections, and

Pβ(β′|β,w) =

{
1/w, for β − w/2 < β′ < β + w/2
0, otherwise.

(7)
for the global inhibitory connections. In Fig. 2, we dis-
play the three principal eigenvectors corresponding to
g = 0 and (b) M(u = 0.5), (c) J without randomness,
(d) J ′(u = 0.5, w = 0), and (e) J ′(u = w = 0.5). As
a reminder, we note that the locations of the localized

eigenvectors depend on the realization of the quenched
disorder. These three eigenmodes correspond to eigen-
values with the three largest real parts. The eigenvectors
in Fig. 2 (b) are examples of non-Hermitian localization
due to random excitatory nearest neighbor interactions,
and the eigenvectors are exponentially localized at par-
ticular position around the ring. Fig. 2 (c) presents the
principal eigenvectors of a ring attractor neural network
without randomness, J . Since J is a circulant matrix
without a disorder, the eigenvectors are sines and cosines
and are spatially extended around the ring. However,
when we add disorder to the local excitation connections
(with the same numerical values as in (b)), the matrix
J ′(u = 0.5, w = 0) has eigenvectors that are quasi-
localized, exhibiting “quasilocalized” peaks in space as
in Fig. 2 (d). This result is striking since the matrix is
fully dense with global inhibitory connections. In Ap-
pendix C, we study this quasi-localization in detail and
study the effect of single anomalous hopping matrix ele-
ment δM = δm(|1〉 〈2|+|2〉 〈1|) on the spectrum. Finally,
when the disorder is uniformly added to all the matrix
elements without spatial structure (u = w = 0.5), the
quasi-localization disappears as shown in Fig. 2 (e).

V. DYNAMICS OF A NON-LINEAR FIRING
RATE MODEL

Here, we briefly review and study a firing-rate based
non-linear recurrent neural network model incorporat-
ing the random matrices discussed above. Biologically,
neurons communicate by generating a series of electro-
chemical signals (action potentials). A challenging as-
pect in mathematically modeling a discrete spike train is
the coexistence of two separate time scales: Each firing
of a neural spike happens over roughly a millisecond. In
contrast, the characteristic timescale that governs emer-
gent computations of the neural network (e.g., short-term
memory) can be orders of magnitude longer! A common
strategy to incorporate this separation of time scales is
to integrate the neural spike train over a time window
to obtain the averaged firing rate denoted ri(t) for i-th
neuron at time t. Then the time evolution of ri(t) is
governed by nonlinear dynamics which is first order in
time,

τ
dri(t)

dt
= −ri(t) + f

[∑
j

Jijrj(t) + hi(t)

]
, (8)

where the time scale is set by a reaction time τ , Jij rep-
resents a strength of synaptic connection from neuron
“j” to neuron “i”, f [·] is nonlinear activation function
that integrates over the inputs to neuron i, and hi(t)
is an external input to this neuron from, say, the sen-
sory system. What are the implications of our study
for the eigenvalue spectra and localized eigenvectors for
the dynamics of the nonlinear neural network above
when a synaptic connectivity matrix like J ′ in Eq. (5)
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is used? Following [15], we assume neural activities are
not saturating and use the “threshold linear” function
f(x) ≡ (x + 1)Θ(x + 1) = [x + 1]+ where Θ[y] is the
Heaviside step function. In Fig. 3 (a), we plot a typical
eigenvalue spectrum of J ′(u = 0.5, w = 0) on complex
plane. Although the localized eigenvalue spectrum, in
this case, lies on the real axis, we plot these in the com-
plex eigenvalue plane to indicate the rich set of alterna-
tive dynamical models implicit in the more general spec-
tra shown in Fig. 1. The vertical dashed line at Reλ = 1
separates growing and decaying modes, and we can con-
firm that for short times there are many more growing
modes than the just those corresponding to the three
principal eigenvectors. In Fig. 3 (b), we simulate the
neural dynamics with the local excitation and global in-
hibition model J ′. Starting from a flat initial condition,
the plots show neural activities at t = 0, 400, 800. A
plot at t = 400 shows that just three principal eigenvec-
tors dominate the initial dynamics before saturation. In
later times, most of the initial bumps down-regulate each
other through the inhibitory connections: Only the first
principal eigenvector survives to become a local bump of
activity supported by the underlying local-excitation and
global inhibition structure. The location of the localized
principal eigenvector successfully predicts the local bump
of activity in the steady state, for a particular realization
of the quenched random disorder.

