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Snakes’ bodies are covered in scales that make it easier to slide in some directions than in others.

This frictional anisotropy allows for sliding locomotion with an undulatory gait, one of the most

common for snakes. Isotropic friction is a simpler situation (that arises with snake robots for

example) but is less understood. In this work we regularize a model for sliding locomotion to allow

for static friction. We then propose a robust iterative numerical method to study the efficiency of

a wide range of motions under isotropic Coulomb friction. We find that simple undulatory motions

give little net locomotion in the isotropic regime. We compute general time-harmonic motions of

three-link bodies and find three local optima for efficiency. The top two involve static friction to

some extent. We then propose a class of smooth body motions that have similarities to concertina

locomotion (including the involvement of static friction) and can achieve optimal efficiency for both

isotropic and anisotropic friction.

I. INTRODUCTION

Snake locomotion has attracted the interest of biologists and engineers for several decades [1–6]. Many locomoting

animals use appendages such as legs, wings, or fins to exert a force on the substrate or surrounding fluid, and propel

the rest of the body forward [7]. Snakes lack appendages, and thus it is less clear which parts of the snake body

should exert propulsive forces, and at which instants during the motion, to move forward efficiently.

A typical way to understand how organisms move is to study physical or computational models and compare their

motions with those of the actual organisms [7–11]. One can take a step further and pose and solve optimization

problems for the models. This can suggest locomotion strategies that are effective for man-made vehicles [12–14]. It

can also help understand why organisms have evolved in particular ways under a multitude of constraints [15–17].

Often what is optimized is a measure of the efficiency of locomotion. For example, one can maximize the average

speed for a given time-averaged power expended by the organism. One can study the effects of physical parameters and

constraints by varying them and studying how the optimal solutions change. Well-known examples are optimization

studies of organisms moving in low- [18–24] and high-Reynolds-number fluid flows [25–31]. For locomotion in frictional

(terrestrial or granular) media, frictional forces can result in distinctive modes of efficient (or optimal) locomotion

[32–34].

Snakes are limbless reptiles with elongated bodies, supported by a backbone with 100–500 bony segments (vertebrae)
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[35]. The vertebrae allow for high flexibility particularly in the lateral (side-to-side) direction, with less flexibility

for vertical (dorso-ventral) bending or for torsion. Running along the backbone are muscles that attach to the sides

of the vertebrae and cause bending. The snake body is covered in a skin with a compliance (stretchability) greater

than that of mammalian skin, and widely variable across species [36]. The outside of the skin is covered in hardened,

keratinous scales. Scales on the belly are arranged so that friction is lower when the snake slides towards its head and

higher when it slides towards its tail. Muscles attach to scales on the belly and can raise and lower them, modulating

their frictional properties and providing a gripping ability [37].

On the basis of experiments and modeling, Hu and Shelley wrote that “snake propulsion on flat ground, and possibly

in general, relies critically on the frictional anisotropy of their scales” and measured the friction coefficients for snake

specimens sliding in different directions: µf (for a snake sliding forward, towards the head), µb (sliding backward,

towards the tail), and µt (sliding transverse to the body axis) [38]. It is difficult to measure friction coefficients

for moving snakes because their direction of motion and friction coefficients usually vary over their bodies. Hu and

Shelley found µb ≈ 1.3µf and µt ≈ 1.7µf for corn and milk snakes on cloth [39]. Marvi and Hu measured forward

and backward friction coefficients of corn snakes by placing them on styrofoam inclines and allowing them to slide

head-first and tail-first under gravity [6]. They found µb ≈ 1.6µf , and that conscious snakes’ friction coefficients are

about twice those of unconscious snakes, which were the focus of previous snake scale friction measurements [2, 38].

When conscious, snakes can increase the angles of their scales to grip the surface, increasing friction. Hu and Shelley

also studied the motions of snakes wearing cloth sleeves, so that the scales do not contact the substrate, giving a

representation of isotropic friction (µt = µb = µf ). They found that when the snakes undulate while wearing a sleeve,

there is little if any forward motion [38, 40].

