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Abstract

Intracellular transport in eukaryotic cells consists of phases of passive, diffusion-based transport and
active, motor-driven transport along filaments that make up the cell’s cytoskeleton. The interplay be-
tween super-diffusive transport along cytoskeletal filaments, and the anomalous nature of sub-diffusion
in the bulk can lead to novel effects in transport behavior at the cellular scale. Here, we develop a
computational model of the process with cargo being ballistically transported along explicitly modeled
cytoskeletal filament networks and passively transported in the cytoplasm by a sub-diffusive continuous-
time random walk (CTRW). We show that, over a physiologically relevant range of filament lengths and
numbers, the network introduces a filament-length sensitive super-diffusive phase at early times which
crosses over to a phase where the CTRW is dominant and produces sub-diffusion at late times. We
apply our approach to the problem of insulin secretion from cells and show that the super-diffusive phase
introduced by the filament network manifests as a peak in the secretion at early times followed by an
extended sustained release phase that is dominated by the CTRW process at late times. Our results are
consistent with in vivo observations of insulin transport in healthy cells and shed light on the potential
for the cell to tune functionally important transport phases by altering its cytoskeletal network.

1 Introduction

Motor driven intracellular transport is an important process in eukaryotic cells (1–3) that is responsible for
the delivery of a variety of material like carbohydrates, nucleic acids, lipids, proteins (4), and even entire
organelles like mitochondria (5) to target destinations in various places throughout the cell. This process
comprises two phases, an active, molecular motor-driven phase and a passive, diffusive transport phase. In
the active phase, cargos, typically material carried in vesicles, are pulled by ATP-powered molecular motors
that walk in a hand-over-hand style of motion along a complex cytoskeletal mesh-like network composed of
actin filaments and microtubules (1). The molecular motors that carry cargos belong to one of three classes.
Myosin motors, which typically move towards the (+) end of actin filaments, kinesin motors which move
toward the (+) end of microtubules and dynein motors which move in the (-) direction along microtubules
(6, 7). Actin and microtubule networks can form a variety of morphologies depending on cell type and
function, ranging from random networks within the cell to oriented stress fibers for actin (8), and from
radially oriented filaments to long parallel bundles for microtubules (9). Motors, and hence the cargos
they’re carrying, also unbind from the filaments in a stochastic manner, whereupon they undergo passive
diffusion in the cytosol till they bind to a filament again. Cargos thus alternatively bind and unbind from
filaments in the network, undergoing passive and active transport, until they reach their target destination
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(10). This process has been studied extensively from the perspective of the individual molecular motors
that carry cargo (11) as well as the role of teams of motors in accomplishing transport (12–17). Some of
the related complexities that have attracted interest include motor-defect interactions on filaments (18), the
existence of obstacles and roadblocks (19–21), and traffic jams on filaments (12, 19).

In the past few years, however, there has been growing interest in how the global architecture and
properties of the cytoskeletal network influence transport. Network features, characterized by the density,
lengths, locations, orientations, and connectivity of filaments (22–24), as well as defects, post-translational
modifications and blockades along them (1, 25, 26) likely influences intracellular transport in much the same
way that road connectivity and conditions are critical determinants of vehicular traffic. For example, it
has been shown that particular filament arrangements can result in “traps” near the nucleus that result
in highly variable transport times, while other architectures result in rapid directed transport (22). These
results indicate the importance of the network architecture, but, it is worth noting that the overall transport
process is dependent on diffusion in the passive phase as well. While previous studies (22) assumed that the
passive diffusive was characterized by normal Brownian diffusion, in the context of the crowded cytoplasm
(27), diffusion is known to be anomalous (28). Experiments involving measurements of diffusion of cargo
after filament depolymerization in both extracts (28) and in cells (4) have shown anomalously subdiffusive
behavior. In fact, anomalous diffusion can be used to describe the entire intracellular transport process. The
active transport phase is super diffusive while anomalous sub-diffusion is considered to be a characteristic of
the passive transport phase within the bulk cytoplasm (2).