Next, we study the statistics of the final locations of the
local bump of activity over 500 realizations of the disor-
dered ring attractor network sampled from the probabil-
ity distribution. The histogram in Fig. 4 shows how fre-
quently the location of a bump of activity is near the site
of the peaks of the three principal eigenvectors. When the
network is in quasi-localized regime (u = 0.5, w = 0), the
final locations are indeed mostly (87%) near the peak of
the first principal eigenvector. However, once the eigen-
vectors are in the delocalized regime with uniform noise
(u = w = 0.5), only 5% of the final locations are near the
peak of the first principal eigenvectors.

VI. SELECTIVE EXCITATION OF THE
QUASI-LOCALIZED EIGENMODES

It is also of interest to selectively excite each of the
principal eigenmodes by starting from inhomogeneous
initial conditions as in Fig. 5(a). Characteristics of the
ring attractor network with quasi-localization may help
to encode a discrete set of angular locations that is selec-
tively retrievable. In Fig. 5(b), we sweep the central loca-
tion c of the window of excitation (c−20 ≤ i ≤ c+20) and
plot the final locations of the bump activity. The step-
like structure agrees well with the location of localized
eigenmodes the with seven largest real part of eigenval-
ues. With a particular realization of the quasi-localized
eigenmodes, the disordered ring neural network can store
seven discrete angles like a roulette wheel with irregular
locations and a heavily overdamped frictional bearing.
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FIG. 3. Quasi-localized eigenvectors dominate the ini-
tial dynamics and bias the location of the stationary
bump of activity
(a) Eigenvalue spectrum of the LEGI model with their con-
nectivity matrix J ′ with nearest neighbor randomness (see
Eqs. (5)). All eigenvalues are real in this case. The verti-
cal dashed line is at Re[λ] = 1 and separates linearly stable
eigenmodes from linearly unstable modes for the case of a
nonlinear function given by f [x] = (x + 1)Θ(x + 1) in Eq. 8.
For our choice of parameters (see below) more than just three
principal eigenvectors will grow exponentially at short times
from a state of negligible excitation. (b) Time evolution of
the activity of neurons ri(t) on the ring starting from an ini-
tial condition of homogeneous activity around the ring. Here,
the neural ring has the short-range random excitation and
long-range flat inhibition as shown in Fig. 2(c). The dynam-
ics at the intermediate time (t = 400τ) reflects the three
principal eigenvectors plotted in Fig. 2(d). The long-range
inhibitory interactions have suppressed the remaining modes
corresponding to λ ≥ 1 in (a). At later times, the system locks
into a peak of activity dominated by the first principal local-
ized mode (i.e., the eigenfunction with the largest real part).
The parameters used for this simulation are total number of
neurons N = 200, the nearest neighbor connections α = 1,
global inhibition β = 0.5, self-excitation γ = 0.3, and the
variance of the nearest neighbor connections u = 0.5.

VII. DISCUSSION

In summary, we first introduced a class of sparse non-
Hermitian random matrix models that enabled us to sys-
tematically explore how randomness in sign and magni-
tude relates to eigenvalue spectra and spatial localization
of eigenvectors (Fig. 1). Then, we adapted the random
matrix model to the observations of the dynamics of local
excitation and global inhibition (LEGI) neural network
model that was recently proposed to explain angular rep-
resentation and integration in Drosophila melanogaster ’s
central brain. Rather surprisingly, we discovered that
the principal eigenvectors are quasi-localized even with
global inhibition (β) that makes the synaptic connectiv-
ity matrix fully dense (Fig. 2), provided the noise on
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FIG. 4. Histogram of the final locations of bumps of
activity starting from homogeneous initial conditions
Histogram of the final location of a bump of activity start-
ing from a flat initial condition of activity around the ring.
The final location is classified as “1st, 2nd, and 3rd” when
the distance to the peak of the localized principal eigenvec-
tors is less than three sites away. If the final location is far
from any of these three localized positions, we classify this as
“elsewhere”. When the variance of the nearest neighbor con-
nections is u = 0.5 and the variance of the global inhibition
is w = 0 (in the case of Fig. 2 (d)), the quasi-localized first
principal eigenvector location guides the final location of the
localized bump of activity. In particular, 87% of the final loca-
tions are at the position of the first principal eigenvector. (see
blue triangles) However, such localization is absent when the
disorder is uniformly distributed over the local excitations and
global inhibitions with comparable strengths u = w = 0.5. In
this case, only 5% of the final locations of a local bump of ac-
tivity are near a peak of the first principal eigenvector. 89%
of the final positions are far from the peaks of any of three
principal eigenvectors.