Transeth et al. used experiments and simulations to show that for lateral undulation with isotropic friction, loco-

motion is possible but slow without barriers to push against [41, 42]. Others have found that snake robots can achieve

locomotion with isotropic friction using 3D motions: sinus-lifting (slightly lifting the peaks of the body wave curve

off the ground during lateral undulation), sidewinding, inchworm motions, and lateral rolling [43, 44]. Chernousko

simulated particular gaits of multilinked bodies with various friction coefficients and found that locomotion could

be obtained with isotropic friction [45]. Wagner and Lauga studied the locomotion of a two-mass system moving

in one dimension with isotropic friction (equal in the forward and backward directions) and found that locomotion

is possible if the two masses have different friction coefficients and the length of the link connecting them has an

asymmetric stroke cycle [46]. For the swimming of microorganisms in a viscous fluid (at zero Reynolds number), the

drag anisotropy of long slender bodies and appendages is known to be essential for locomotion [47].

In a previous theoretical/computational study we optimized smooth snake body kinematics for efficiency, starting

from random initial ensembles [48]. The kinematics were described by the coefficients of a double series, Fourier in time

(with unit period) and Chebyshev (polynomials) in arc length along the body axis, truncated at 45 modes (9 temporal

by 5 spatial) and in some cases 190 modes (19 temporal by 10 spatial). The searches were begun at random points

in the 45- and 190-dimensional spaces of these coefficients. We searched for smooth time-periodic body kinematics

that maximize a definition of efficiency—the net distance traveled in one period divided by the work done against
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FIG. 1: Left: Classification of local optima across friction coefficient space, computed in [48]. Right: Three sequences of snapshots of

locally optimal motions giving examples of direct, standing, and retrograde waves. These occur at particular friction coefficient ratios,

listed above the snapshots and marked with green, red, and blue symbols in the panel at left. The three sequences of snapshots are given

over one period of motion, and displaced vertically to enhance visibility but with the actual horizontal displacement.

friction in one period [48]. The optimizers were calculated and classified as shown in figure 1, across the space of

µt/µf (horizontal axis) and µb/µf (vertical axis). Many of the local optima could be classified as retrograde traveling

waves—waves of curvature moving opposite to the body’s direction of motion (i.e. lateral undulation)—prevalent

for µt/µf & 6; symmetric standing waves, observed for µb/µf ≥ 2 and 0.7 < µt/µf ≤ 3; or direct waves—waves

of curvature moving with the body’s direction of motion—observed for µt/µf . 0.7. Direct waves have also been

observed in the undulatory swimming of polychaete worms, with appendages extending perpendicular to the body

axis [49, 50]. Examples of these three classes of optima are shown in the snapshots on the right side of figure 1. In

this study, one possible local optimum was observed with isotropic friction µb/µf = µt/µf = 1, but the efficiency

gradient norm was only reduced by about two orders of magnitude from the random initial kinematics [48]. Usually

computations did not converge to local optima in the vicinity of isotropic friction (orange box in figure 1). Because

isotropic friction is common for snake robots (e.g. without scales) [44], is close to the measured friction coefficients for

real snakes [39], and is physically the simplest situation, a better understanding of planar locomotion in this regime

is useful. Isotropic friction is also a model of situations where snake scales are less effective—e.g. on loose, sandy, or

slippery terrain [51]. Effective kinematics for planar locomotion with isotropic friction is the main topic of this study.
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II. MODEL

We use the same Coulomb-friction snake model as [38, 39, 52] and other recent works. The snake body is thin

compared to its length, so for simplicity we approximate its motion by that of a planar curve X(s, t) = (x(s, t), y(s, t)),

parametrized by arc length s and varying with time t. Schematic diagrams are shown in figure 2.

x

y
s = 0

s = 1

s = 0

s = 1

FIG. 2: Schematic diagrams of model snakes. Top: a smooth planar curve parametrized by arc length s (nondimensionalized by snake

length), at an instant in time. The tangent angle and the unit vectors tangent and normal to the curve at a point are labeled. Vectors

representing forward, backward and transverse velocities are shown with the corresponding friction coefficients µf , µb, and µt. Bottom: a

three-link snake with changes in angles ∆θ1 (here positive) and ∆θ2 (here negative) between the links.