In this paper, we explore how the interplay between super-diffusive transport, provided by explicitly
modeled cytoskeletal filaments, and the anomalous nature of sub-diffusion in the bulk, can lead to novel effects
in transport behavior at the cellular scale. In particular, we are interested in how the geometric properties of
the cytoskeletal network dictated by the lengths and density of the constituent filaments influence transport
in the presence of anomalous sub-diffusive transport in the bulk cytoplasm, and especially whether they
can be tuned to access different transport phases. Anomalous diffusion can generally be described by two
prevailing models, Fractional Brownian Motion (FBM) (29), which is an ergodic process and Continuous
Time Random Walk (CTRW) (30), which is not. In the context of intracellular transport, CTRW has
been shown to describe bulk diffusion when filaments are shortened in vivo (4, 28, 31) as well as in the
presence of cargo interactions with filaments (31) and vortices and cycling behavior near actin filament
intersections in the case of multiple molecular motors (32). It has also been observed that diffusive cytosolic
transport is best explained by a CTRW, while filament transport is best represented by FBM (28). While
different mechanisms have been proposed in these papers, their relative contributions to the observed CTRW
behavior is not clear yet and is beyond the scope of this manuscript. The goal of our paper is to show how the
observed CTRW for passive cargo diffusion in conjunction with active transport on cytoskeleton structures
influence the overall transport properties. Since we use explicit filament networks, we only need to account
for anomalous sub-diffusion in the bulk in our model, which we therefore do, using CTRW.

Given our focus on understanding the basic physics of the interplay between superdiffusive network
transport subdiffusive cytoplasmic transport, we choose to only consider the simplest geometries for the
cytoplasmic boundaries and cytoskeletal networks. Our model, introduced in section 2, consists of a circular
cell with a concentric circular nucleus and a randomly oriented filament network between the nuclear and
cellular membranes (see Fig.1). In this case, the geometric properties of the cytoskeletal network are dictated
by the lengths and density of the constituent filaments. We simulate the transport of cargos, starting
at the nucleus, in the center of the cell, and alternating between ballistic transport along the filaments
and sub-diffusive transport in the bulk, till they reach their target destination - the outer cell membrane.
For the sake of simplicity, and, in order to focus only on relevant parameters such as filament length,
concentration and dwell time statistics of anomalous diffusion, we neglect the elasticity of the filaments (33),
viscoelastic interactions between cargos, motors, and the network (34), confinement effects (35, 36) and
scenarios involving cargos carried by multiple motors (37) (we consider only single-motor active transport).
As the simulation unfolds, we measure mean squared displacements (MSDs) as a function of time and
the distributions of first-passage times (FPTDs) to get to the destination for cargos over multiple filament
networks for varying network parameters (filament length and concentration). Because we explicitly model
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the filament geometry, we are also able to compute the variance in these measurements across multiple
network realizations with the same parameters. We should emphasize here that we focus on quantities like
the MSD, the time averaged MSD and first passage time distributions because they give us physiologically
relevant information like overall transit times and also because they are readily and typically measured
quantities in microscopy experiments. Therefore this approach allows us to reveal the signatures of underlying
anomalous processes in macroscopic and averaged observables that are readily experimentally accessible.

To begin with, in Section 3, we consider the case of pure cytosplasmic subdiffusion in the absence of
filaments. We verify that our implementation of CTRW produces the desired behavior for both ensemble
averaged and time averaged MSDs. In Section 4, we consider the addition of a network of filaments to the
system. We show, over a physiologically relevant range of filament lengths and numbers, that the network
introduces a superdiffusive phase at early times which crosses over to a phase where the CTRW is dominant
and produces subdiffusion at late times. We also show that the superdiffusive phase is most sensitive to
filament length. In Section 5, we apply our simulation approach to the problem of insulin secretion from
pancreatic cells, which is characterized, in healthy cells, by a quick release of a large fraction of granules
followed by a low but sustained rate of release at late times after glucose stimulation (38). We show that the
superdiffusive phase introduced by the filament network manifests as a peak in the secretion at early times
followed by an extended sustained release phase that is dominated by the CTRW process at late times. Our
results are consistent with in vivo observations of insulin transport and shed light on the potential for the
cell to tune transport phases by altering its cytoskeletal network.