the inhibition connections are small. The quasi-localized
eigenvector with the largest real eigenvalues dominates
the initial dynamics and indicates the final location of
the bump of activity upon starting from a uniform ini-
tial condition (Fig. 3,4). Furthermore, by starting from a
broad angular window of initial stimuli, we can selectively
excite discrete localized modes. The ring neural net-
work with random excitatory nearest neighbor interac-
tions and long-range inhibition can store long-term mem-
ory of discrete angles like a roulette wheel with somewhat
irregular locations (Fig. 5). Thus, the quasi-localized
eigenvectors can store long-term memory of points in an-
gle/space by weakly modulating structured matrix, while
maintaining the functional properties. Furthermore, the
localized spots reside in distinct eigenmodes associated
with different eigenvalues. Thus, each of the memorized
points in angle/space can be separately excited by ex-
ternal stimuli. It is an open problem to develop synap-
tic learning rules that can achieve precise control of the
locations of the localized modes, while maintaining the
ability to correctly path integrate with necessary resolu-
tion. This work provides an initial step towards exploring
the role of Anderson localization in neuroscience where a
much richer variety of phenomena are possible due to the
presence of both excitatory & inhibitory interactions; In
the future, explorations at the intersection between bio-
logical networks and localization phenomena of random
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FIG. 5. Selective excitation of the quasi-localized prin-
cipal eigenmodes from inhomogeneous initial condi-
tions
(a) The initial activity is set to ri(0) = 0.1 for 80 ≤ i < 120
and otherwise ri(0) = 0. All other parameters are the same
as these in Fig. 3. (b) [pink triangles] Locations (with peri-
odic boundary conditions) of the quasi-localized eigenmodes
with the seven largest real part of eigenvalues. [blue line] The
final position of the bump of activity as a function of a central
location of a weak stimuli c. Each initial stimulus is applied
with a 40 site wide window (c − 20 ≤ i ≤ c + 20) as in (a).
The step-like structure of the line indicates that each of the
discrete locations of the first seven localized eigenmodes can
be selectively excited by broader initial external stimuli. Be-
cause of the underlying disorder, we expect that these final
locations will be insensitive to time-dependent noise, which
would otherwise cause the bump of activity to diffuse around
the ring.

matrices with a spatially structured disorder, including
low-rank matrices [33], would be of interest.
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Appendix A: Transfer matrix method and the
inverse localization length

Here we review a method to obtain the “inverse local-
ization length” by using transfer matrix approach follow-
ing Refs. [28, 34]. An eigenvector |ψ〉 of the tridiagonal
matrix M and an eigenvalue λ satisfies,

M |ψ〉 = λ |ψ〉 , (A1)
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whose n-th element leads to

Mn,n+1ψn+1 + Mn,nψn + Mn,n−1ψn−1 = λψn, (A2)

and thus, ψn+1 can be recursively related to ψn and ψn−1

via

ψn+1 =
λ−Mn,n

Mn,n+1
ψn −

Mn,n−1

Mn,n+1
ψn−1. (A3)

This relation implies that, given a random matrix M
and a (possibly complex) eigenvalue λ, we can iteratively
calculate ψn (n > 2) from the first two elements of the
eigenvector ψ1 and ψ2. We can further simplify the rela-
tion above and avoid numerical problem associated with
the exponential divergence of |ψ| by introducing a ratio
between the neighbor elements (the “Ricatti variable”)

rn =
ψn+1

ψn
. (A4)

The recursive relation (A3) then becomes

rn =
λ−Mn,n

Mn,n+1
− Mn,n−1

Mn,n+1rn−1
. (A5)

The more specific form of the recursion relation for the
random matrix of interest in this paper is

rn =
λe−g

s+
n
− s−n−1e

−2g

s+
n rn−1

. (A6)