The tangent angle is denoted θ(s, t) and satisfies ∂sx = cos θ and ∂sy = sin θ. The unit vectors tangent and

normal to the curve are ŝ = (∂sx, ∂sy) and n̂ = (−∂sy, ∂sx) respectively. The basic problem is to prescribe the

time-dependent shape of the snake in order to obtain efficient locomotion. We consider both smooth bodies (figure 2,

top), and three-link bodies (figure 2, bottom). The latter are described by ∆θ1 and ∆θ2, the differences between the

tangent angles of the adjacent links.

We prescribe the body shape as Θ(s, t), the tangent angle in the “body frame,” defined as a frame that rotates

and translates so that at every time the body tail (s = 0) lies at the origin in the body frame and the body has zero

tangent angle at the tail (Θ(0, t) = 0). In the three-link case, Θ(s, t) = ∆θ1(t)H(s− 1/3) + ∆θ2(t)H(s− 2/3), where

H is the Heaviside function. For all bodies (smooth and three-link), the tangent angle in the physical (or lab) frame

is obtained by adding θ0(t), the actual tangent angle at the tail, to Θ(s, t):

θ(s, t) = θ0(t) + Θ(s, t). (1)

The body position in the lab frame is then obtained by integration:

x(s, t) = x0(t) +

∫ s

0

cos θ(s′, t)ds′, (2)

y(s, t) = y0(t) +

∫ s

0

sin θ(s′, t)ds′. (3)

The tail position X0(t) = (x0(t), y0(t)) and tangent angle θ0(t) (or equivalently, Ẋ0(t) and θ̇0(t)) are determined by
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the force and torque balance for the snake, i.e. Newton’s second law:∫ L

0

ρ∂ttxds =

∫ L

0

fxds, (4)∫ L

0

ρ∂ttyds =

∫ L

0

fyds, (5)∫ L

0

ρX⊥ · ∂ttXds =

∫ L

0

X⊥ · fds. (6)

Here L is the body length, ρ is the body’s mass per unit length, and X⊥ = (−y, x). For simplicity, the body is

assumed to be locally inextensible so L is constant in time. f is the force per unit length on the snake due to Coulomb

friction with the ground:

f(s, t) = −ρgµt
(
∂̂tX · n̂

)
n̂− ρg

(
µfH

(
∂̂tX · ŝ

)
+ µb

(
1−H

(
∂̂tX · ŝ

)))(
∂̂tX · ŝ

)
ŝ. (7)

Again H is the Heaviside function and the hats denote normalized vectors. When ‖∂tX‖ = 0 we define ∂̂tX to be

0. According to (7) the snake experiences friction with different coefficients for motions in different directions. The

frictional coefficients are µf , µb, and µt for motions in the forward (ŝ), backward (−ŝ), and transverse (i.e. normal, ±n̂)

directions, respectively. In general the snake velocity at a given point has both tangential and normal components, and

the frictional force density has components acting in each direction. A similar decomposition of force into directional

components occurs for viscous fluid forces on slender bodies [53]. In this paper we focus on efficient locomotion with

isotropic friction and compare it to the anisotropic case. With isotropic friction, µf = µb = µt = µ, and (7) takes a

much simpler form: f(s, t) = −ρgµ∂̂tX. The simpler formula does not simplify the computational methods (much)

or the optimal motions, however. In this paper we compare motions under both isotropic and anisotropic friction, so

we continue with the more general anisotropic form (7) which applies in both cases.

We assume that the body shape Θ(s, t) is periodic in time with period T , similar to the steady locomotion of real

snakes [38]. We nondimensionalize equations (4)–(6) by dividing lengths by the snake length L, time by T , and mass

by ρL. Dividing both sides by g we obtain:

L

gT 2

∫ 1

0

∂ttxds =

∫ 1

0

fxds, (8)

L

gT 2

∫ 1

0

∂ttyds =

∫ 1

0

fyds, (9)

L

gT 2

∫ 1

0

X⊥ · ∂ttXds =

∫ 1

0

X⊥ · fds. (10)

In (8)–(10) and from now on, all variables are dimensionless. If the body accelerations are not very large, as is often

the case for robotic and real snakes [38], L/gT 2 � 1, which means that the body’s inertia is negligible. By setting

inertia—and the left hand sides of (8)–(10)—to zero, we simplify the equations considerably:∫ 1

0

fxds =

∫ 1

0

fyds =

∫ 1

0

X⊥ · fds = 0. (11)

In (11), the dimensionless force f is

f(s, t) = −µt
(
∂̂tX · n̂

)
n̂−

(
µfH(∂̂tX · ŝ) + µb(1−H(∂̂tX · ŝ))

)(
∂̂tX · ŝ

)
ŝ. (12)
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Similar models were used in [32, 38, 39, 48, 52, 54, 55], and the same model was found to agree well with the motions

of biological snakes in [38].