2 Methods

We build on previous work (22) in which simulations of cargos alternate between phases of ballistic motion
along filaments (corresponding to active transport) and random walk phases resulting in Brownian mo-
tion/normal diffusion in the bulk (corresponding to passive transport). For our simulations, we consider a
model eukaryotic cell consisting of a nucleus, cell membrane and filaments that make up the cytoskeleton.
We use biologically realistic parameters for the various processes involved (22) (see (39)) and implement
all of our simulations in 2D, in order to better compare our results with experiments, where processes are
typically observed in a 2D plane. The cell, then, is represented by a 2D disk with a radius of 10 µm, while
the nucleus has a radius of 5 µm. Filaments are straight lines with random locations and orientations (see
(22) and (39) for more details on network generation). Cargos have a radius of 100 nm and bind to fila-
ments with a rate of kon = 5s−1, and unbind from filaments at a rate koff = 1s−1. The cargo radius only
influences the diffusion constant and the range of interaction of cargos. Cargos begin near the nucleus (Fig.
1a) and undergo transport until they reach the cell membrane (Fig. 1b) while alternating between phases
on and off the filament network. Off the network, the diffusion constant (in the case of normal diffusion) is
D = 0.051µm2/s and while traveling on the network, cargos move at a speed of v = 1µm/s.

In this work, we extend the previous model (22) by accounting for the fact that cargos can undergo
anomalous subdiffusion instead of regular diffusion during the passive phase. A signature of anomalous
diffusion is that the cargos have a mean squared displacement (MSD) that scales as

〈r2(t)〉 ∼ tα (1)

with 0 < α < 1 indicating subdiffusion. In order to incorporate anomalous diffusion in our simulations,
we have cargos perform a CTRW during the passive transport phase. To implement this, we select a waiting
or dwell time between successive random walk steps, from the distribution

ψ(t) =

{
0 if t < 1,

αt−α−1 if t ≥ 1.
(2)

with 0 < α < 1. After waiting for the selected time, the cargo moves a distance of 0.1 µm, with the
maximum cargo movement speed being set by the diffusion constant. Experiments with cargo in cell extracts
(28) have shown that, in the presence of microtubules, cargos move with a measured α of about 1.4-1.5,
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Figure 1: (a) The initial state of the system. Cargos (shown as (red) circles) start near the nucleus. Randomly
placed filaments (straight lines) model the cytoskeleton. Each filament has a fixed polarization. (b) The
final state of the simulation. Cargos alternate between passive and active phases of transport until they
reach the outer cell membrane. Individual trajectories are denoted by thin (red) curves traced out by the
cargos. (c) The ensemble-average MSD for a system of 1000 cargos, with no filaments present (CTRW
only). The smooth (blue) curve going through the data is a power-law fit with an exponent α = 0.8. (d)
TA-MSD for the same system for a constant measuring time, t, as a function of a sliding time window ∆.
Inset, upper-left shows the TA-MSD for constant time windows (1s, 2s, and 3s, from top to bottom), as a
function of measuring time. Inset, lower-right shows the Ergodicity-Breaking parameter plotted as EB/∆ as
a function of ∆ (dashed line shows 1/∆).

but when the filaments are depolymerized, α values between 0.65 and 0.98 were observed. These results
seem to indicate that diffusion in the absence of any filaments, due to the bulk alone, is subdiffusive with
an exponent of about 0.8. This value is also consistent with the subdiffusive exponent observed for insulin
granules in pancreatic cells that had been treated by vinblastine to depolymerize filaments (4). Based on
these and other (31) similar results, we use α = 0.8 in most of our simulations, unless otherwise specified.