It follows from the definition of the Ricatti variable
that

|ψN | ≈ |ψ1||
ψ2

ψ1
||ψ3

ψ2
|...| ψN

ψN−1
| = |ψ1|

N−1∏
i=1

ri, (A7)

and, assuming exponential localization |ψN ||ψ1| = eκλ(N−1)

for a particular eigenvalue λ, we have

|ψN |
|ψ1|

= eκλ(N−1) =

N−1∏
i=1

ri, (A8)

where κλ is the inverse localization length.
Using this relation, we can compute κ+

λ as

κ+
λ =

1

N − 1

N−1∑
i=1

ln |ri|. (A9)

For non-Hermitian random matrix, two tails falling
off from the opposite side of a localized wave function
have different exponent due to the directional asymme-
try (e±g) induced in hopping terms. We can repeat the
same calculation from the opposite side (ψN ),

1

rn−1
=
λe+g

s−n−1

− s+
n e

+2g

s−n−1

rn. (A10)

In this case, κ−λ is given by

κ−λ =
1

N − 1
ln
|ψ1|
|ψN |

=
1

N − 1

N−1∑
i=1

ln
1

|ri|
. (A11)

We can now define an effective inverse localization length
via the participation ratio [28] for these asymmetrical
wave functions via,

κeff
λ ≡

∑
j |ψj |4∑
j |ψj |2

=
2κ+κ−
κ+ + κ−

(A12)

where we have inserted the exponential behavior embod-
ied in, e.g. Eq. (A8). The κeff

λ = 2κ+κ−
κ++κ−

is the effective

inverse localization length used in Fig. 1.

Appendix B: Local excitation and global inhibition
(LEGI) model

1. Continuous model

Here, we start with the continuous local excitation
and global inhibition (LEGI) model introduced in [15],
and then add an asymmetric bias term ṽ∂θr that phe-
nomenologically represents excitatory inputs from exter-
nal neurons governing angular velocity integration [35].
Recently, such a mechanism has been observed exper-
imentally in P-EN neurons of Drosophila melanogaster
central brain [17, 18]. The integro-differential equation
of our interest is

τ
∂r(θ, t)

∂t
= −r(θ, t) + f

[
γ̃r(θ, t)− ṽ(t)

∂

∂θ
r(θ, t)

+ α̃
∂2r(θ, t)

∂θ2
− β̃

∫ 2π

0

r(θ, t)dθ

]
,

(B1)

where τ is a relaxation time for the neural firing rate,
r(θ, t) is an activity of a neuron at angle θ at time t, γ̃
is the self excitation/inhibition, ṽ(θ, t) is the strength of
the asymmetric bias [17, 18, 35], α̃ is the strength of the

local excitatory connection, and β̃ represents the global
inhibition.

2. Discretization of the continuous LEGI model

We now discretize each of above terms with N neurons
by writing

∂r

∂θ
≈ rn+1(t)− rn−1(t)

2∆θ
,
∂2r

∂θ2
≈ rn+1(t) + rn−1(t)− 2rn(t)

∆θ2
,∫ 2π

0

r(θ, t)dθ ≈ ∆θ

N∑
m=1

rm(t),

(B2)
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where we define rn(t) and ∆θ as

rn(t) ≡ r
(
n∆θ, t

)
, ∆θ =

2π

N
. (B3)

Thus, we obtain the discretized version of the LEGI
model with proper scaling,

τ
drn
dt

= −rn + f

[
γ̃rn − ṽ(t)

(
N

2π

)
rn+1 − rn−1

2

+ α̃

(
N

2π

)2

(rn+1 + rn−1 − 2rn)− β̃
(

2π

N

) N∑
m=1

rm

]
.

(B4)

Thus, (α̃, β̃, γ̃) appearing in the continuous model

Eq. (B1) can be rescaled such that α = α̃
(
N
2π

)2
, β =

β̃
(

2π
N

)
, γ = γ̃ − 2α̃

(
N
2π

)2
, and v = ṽ(t)

(
N
2π

)
as a

function of the total number of neurons N . With the
re-parameterized variables (α, β, γ), the discrete model
reads

τ
drn
dt

= −rn

+ f

[
γrn − v(t)

rn+1 − rn−1

2
+ α(rn+1 + rn−1)− β

N∑
m=1

rm

]
,

(B5)

where f [x] is a nonlinear activation function, similar to
Eq. (8) defined in the main text. Equivalently, we can
summarize the neural dynamics as