A) B)

C)

D)

FIG. 3: A) Frictional force F (red vector) acting on a flat plate moving uniformly with horizontal velocity v (blue vector) when the

transverse friction coefficient µt is equal to (top), greater than (middle), or less than (bottom) the forward friction coefficient µf . B)

Velocity distribution (blue vectors) on a three-link body with zero translational and rotational velocities (Ẋ0 and θ̇0) at the tail (left

endpoint). Here ∆θ1 = 39 degrees, ∆θ2 = -113 degrees, ∆̇θ1 = -0.56, and ∆̇θ2 = 1. C) Velocity distribution in the lab frame: the

translational and rotational velocities at the tail are such that the integrated force and torque due to the frictional force distribution (red

vectors shown in panel D) are zero.

Figure 3 shows examples of the force-velocity relationship expressed by (12). Panel A shows the total frictional

force F (red vector) on a flat plate with a 45-degree tangent angle and uniform horizontal velocity v (blue vector) for

three different choices of friction coefficients. At the top is isotropic friction, µf = µt = 1 (µb is not involved here since

v · ŝ > 0). With isotropic friction, f is directed opposite to v. The middle case has µf = 1 and µt = 2, increasing the

force component in the n̂-direction. The bottom case has instead µf = 2 and µt = 1, increasing the force component in

the -ŝ-direction. Panel B shows an example of a motion of a three-link body where the tail velocities ẋ0(t), ẏ0(t), and

θ̇0(t) are zero. Here ∆θ1 is decreasing and ∆θ2 is increasing in time, resulting in the nonuniform velocity distribution

(piecewise linear in s) shown by the blue vectors. The force and torque balance equations are not satisfied by this

motion. Panel C shows the same motion but with ẋ0(t), ẏ0(t), and θ̇0(t) chosen to satisfy equations (11). This adds

a counterclockwise rotation and downward and leftward translation to the body. The resulting force distribution is

shown by the red vectors in panel D. The net force and torque from this distribution are zero. Although the velocities
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are small on the first two links, the forces are large—the normalization of velocities in (12) means that small velocities

can give rise to O(1) forces. The motion in panel C is approximately one in which only the third link is moving,

rotating counterclockwise, but the small but nonzero velocities on the first two links are enough to give forces and

torques that balance those on the third link.

Instead of solving (11) for {X0(t), θ0(t)} directly, we solve them for {Ẋ0(t), θ̇0(t)}, which can be done (mostly) in

parallel, speeding up the computations. Given Θ(s, t) and ∂tΘ(s, t), we first solve (11) with θ0(t) = 0 and X0(t) = 0 to

obtain a solution {Ẋ0b(t), θ̇0b(t)} in the body frame for the unknowns {Ẋ0(t), θ̇0(t)}. We can solve for {Ẋ0b(t), θ̇0b(t)}

at all time steps in parallel, since only Θ(s, t) and ∂tΘ(s, t) are required. Then we integrate θ̇0(t) = θ̇0b(t) (equality

shown in appendix A) forward in time to obtain the tail tangent angle starting from θ0(0) = 0 (an arbitrary constant

that sets the overall trajectory direction). Then we form Rθ0(t), the matrix that rotates by θ0(t), and integrate

Ẋ0(t) = Rθ0(t)Ẋ0b(t) (equality shown in appendix A) forward in time starting from X0(0) = 0 (another arbitrary

constant) to obtain the tail position in time. Then the complete body motion is known from (1)-(3). The equalities

shown in appendix A are due to the rotational invariance of the solutions to (11)—the body velocities are rotated

when the coordinate system is rotated.