3 Validating MSD scaling and aging due to CTRW

We begin our simulations with a test of our system in the absence of any filaments. Here, cargos begin near
the nucleus and undergo purely passive transport (CTRW only) until they reach the outer membrane. For
purely CTRW transport with a distribution of wait times defined by Eq. 2, we expect the MSD to scale
according to Eq. 1. Fig. 1c shows the ensemble averaged MSD from our simulations, which agrees very well
with the expected power law scaling with an exponent of 0.8.
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Since CTRW is a non-ergodic process, we also analyze time-average mean squared displacement (TA-
MSD) data. By definition, this value is given by (40):

δ2(∆, t) =

∫ t−∆

0
[x(t′ + ∆)− x(t′)]2dt′

t−∆
(3)

where ∆ is the sliding time window (time between measurements) and t is the total measuring time. In
the limit where ∆ << t, averaging over many cargos yields

〈δ2〉 ∼ ∆

t1−α
(4)

From Fig. 1d (main), we see that the measured TA-MSD increases linearly with ∆, as expected. In Fig.
1d (upper-left inset), we plot scaling of the TA-MSD from simulations with measuring time t for different
values of ∆ = 1s, 2s, 3s. We again recover the expected scaling behavior, t1−α . Finally, we also plot the
measured ergodicity breaking (EB) parameter,

EB =
〈(δ2)2〉 − 〈δ2〉

2

〈δ2〉
2 (5)

in 1d (lower-right inset) as EB/∆, which scales as∼ 1/∆ as expected for CTRW(4), signifying convergence
of EB to a nonzero constant value, another characteristic feature of CTRW. Taken together, these results
indicate that our CTRW model implementation is effective in producing anomalous subdiffusion with the
desired exponent.

4 Adding filaments introduces a superdiffusive phase

Having validated and created a baseline for the MSD scaling in the subdiffusive passive phase, we now
consider the addition of filaments, creating a cytoskeletal network. We add to the network 100, 200, 300,
400, and 500 filaments, with lengths of 1, 2, 3, 4, and 5 µm (details of network generation in (22) and (39);
the range of filament numbers and lengths are consistent with reasonable in vivo values (22)). The most
notable difference is observed in the ensemble-average MSD. We can see in Fig. 2a that, in contrast to the
case with no filaments present, the MSD in the presence of filaments shows different scaling behaviors in
different time regimes. Fitting the MSD in the two time regimes, we can see that the short-time slope is
larger than 1 (indicating superdiffusion with an MSD scaling exponent larger than 1) and is distinctly larger
than the long-time slope which is below 1 (indicating subdiffusion). Thus at early times, it appears that
the MSD is dominated by movement along the filaments, giving rise to superdiffusion. At later times, past
some transition time ( set by the typical timescale for which a cargo walks on a filament before detaching
(between 1s and 10s)), we can see a crossover to CTRW dominated behavior, as suggested by comparing
the slope of this second regime with the slope of the CTRW only data. To understand how these different
exponents depend on the network parameters, we plot the MSD scaling exponents in the long-time (Fig. 2b)
and the short-time (Fig. 2c) regimes as a function of number and lengths of the filaments. Consistent with
the picture that the long time dynamics are controlled by CTRW, the long time exponents are all close to
0.8 and fairly insensitive to filament density and number, except at the very highest network masses, where
the signature of the short time superdiffusive phase begins to show. Note that the exponent appears to go
below 0.8 at low densities because of confinement effects from the boundary and, as expected, this effect
diminishes with increasing cell radius (see (39)). Not surprisingly, the network parameters have the greatest
effect on the MSD at shorter times, where the slope is greatest. The short time exponent changes all the way
from 1 (or diffusive) at the lowest network masses to almost ballistic (∼ 1.8) at high network masses. To
examine the relative importance of filament length and density, we consider curves of constant mass (white
lines in Fig. 2c), where filament mass is defined as the number of filaments multiplied by the length of each
filament. In Fig. 2d, we plot the short-time MSD exponent as a function of filament length for different
network masses (corresponding to the lines in Fig. 2c). We see from the rough collapse of the curves that
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Figure 2: (a) A log-log plot of an ensemble-average MSD in the presence of filaments (1500 filaments, 5 µm
each) compared to MSD for CTRW only (lower set of data points (blue symbols)). Dashed lines show fits to
different power law behaviors for short and long times for the MSD data with filaments and over the entire
time range for the control CTRW only case. The measured long (b) and short-time (c) power-law exponents
as a function of filament length and number. In (c), lines of constant mass are in white. (d) MSD short-time
exponents as a function of filament length for different total filament masses. Averaging is over N=10000
cargo in all cases. Error in the measured exponents due to fitting is less than 6% over the parameter range
explored.

the short-time exponent shows very modest increases with greater mass at fixed filament length but is much
more sensitive to the filament length for constant mass. This indicates that it is the filament length, not the
total mass of the filaments, that is an important factor in driving the MSD at short times.