τ
dr

dt
= −r + f(Jr), (B6)

where the synaptic connectivity matrix, in a convenient
bra-ket notation is

J =

N∑
i=1

[
γ|i〉〈i|

+ α
(
(1 + v/2α)|i+ 1〉〈i|+ (1− v/2α)|i〉〈i+ 1|

)]
− β

N∑
j,k=1

|j〉〈k|

≈
N∑
i=1

[
γ|i〉〈i|+ α

(
e+g|i+ 1〉〈i|+ e−g|i〉〈i+ 1|

)]
− β

N∑
j,k=1

|j〉〈k|,

(B7)

where the exponentiated hopping bias parameter g is
defined as g = v/2α. The calculations in this paper
were done with a threshold linear activation function
f(x) ≡ (x+ 1)Θ[x+ 1] = [x+ 1]+

Appendix C: Study of quasi-localization

1. Minimal model to study “quasi-localization”

To focus on the study of quasi-localized principal eigen-
modes, here we focus on the simplified model shown be-

low,

M =

N∑
i=1

α
(
s+
i e

+g|i+1〉〈i|+s−i e−g|i〉〈i+1|
)
−

N∑
j,k=1

β|j〉〈k|,

(C1)
where the first two terms represent nearest neighbor cou-
plings with an asymmetric nearest-neighbor bias param-
eter g, and β describes global inhibition around the ring.
Note that the matrix M defined in the main text corre-
sponds to a limited regime of β = 0 in the above defini-
tion. For simplicity, we keep the same notation M here.
Upon taking N = 5 for illustration purposes, we have

M =
0 s−1 e

−g 0 0 s+
5 e

+g

s+
1 e

+g 0 s−2 e
−g 0 0

0 s+
2 e

+g 0 s−3 e
−g 0

0 0 s+
3 e

+g 0 s−4 e
−g

s−5 e
−g 0 0 s+

4 e
+g 0

−

β β β β β
β β β β β
β β β β β
β β β β β
β β β β β

 .

(C2)

In contrast to the matrix J , we ignore the diagonal ele-
ments that simply shift all the eigenvalues by a constant
while leaving the eigenvectors unchanged. Specifically, if
a matrix has a right eigenvector A |ψn〉 = an |ψn〉, con-
stant diagonal elements γ, simply shift the entire eigen-
value an acending to

(A + γI) |ψn〉 = (an + γ) |ψn〉 . (C3)

We characterize the disorder in s±i by parameter u ap-
pearing in the probability density functions as below,

Ps(s|u, f) =

f/u, for 1− u/2 < s < 1 + u/2
(1− f)/u, for− 1− u/2 < s < −1 + u/2
0, otherwise.

(C4)

2. Localization properties

Here, we present a few representative plots of the com-
plex eigenvalue spectra and the localized eigenmodes.
Fig. 6 shows a semi-log plot of the principal eigenvector of
the matrix M with (orange solid line, β = 1) and without
(blue dashed line, β = 0) global inhibitory connections.
While the orange solid line is not exponentially localized
in a strict sense, the amplitude |ψ| nevertheless decays ex-
ponentially until it is down by a factor of more than 103,
∼ ten lattice sites away from its center of localization.
In Fig. 7 we present complex eigenvalue spectra and cor-
responding three principal eigenvectors. The eigenvalue
spectra is colored according to the inverse localization
length obtained by calculating the inverse participation

ratio κeff =

∑
j
|ψj |4∑

i
|ψi|2 .
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|ψ
|

FIG. 6. The principal eigenvectors with largest (real) eigen-
value, with the total number of neurons N = 200, the exci-
tatory/inhibitory balance f = 1, the variance of the nearest
neighbor connections u = 0.5 on a log-scale, and the peri-
odic boundary conditions appropriate to a ring. The blue
dashed line is the conventional exponential localization with-
out global inhibition (β = 0) and the orange solid line corre-
sponds to the quasi-localized eigenmode with global inhibition
(β = 1), with the same realization of the disordered nearest
neighbor interactions. Note that we plot the logarithm of the
modulus of the dominant eigenfuction and both eigenfunc-
tions are strongly peaked near lattice site 150.
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FIG. 7. (a) [Left] Complex eigenvalue spectra with varying ratio f of excitatory to inhibitory interactions and asymmetry
parameter g. These spectra are colored based on the inverse participation ratio without global inhibition (β = 0). [Right] The
modulus of the three principal eigenvectors corresponding to each of the parameter set. The eigenvectors with the largest Reλ
are shown in green (these are the most strongly localized) while these with the next two largest Reλ are shown in blue and
red respectively. The eigenvectors are exponentially localized in space. (b) [Left] Similar to (a), we show complex eigenvalue
spectra colored based on the inverse participation ratio with global inhibition (β = 1) without randomness (w = 0). [Right]
Three principal eigenvectors corresponding to each of the parameter regime. The eigenvectors are still quasi-localized even with
the global inhibition.
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3. Bloch/Floquet eigenfunctions of the LEGI
model without disorder