In this work we will consider only motions that involve zero net rotation over one period, i.e. θ0(1) = θ0(0). Then

the motion after one period is a pure translation, with all points on the body moving the same distance

d =

√
(x0(1)− x0(0))

2
+ (y0(1)− y0(0))

2
. (13)

The work done by the snake against friction over one period is

W =

∫ 1

0

∫ 1

0

−f(s, t) · ∂tX(s, t) ds dt. (14)

Consider a given motion Θ(s, t) with period 1. For an integer n > 1, the “sped up” motion Θ(s, nt) has period 1/n

and also period 1. The shape velocity ∂tΘ(s, t) is multiplied by n under this time rescaling, and we show in appendix

B that the body velocity is also multiplied by n: ∂tX(s, t)→ n∂tX(s, nt) (the same would not be true with nonzero

body inertia). Thus the net distance d and work W are also multiplied by n (since f in (14) involves normalized

velocity, so it is unchanged). Since d and W both scale with the speed of the motion, it makes sense to define an

efficiency as

λ =
d

W
. (15)

which is the same when a given motion is sped up or slowed down. A somewhat more general problem, not pursued

here, is to find motions that maximize d for a given W > 0, and then vary W . For small W , only a limited set of

periodic motions—those with small amplitude—can perform work W in a period. When W is large, large-amplitude

motions can perform work W , but also small amplitude motions by repeating the motion a given number of times.

Hence as W becomes larger we consider a larger class of motions that can eventually approximate essentially any

periodic motion.

To limit the number of parameters under consideration, our definition of work (and efficiency) does not include

internal energy losses, e.g. due to viscoelasticity of muscles [32, 34]. Such terms are sometimes subdominant to

external work [31].
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Next we will calculate W , d, and λ for certain examples of motions (i.e. Θ(s, t)) with both isotropic (µf = µt =

µb = 1) and anisotropic friction. Then we will focus on the isotropic case. We will examine the class of time-harmonic

three-link motions and then propose a class of smooth motions that optimize λ.

FIG. 4: Sketch of a body motion for which the kinetic friction model has no solution, so a model of static friction is used.

Equations (11) assume only kinetic friction is involved, but in reality there is also static friction. In figure 4 we show

an example of a motion for which the kinetic friction model has no solution. That is, for the Θ(s, t) corresponding to

this motion (not given mathematically here), no choice of {ẋ0(t), ẏ0(t), θ̇0(t)} can solve equations (11). Initially the

body is given by the solid line. The two flaps on the left side oscillate periodically, sweeping out a region shown by

arrows between the solid line and the dashed lines. On the outward stroke, the combined vertical force and torque on

the flaps from kinetic friction (12) is zero by symmetry, but there is a net horizontal force to the right. If we assume

isotropic friction, the horizontal force per unit length on the flaps from (12) lies between 0 and 1, since the flaps move

leftward and upward. The rest of the body cannot balance this force exactly for the following reasons. Its motion

can only be horizontal to maintain vertical force balance. Therefore, by (12) it has horizontal force per unit length

-1, 0, or +1, and a much larger length than the flaps. None of these choices gives zero net horizontal force on the

body as a whole. The problem is resolved physically by including static friction: a force density between 0 and an

order-1 constant when the velocity is zero [56]. Further examples will be given (for three-link bodies) in section V (e.g.

figure 10). In previous work with this model [38, 39, 48, 52], only kinetic friction was used for simplicity. The kinetic

friction model allows the snake motion to be computed for a wide range of Θ(s, t), such as traveling waves, without

considering static friction. For such Θ(s, t), situations like that in figure 4 do not occur. When we optimized over a

general class of smooth Θ(s, t) in [48] with the kinetic friction model only, algorithm breakdown due to nonsolvability

of the equations occurred occasionally, most often in the vicinity of isotropic friction.

Here we avoid nonsolvability of the equations and allow for static friction by using a simple modification of (12)

involving a regularization parameter δ:

fδ(s, t) ≡ −µt
(
∂̂tXδ · n̂

)
n̂−

(
µfH(∂̂tXδ · ŝ) + µb(1−H(∂̂tXδ · ŝ))

)(
∂̂tXδ · ŝ

)
ŝ, (16)

∂̂tXδ ≡
(∂tx, ∂ty)√

∂tx2 + ∂ty2 + δ2
. (17)