We now look more closely at the long time behavior to understand how it is controlled by the CTRW.
Fig. 3a plots the MSD for values of α from 0.2 to 1 in the presence of 1500 filaments of length 5 µm. We can
see the effect of the dwell time distribution on the MSD in the long-time regime (Fig. 3a). Whereas the MSD
is controlled by the filament network at early times and is insensitive to α, decreasing α leads to a decrease
in the MSD at late times. Because we are interested in how the geometry of the network itself affects MSD,
we next consider how the MSD varies across different network realizations. Fig. 3b plots the MSD for five
different networks, each with 300 filaments of length, 5 µm. We immediately see that any difference between
them is within the intrinsic variance on each network due to the CTRW, suggesting that the variance due to
the dwell time distribution dominates over network geometry effects. To quantify this further, we simulate
the transport of 100 cargos over 100 networks and calculate the MSD at 10s and 100s and track its variance
at those times. Figs. 3c and 3d show the standard deviations of the MSD at 10s and 100s (normalized by
the mean MSD at those times), respectively, for different filament lengths and numbers. The normalized
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Figure 3: (a) Ensemble-average MSD as a function of time for different values of α. (N=100 cargo) (b)
MSD as a function of time for 100 cargos over 5 different networks at fixed α = 0.8. Normalized standard
deviation of MSD (averaged over 100 cargo and 100 different networks) at 10 s (c) and 100 s (d) as a function
of filament length and number.

standard deviation increases with increasing filament length and decreasing numbers of filaments, with the
effect being much more pronounced at early times when the network geometry is influential.

5 Tuning transport phases using network parameters

Of particular interest due to its relevance to real biological processes such a secretion and exocytosis is
the time taken to transport cargo to the peripheral cell membrane. We can quantify this transport by
measuring the time that it takes for cargo to first reach the outer membrane and constructing a first passage
time distribution (FPTD) from these times. Such FPTDs can have distinctive features that arise from the
underlying transport processes. For example, it has been shown that insulin secretion in healthy pancreatic
cells, where insulin containing vesicles are transported to the membrane and secreted outside of the cell (4),
is characterized by a distinctly “biphasic” FPTD, consisting of an initial spike, followed by a long, sustained
release of insulin (38). In a recent model (4) used to explain this process, insulin granules move throughout
the cell through a combination of FBM and CTRW until they reach some distance a from a fast-releasing hot
spot on the cell membrane, where the particles move only via FBM (38, 41). As the parameter a is increased,
there is an initial peak of insulin flux followed by a more stable phase, giving the biphasic behavior seen in
experimental observations. While the distance a is meant to model a region with no trapping, it is not clear
what the physical cytoskeletal architecture would be corresponding to this parameter. While the insulin
secretion process as a whole is complex involving many signals, regulatory proteins, fusion proteins and
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Figure 4: (a) FPTDs for networks comprised of 300 filaments, with varying lengths. (b) The second phase of
the FPTD for different values of α. (c) Strength of FPTD decay as a function of filament length and number.
Lines of constant mass are in white. (d) FPTD decay exponent as a function of filament length for different
filament masses. FPTDs are for 100 cargo over 100 different networks. Error in measured exponents due to
fitting is less than 6% over the parameter range explored.

motor proteins such as myosins and kinesins (38), in vivo observations suggest that the cytoskeletal network
has an important part to play in this process and, in particular, that depolymerization and rearrangement of
actin filaments seen during glucose stimulation is one of the key regulators (38, 42, 43). Here, we consider the
network filaments explicitly and are therefore able to directly examine the result of filament depolymerization
in isolation. The exact features of the secretion profile depend on the parameters and also assumptions about
the initial distribution of insulin granules. Rather than trying to replicate that, we focus on two main features
observed in the biphasic secretion - fast secretion upon stimulation and sustained slow secretion, at later
times. We use pure CTRW to represent anomalous diffusion in the bulk and, instead of the parameter a, we
vary, as in the case of our MSD analysis, explicit filament length and number. We monitor insulin flux out of
the cell by making first-passage time distribution (FPTD) measurements for different network parameters.