We now discuss the Bloch/Floquet eigenfunctions that
result when all the nearest neighbor interactions are ex-
citatory (f = 1), and there is no disorder (u = 0) upon
setting the interaction magnitude α = 1, M is simply a
function of g, and β,

M(g) =

N∑
m,n=1

[
(e+gδm,n+1 + e−gδm+1,n)− β

]
|m〉 〈n| ,

(C5)
or in matrix notation (taking N = 5 for concreteness)

M(g) =


−β e−g − β −β −β e+g − β

e+g − β −β e−g − β −β −β
−β e+g − β −β e−g − β −β
−β −β e+g − β −β e−g − β

e−g − β −β −β e+g − β −β

 .

Since M is a circulant matrix without disorder, it
can be diagonalized by the (delocalized) orthonormal
Bloch/Floquet states, indexed by k = 2π

N s, s = 0,±1, ...,

˜|k〉 ≡ 1√
N

N∑
l=1

eikl |l〉 , 〈k̃|k̃′〉 =
1

N

N∑
l=1

ei(k
′−k)l = δk,k′ .

(C6)
The corresponding eigenvalues can be calculated as fol-
lows,

M(
√
N ˜|k〉)

=

N∑
m,n=1

[(
e+gδm,n+1 + e−gδm+1,n

)
− β

]
|m〉 〈n|

( N∑
l=1

eikl |l〉
)

=

N∑
m=1

[(
e−i(k+ig) + ei(k+ig)

)
eikm − β

( N∑
n=1

eikn
)]
|m〉

=
[
2 cos(k + ig)− βNδk,0

]( N∑
m=1

eikm |m〉
)
,

≡ E(k)(
√
N ˜|k〉),

(C7)

where the eigenvalue E(k) is,

E(k) = 2 cos(k + ig)− βNδk,0. (C8)

Thus, eigenvalue associated with the uniform state
around the ring (k = 0) is split off from the rest even
in the limit of N → ∞, when the other eigenvalues as-
sociated with k 6= 0 close up. When β → 0 and g → 0,
the uniform state is at the top of the band. With the
asymmetric advection term g > 0 (corresponding to a
clockwise bias), the above spectrum will become com-
plex. For a later use, here we briefly consider a limit of
g = 0 and β → 0. In this case, the eigenvalue corre-
sponding to the uniform state (k = 0) is 2 − βN . The

eigenvalue is the largest and at the top of the band when
β = 0. The second largest eigenvalue with k = ±2π/N

is 2 cos(2π/N) ≈ 2
(
1− 1

2 (2π/N)2 +O(N−4)
)
≈ 2− 2π2

N2 .
Thus, for the uniform state to be at the top of the spec-

trum, we require β < 2π2

N3 .

−8 −6 −4 −2 0 2
Reλ

−2

0

2

Im
λ

FIG. 8. Complex eigenvalue spectrum of the discrete no-
disorder model with total number of sites N = 500, global in-
hibition β = 10/N and various clockwise bias g = 0, 0.5, 1.0.
The detached eigenvalues

(
given by 2 cosh(g) − βN

)
corre-

spond to uniform states (k = 0).

4. Calculation of eigenvalue spectrum with single
anomalous hopping matrix element using a Green’s

function method

Here, we consider how perturbation to a pair of
hopping terms δM = δm(|1〉 〈2| + |2〉 〈1|) shifts the
eigenvalue spectrum of the unperturbed operator M =∑N
l,l′=1[δl,l′+1+δl+1,l′−β] |l〉 〈l′| following the Green func-

tion method presented in [36]. In a matrix notation,
M + δM for the case N = 5 is given by
−β 1− β −β −β 1− β

1− β −β 1− β −β −β
−β 1− β −β 1− β −β
−β −β 1− β −β 1− β

1− β −β −β 1− β −β

+


0 δm 0 0 0
δm 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 .