Here δ is small, 10−4 in our computations. We find empirically that there is little change in the results (less than 1%

in relative magnitude) for δ in the range (0, 10−4]. This is shown for three-link bodies in appendix F by comparing

values of velocity maps at different δ. When
√
∂tx2 + ∂ty2 is similar in magnitude to δ, the force density in (16)
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varies between 0 and 1 in magnitude, times the appropriate friction coefficient. Therefore we obtain a range of force

densities when velocities are very small, which approximates static friction. In addition to their simplicity, we find

empirically that expressions (16)-(17) have desirable properties including the existence of unique solutions using the

numerical algorithm described next. More specifically, for all motions shown in the work, our iterative numerical

method (described next) finds a unique solution {ẋ0(t), ẏ0(t), θ̇0(t)} to equations (11) with fδ in place of f , for a

large number of initial guesses (covering a wide range including choices very far from the solution). Similar types

of Coulomb friction regularization (sometimes involving the arctangent function) have been used for many years in

dynamical simulations involving friction [57, 58]. Many regularizations (including ours) involve a frictional force that

rises monotonically from zero at zero velocity to the kinetic friction force [59–62]. Some regularizations (e.g. [63])

allow for a nonmonotonic behavior near zero velocity, to simulate the effect of a static friction coefficient that is

greater than the kinetic friction coefficient. These regularizations have been used to study stick-slip transitions for

bodies with one degree of freedom (mass-spring systems). With a distributed frictional force density, our system is

somewhat different, but we would expect the effect of such regularizations (such as stick-slip dynamics) to be limited

to the vicinity of zero velocity. For our model, δ needs to be small compared to any physical velocities we wish to

resolve. In particular, δ should be small compared to the speed of body deformations: the typical magnitude of

∂tΘ(s, t) multiplied by the range of arc length in which it varies from zero.

III. NUMERICAL METHOD

In previous work [48], we computed solutions to equations (11) using quasi-Newton methods. Two major challenges

of such methods are finding an initial guess that is sufficiently close to a solution for convergence, and choosing a

step size in the line search that moves an iterate towards a solution. The components of fδ behave like smoothed step

functions near zero velocity. If the solution has velocities near zero (i.e. involves static friction), Newton’s method

requires a very good initial guess, within O(δ) of the solution, to converge. The behavior is similar to that for the

arctangent function, a classic example used to illustrate the limited basin of attraction for Newton’s method near a

root [64, 65].

To compute large numbers of solutions to (11) in parallel, we have developed a more robust iterative scheme that

converges with any initial guess (for all cases studied, a large number including those in this work) and does not require

a line search. The iteration is a fixed point iteration using a linearization of the regularized version of equations (11). At

time t, given Θ(s, t) and a guess {ẋn0 (t), ẏn0 (t), θ̇n0 (t)}, we compute the corresponding {∂txn(s, t), ∂ty
n(s, t), ∂tθ

n(s, t)}

(see equations (A1)-(A2) in appendix A), and then solve∫ 1

0

f̃δxds =

∫ 1

0

f̃δyds =

∫ 1

0

X⊥ · f̃δds = 0 (18)
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for a new iterate {ẋn+1
0 (t), ẏn+1

0 (t), θ̇n+1
0 (t)} where

f̃δ(s, t) ≡ −µt
(

˜̂
∂tXδ · n̂

)
n̂−

(
µfH(

˜̂
∂tXδ · ŝ) + µb(1−H(

˜̂
∂tXδ · ŝ))

)(
˜̂
∂tXδ · ŝ

)
ŝ, (19)

˜̂
∂tXδ ≡

(
∂tx

n+1, ∂ty
n+1
)√

(∂txn)
2

+ (∂tyn)
2

+ δ2
. (20)

Iterate n is used in the denominator of (20), so the new iterate {ẋn+1
0 (t), ẏn+1

0 (t), θ̇n+1
0 (t)} appears only in the

numerator, and (18)-(20) depend linearly on it (in the body frame, where X, ŝ, and n̂ are known). Hence we obtain

the new iterate {ẋn+1
0 (t), ẏn+1

0 (t), θ̇n+1
0 (t)} by solving 3-by-3 linear systems at each t (decoupled when solving in

the body frame). We observe empirically that this approach sacrifices the quadratic or superlinear convergence of

Newton-type methods for linear (geometric) convergence. In almost all cases the convergence is quite fast, however.