Fig. 4a shows FPTDs as a function of time for different filament lengths with a constant filament number
of 300. It should be noted that we calculated the FPTD by binning the first passage times of cargo (starting
from a random position with a linearly decreasing probability with distance from the center) when they
reached the membrane into 1s time intervals bins. Our simulations have 100 cargos across 100 networks,
which makes a total of 104 cargos. While the bins go out to 106 seconds, in Fig.4a the FPTD plots are cut off
at 1000 seconds. We notice that at the shortest filament lengths, the FPTD appears to have no peak. The
first phase, the initial spike, is only apparent at a filament length of 3 µm and beyond. Thus the filament
length clearly tunes this phase that occurs at early times. This is also consistent with our picture, from the
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Figure 5: (a) MFPT as a function of filament length and number with lines of constant mass in white. (b)
MFPT as a function of filament length for different filament masses. Network averaged MFPT standard
deviation (c) and normalized average standard deviation (d) as a function of filament length and number.
Averaging is over 400 cargo and 100 different networks.

previous section, that the early time dynamics are controlled by filament length. Interestingly, it appears
that all curves also show a sustained release at late times signified by the long tail. Our results from the
previous section suggest that this second phase at late times is likely a power law decay determined by the
value of α. To examine this possibility, we focus on the FPTD behavior at late times. Fig. 4b displays a
log-log plot of FPTD as a function of time for a network with 300 filaments with a length of 5 µm each, but
for different values of α. The larger the value of α, the steeper the decay, until in the case of α = 1, the
decay is qualitatively different and, becomes exponential. To test whether this second phase can be tuned
by the network geometry, we examine, in Fig. 4c, the FPTD power law exponent in the second, decaying,
transport phase as a function of the filament length and number. We see that the exponent increases with
network mass with a more sensitive dependence on filament length. The increase in the exponent is quite
significant, from 0.2 to 1.2 in the range of filament parameters studied, indicating that, even though we are
looking at relatively late times, the filament network can be used to tune the behavior in that phase too.
To analyze this further, we plot, in Fig. 4d, the FPTD decay exponent as a function of filament length
for several different total filament masses. We see a separation between different mass curves indicating
a dependence on the total mass as well as the filament length, with increases in both leading to a larger
exponent indicating a steeper decay i.e. a curtailment of the sustained release phase.

Finally, we note that prior work on transport over explicit filament networks in a normally diffusive bulk
produced trapping regions that significantly impacted the mean first passage times (MFPT) (22) and also
produced a significant variance in MFPT from network to network. To examine whether a similar effect
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occurs in the presence of cytoplasmic subdiffusion, we measured the MFPT from the FPTDs generated. Fig.
5a shows the MFPT (µ) as a function of filament number and length, while fig. 5b shows the dependence
on filament length for fixed filament mass. Here, µ denotes the average MFPT over all of the network
configurations, as each network has its own associated MFPT. As expected, the MFPT decreases with
increasing filament mass and filament length, indicating that filaments provide a super-diffusive boost to
transport. To examine the effects of filament geometry on transport, we calculate how the MFPT varies
across multiple networks. We first calculated the standard deviation for 400 cargo first-passage times on
one network and then averaged them across 100 different networks to obtain the network averaged standard
deviation, µσ. Fig. 5c shows µσ as a function of filament length and number. We notice that the variance
decreases with increasing filament mass indicating that the superdiffusive phase introduced by the filaments
works to counteract the variance from the CTRW in the bulk. Also of interest are the rather large values
of the normalized average standard deviation (Fig. 5d), which is the network averaged standard deviation
divided by the MFPT obtained at each particular set of filament parameters. This means that any MFPT
variation across networks is dominated by the randomness of the CTRW which overcomes any variations
caused by trapping regions due to changes in filament orientation. It is the variance µσ that gives rise to
the sustained release phase and thus, we see again that a decrease in the filament network mass results in
increasing µσ and hence an increased sustained release.