(C9)

As discussed in the previous section, M is a circulant
matrix in real space, and can be diagonalized by the basis

set { ˜|k〉},

M =
∑
k

(2 cos k − βNδk,0) ˜|k〉 ˜〈k| ≡
∑
k

E(k) ˜|k〉 ˜〈k|.

(C10)

Here, we define a linear operator A as,

A(E) = EI −M , (C11)

where I is the identity matrix,

I =
∑
l

|l〉 〈l| =
∑
k

˜|k〉 ˜〈k|. (C12)
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Clearly, the roots of the equation 0 = A(E) ˜|k〉 with the
unperturbed matrix M given the eigenvalue spectrum
E(k),

0 = A(E) ˜|k〉 = (EI −M) ˜|k〉 = (E − E(k)) ˜|k〉. (C13)

Now consider a perturbation M →M+δM . The shifted
eigenvalues E can be obtained by solving

(A(E)− δM) |ψ〉 = 0. (C14)

The inverse of A is obtained as,

A−1 =
∑
k

1

E − E(k)
˜|k〉 ˜〈k|

=
∑
l,l′

1

N

∑
k

eik(l−l′)

E − E(k)
|l〉 〈l′| ,

(C15)

An equivalent relation reads,

A−1(A− δM) |ψ〉 = (1−A−1δM) |ψ〉 = 0. (C16)

Next, we substitute δM = δm(|1〉 〈2|+ |2〉 〈1|) and find

A−1δM =
∑
l,l′

1

N

∑
k

eik(l−l′)

E − E(k)
|l〉 〈l′|

(
δm(|1〉 〈2|+ |2〉 〈1|)

)
=
∑
l

1

N

∑
k

δmeikl

E − E(k)
|l〉 〈2|+

∑
l

1

N

∑
k

δmeik(l−1)

E − E(k)
|l〉 〈1| .

(C17)

The following four matrix elements,

〈1|A−1δM |1〉 =
1

N

∑
k

δme−ik

E − E(k)
,

〈2|A−1δM |1〉 =
∑
l

1

N

∑
k

δm

E − E(k)

〈1|A−1δM |2〉 =
1

N

∑
k

δm

E − E(k)
,

〈2|A−1δM |2〉 =
∑
l

1

N

∑
k

δmeik

E − E(k)
,

(C18)

lead to two coupled linear equations,

0 = ψ0 − 〈1|A−1δM |1〉ψ0 − 〈1|A−1δM |2〉ψ1

0 = ψ1 − 〈2|A−1δM |2〉ψ1 − 〈2|A−1δM |1〉ψ0

(C19)

Since 〈1|A−1δM |1〉 = 〈2|A−1δM |2〉 and
〈1|A−1δM |2〉 = 〈2|A−1δM |1〉, we can infer ψ0 = ψ1,
and find that the shifted eigenvalues E are the roots of,

1

δm
=

1

N

∑
k

1 + eik

E − (2 cos k − βNδk,0)
,

k =
2πs

N
, s = 0,±1, ...

(C20)

Given δm, solutions of the above equation can be ob-
tained graphically as in Fig. 9.

1.96 1.98 2.00 2.02 2.04
E

0

10

20

30

40

50

(δ
m

)−
1

FIG. 9. Graphical solution of Eq. (C20) for the shifted eigen-
value spectrum E for a ring with N = 101 and a single
impurity for a particular value of 1/δm (horizontal dashed
line). Blue lines represent analytically obtained eigenvalues
as a function of (δm)−1 with β = 0 (no global inhibition),
and red lines are with β = 1 (strong global inhibition). The
largest eigenvalue breaks off from what becomes the band of
extended states when N → ∞ and the eigenvalues close up
(E < 2), and corresponds to a localized eigenvector. We also
confirmed that numerical solution agrees well with the ana-
lytical solution presented here.