There are a small number of cases involving static friction where the rate of geometric convergence is slower. However

these cases are sufficiently few that even with more iterates, the cost of obtaining convergence is small. The loss of

superlinear convergence is relatively modest compared to the increased simplicity and robustness of the algorithm.

In appendix D we explain how the algorithm is used to solve for body motions given Θ(s, t). In the next section we

present body motions computed with this algorithm.

IV. EXAMPLES OF MOTIONS
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FIG. 5: Snapshots of the snake body when executing time-periodic traveling wave body deformations (over one time period, darker at later

times, labeled near the tail in numerical order). Top: Rightward-moving smoothed triangular deformation wave. Since µt = 1� 100 = µf ,

the body moves rightward (i.e. a direct wave). The body tangent angle is ≈ ±1.3 in the straight regions (Θ(s, t) = 1.3 tanh(20 sin(2π(2s−

t)))). Bottom: Leftward-moving sinusoidal deformation wave with wavelength 1 (Θ(s, t) = sin(2π(s+ t))). Since µf = 1� 100 = µt, the

body moves rightward (i.e. a retrograde wave).

We now present numerical solutions of the model described in section II. We show motions that are approximately

optimal with very anisotropic friction, and then show how these motions perform with isotropic friction.
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In figure 5A we show snapshots of the body when executing a rightward-moving smoothed triangular wave (Θ(s, t) =

1.3 tanh(200 sin(2π(1.5s− t)))) with friction much smaller in the transverse direction than in the tangential direction

(µt = 1� 100 = µf = µb). The motion is almost entirely in the transverse direction, and due to the almost vertical

body slope, the transverse direction is approximately horizontal, close to the direction of locomotion. The efficiency

λ is 0.71 here. As the deformation wave is made steeper and µf is increased, the efficiency increases towards 1.

Figure 5B shows snapshots when the anisotropy is reversed (µf = 1 � 100 = µt), so friction is much smaller in

the tangential direction (similar to snake robots that roll along the body axis [66]). Here µb = 1 but is arbitrary

since there is no backward motion. The body deforms as a sinusoidal leftward moving wave (Θ(s, t) = sin(2π(s+ t))).

The efficiency λ is 0.74, and can be made to approach 1 in the limit µt → ∞ by decreasing the amplitude and the

deformation wavelength, so motion is almost purely in the tangential direction and in the direction of motion. Since

µf = 1, the work done per unit distance traveled tends to 1. Unlike in panel A, here the wave shape (whether

sinusoidal, triangular, etc.) does not matter in the limiting case of optimal efficiency. The motions in 5A and B are

somewhat idealized versions of the direct and retrograde waves shown in figure 1 and are discussed in [48]. With large

backward friction, and µf ≈ µt ≈ 1 ratcheting motions were found to be locally optimal in that work. Now we show

that with isotropic friction, none of these motions is effective.
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FIG. 6: Snapshots of the snake body over one time period (darker at later times, labeled near the tail in numerical order) when

executing time-periodic body deformations with isotropic friction (µt = µf = µb = 1). A) Traveling wave with a smoothed triangular

body shape (same as in figure 5A but with Θ(s, t) = 1.3 tanh(20 sin(2π(1.5s − t))), slightly more smoothed for numerical accuracy). B)

Traveling wave with a sinusoidal tangent angle profile (same as in figure 5B). C) Standing wave with a sinusoidal tangent angle profile,

Θ(s, t) = sin(2πs) sin(2πt).

In figure 6A and B we show snapshots from the same motions as in figure 5A and B but with isotropic friction

(µf = µt = µb = 1). Panel C shows a standing wave motion (Θ(s, t) = sin(2πs) sin(2πt)), similar to those which were
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found to be effective with large backward friction in [48]. In all three cases the work done against friction is 0.4–0.6

but the distance traveled is less than 0.005, about the level of numerical error.