6 Discussion and Conclusion

In our studies, we have shown that motor-driven transport along filaments is most dominant at early times,
as we find in our MSD calculations, where it is apparent that cargos move via superdiffusion. As we
change network parameters, namely the filament length and filament number, we can tune this superdiffusive
behavior. Increasing the net filament mass, increases the superdiffusive exponent speeding up the transport
process and for networks with the same mass, those with longer filaments facilitate even faster transport.
The superdiffusion we see in the presence of filaments and the subdiffusion that begins to manifest as filament
mass is decreased is consistent with the results found in (28), where α was measured to be about 1.5 in extract,
but when the filaments are depolymerized, α decreased to between 0.65 and 0.98. In our simulations, we
achieve (Fig. 2c) an α value of around 1.5 at a filament length between 2 µm to 3 µm. As we shorten our
filaments, the short time exponent drops and transport turns over to the late time regime where CTRW
dominates with an α of about 0.8 in the absence of filaments. It is to be noted that this value of α is also
consistent with the results from insulin granule subdiffusion in cells treated with vinblastine (a microtubule
depolymerizing agent) (4). There they found that the correlated component of the walk (FBM), was limited
to very early times (.10s) and that the process was mostly dominated by CTRW with an α = 0.8. It is also
interesting to note that their measurements of the TA-MSD exponent overall (in the absence of vinblastine)
had a wide spread from subdiffusive to superdiffusive. Our results suggest that, in any such experiment, one
could potentially observe a transition from a superdiffusive to a subdiffusive phase as a function of time,
or even spatial location, if the network structure is heterogeneous. Thus our simulations of transport over
explicit networks coupled to subdiffusion (CTRW) in the bulk highlight regimes where one or the other phase
is dominant and quantitatively explains experimentally observed features.

While the role of the cytoskeleton in insulin secretion has not yet been fully understood (38), it is clear
that both the cortical actin and microtubule networks are important for the process. It is also clear that
there is certainly a reorganization of F-actin upon glucose stimulation that plays a key role. There has
been debate about whether the reorganization acts as a removal of a barrier for the granules or a release
of trapped granules and how that fits in with results that indicate myosin-powered motility of the granules
along F-actin is also important. In our examination of insulin transport, we found that filament length
has an important effect on both the early “spike” phase and the second, power-law decay phase in the
“biphasic” FPTD. Of particular interest here is that, for networks with shorter filaments, the power-law tail
of the distribution is wider, meaning the second phase is maintained for longer. Thus a filament network
can contribute to both the early time fast release and upon subsequent shortening also allow the CTRW
process to provide a sustained release phase. It is worth noting here that short actin fragments may indeed
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contribute significantly to the trapping and hence complete depolymerization (i.e. conversion to G-actin) can
have the effect of abolishing CTRW resulting in a comparatively fast release that is not sustained. This is
consistent with the fact that glucose stimulation does not alter the F-actin to G-actin ratio and only results
in shortening and reorganization (38).

Finally, we showed that, in the presence of a anomalously subdiffusive bulk phase, network to network
variation in transport times is less significant than cargo to cargo transport variation over a single network.
This suggests that fine-tuned control of the network geometry (to avoid particularly poorly oriented networks)
may not be as important in the presence of anomalous subdiffusion in the bulk. While transport as a
whole is slower with a higher variance (which can be functional, as in a sustained release), it may be
advantageous for the cell in that it may be easier to control quantities such as the filament length and
number using regulatory proteins (44, 45) than it would be to control filament network arrangements in
geometries that limit variation in cargo transport. Taken together, our results suggest that the coupling
between superdiffusive and subdiffusive transport modes allow for filament morphology to be used as a
control knob to tune transport dynamics in vivo.
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