5. Exact solution: A single imperfection in
continuous LEGI model

Here, we study eigenfunctions ψ(θ) of the linear oper-
ator L,

Lψ(θ) ≡ ∂2ψ(θ)

∂θ2
− β

∫ 2π

0

dθψ(θ) + V0δ(θ)ψ(θ). (C21)

Without the imperfection at θ = 0 represented by the
delta-functions, the system has continous rotational sym-
metry and we can assume eigenfunctions proportional to
eiξθ. We decompose φ(θ) into Fourier modes according
to

ψ(θ) =
∑
ξ

ψ̃(ξ)eiξθ, (C22)

ψ̃(ξ) =
1

2π

∫ 2π

0

ψ(θ)e−iξθdθ. (C23)

Without the imperfection (V0 = 0), the eigenvalues λξ of
these extended eigenfunctions are given by

(−ξ2 − 2πβδξ,0)eiξθ = λξe
iξθ. (C24)

To understand an imperfection at the origin (V0 6= 0), we
start from an ansatz,

ψ(θ) = cos(ξ(θ − π)) + C, (C25)
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where ξ can be either a real or complex number and C is
to be determined. Note that there can be a jump in the
slope of ψ(θ = 0) at the origin with finite V0δ(θ).
For θ 6= 0, ξ 6= 0):
If we substitute the above ansatz, we get

Lψ(θ) = −ξ2

[
cos
(
ξ(θ − π)

)
+

2β

ξ2

(
sin(ξπ)

ξ
+ πC

)]
.

(C26)
Thus, for ψ(θ) to be an eigenfunction of L, the constant
C should satisfy,

C =
2β sin(ξπ)

ξ
(
ξ2 − 2πβ

) . (C27)

For θ 6= 0, ξ = 0):
When ξ = 0 and the eigenfuction is uniform,

ψ(θ) = 1 + C, Lψ(θ) = −2πβ(1 + C). (C28)

Note that the eigenvalue of this uniform state −2πβ is at
the top of the band without inhibition (β = 0), but the
state drops down in the eigenvalue spectrum with finite
β.
At the origin θ = 0)
Due to the point impurity at the origin there can be a
discontinuity in the slope of eigenfunctions at the origin,
proportional to the disorder strength V0,

lim
ε→0

∫ ε

−ε
dθLψ(θ) = ψ′(0)− ψ′(2π) + V0ψ(0) = 0. (C29)

At the origin θ = 0, ξ 6= 0)
By substituting ψ′(θ) = −ξ sin

(
ξ(θ − π)

)
into the previ-

ous equation we get,

2ξ sin(ξπ) + V0 cos(ξπ) + V0C = 0

⇔ C = −2ξ sin(ξπ)

V0
− cos(ξπ)

(C30)

By equating the two equations for C,

2β sin(ξπ)

ξ
(
ξ2 − 2πβ

) = −2ξ sin(ξπ)

V0
− cos(ξπ), (C31)

we obtain a relation,

V0 = − 2ξ sin(ξπ)

cos(ξπ) + β 2 sin(ξπ)
ξ(ξ2−2πβ)

. (C32)

Given β and V0, we can determine wave numbers ξ as
roots of the above equation. Furthermore, ξ becomes
purely imaginary, ξ = iκ when V0 is large, which gives a
localized mode as,

ψ(θ) = cosh(κ(θ − π)) + C. (C33)

Our results for β = 1 and β = 0 are summarized in
Fig. 10 (a) and (b) respectively.

� = 1

� = 0
(a)

(b)

FIG. 10. Plot of the derived relation between ξ and V0,

V0 = − 2ξ sin(ξπ)

cos(ξπ)+β
2 sin(ξπ)

ξ(ξ2−2πβ)

≡ f(ξ). The solid blue lines cor-

respond to V0 = f(ξ) for real ξ, and the dashed orange line
corresponds to V0 = f(ξ) for imaginary ξ. This dashed (or-
ange) line corresponds to the trajectory of localized state and
without impurity (V0 = 0). (a) Without global inhibition
(β = 0), there is a uniform state at the origin (ξ = 0) with
the largest eigenvalue along V0 = 0, and when V0 becomes fi-
nite, ξ immediately becomes imaginary to localize. (b) With
global inhibition (β = 1), the state with ξ ± 1 has the largest
eigenvalue reflecting the shift of eigenvalue of the uniform
state ξ = 0.
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FIG. 11. Localization of the principal eigenvalue of the ring
model with a single imperfection at the origin. With a finite

global inhibition such that β = 1 � 2π2

N3 , the uniform state
k = 0 is no longer at the top of the eigenvalue spectrum.
Instead, a low frequency eigenmode with finite wave number
k 6= 0 will localize as we increase the single site perturbation.
Pink dashed lines correspond to the analytical solutions, while
the blue solid lines are eigenvectors obtained with numerical
diagonalization.
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