V. THREE-LINK TIME-HARMONIC MOTIONS

To increase our intuition about locomotion in the isotropic regime, we now study the efficiency of a broad range

of motions. The space of time-periodic motions Θ(s, t) is infinite-dimensional, so to make the problem tractable we

look at a finite-dimensional subspace involving three-link bodies. These have been studied extensively in locomotion

problems in the past (in a viscous fluid at zero Reynolds number) [18, 20, 67, 68]. The optimally efficient motion

found in [20] for zero-Reynolds-number swimming was close to a time-harmonic motion. Furthermore, Dai et al.

found that optimal swimming in sand (which may behave like a fluid or solid in different settings) resembles optimal

low-Reynolds-number swimming [69]. In previous work we studied the motions of two-link bodies with various friction

coefficients, and of three-link bodies with the anisotropic friction coefficients measured from real snakes [39] and found

locally optimal motions [52]. Anisotropy played an important role in the above studies. Now, with an improved model

involving static friction and an improved numerical method, we compute the full range of motions of three-link bodies

with isotropic friction, when the joint angles are time-harmonic functions.

The bodies’ shape at an instant is described by only two joint angles (∆θ1, ∆θ2; see figure 2) so the possible motions

are a set of paths in a two-dimensional region shown in figure 7. The region is a square with sections removed at the

upper right and lower left corners, where the body self-intersects (at the upper right corner, five bodies are shown

corresponding to configurations along the boundary of this section).

Within this space of paths, we consider a low-dimensional subspace—motions that have a single frequency (i.e.

time-harmonic motions)—and are symmetric about the line ∆θ1 = −∆θ2. This symmetry guarantees no net rotation

over a period (see appendix C), so the long-time trajectory of the body is a straight line rather than a circle. Such

paths are described by

∆θ1(t) = A0 +A1 cos(2πt) +B1 sin(2πt), ∆θ2(t) = −A0 −A1 cos(2πt) +B1 sin(2πt), 0 ≤ t ≤ 1. (21)

The three parameters A0, A1, and B1 describe an ellipse with center (A0,−A0) and principal semiaxes A0 and |B0|

(figure 7). We assume A0 ≥ 0 without loss of generality, so the motion starts in the lower right portion instead of the

upper left portion of the ellipse (but the same path is traversed in either case). The sign of B1 gives the direction

(clockwise or counterclockwise) around the path. Changing the sign of B1 reverses time and thus reverses the motion

(when µb = µf , as here), giving the same efficiency.

We compute motions over the region of (A0, A1, B1)-space giving admissible paths (ellipses that lie in the region of

figure 7). To solve a large number of motions quickly, it is efficient to first compute a velocity map (or “connection”

[52, 70, 71])—a map from the shape variables (∆θ1, ∆θ2) and their velocities (∆̇θ1, ∆̇θ2) to the body velocities at

the tail {ẋ0(t), ẏ0(t), θ̇0(t)}, from which we can reconstruct the body motion at each time (see equations (A1)-(A2)

in appendix A) and thus the efficiency. The velocity maps are shown explicitly in figure 8. They are computed

with the iterative method in section III. Given these maps, the body motion for all possible (A0, A1, B1)—and
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FIG. 7: A schematic diagram of an elliptical path in the space of non-self-intersecting configurations (∆θ1, ∆θ2) for a three-link body,

symmetric about the line ∆θ1 = −∆θ2. A0 is the average of ∆θ1 over the ellipse and
√

2A1 and
√

2|B1| are the semi-major and semi-minor

axes of the ellipse. The sign of B1 gives the direction in which the path is traversed.

corresponding (∆θ1, ∆θ2, ∆̇θ1, ∆̇θ2)—are then computed rapidly, in parallel, by interpolation of the data in figure

8, and integration in time. The more time-consuming iterative method is thus performed at a smaller set of points, a

653-grid (≈ 3×105 data points) in the space of all possible (∆θ1, ∆θ2, ∆̇θ1, ∆̇θ2), and the less expensive interpolation

and time-integration are performed on the larger set of points spanning (A0, A1, B1) and time—about 107 points for

the data shown subsequently. In appendix E we list the steps needed to solve for time-harmonic motions of three-link

bodies using the velocity maps.

Multiplying (∆̇θ1, ∆̇θ2) by a constant simply multiplies {ẋ0(t), ẏ0(t), θ̇0(t)} by the same constant (see (B2) in

appendix (B)), so instead of computing {ẋ0(t), ẏ0(t), θ̇0(t)} over the four-dimensional space (∆θ1, ∆θ2, ∆̇θ1, ∆̇θ2)

it is enough to compute the tail velocities over two three-dimensional spaces (∆θ1, ∆θ2, ∆̇θ1) with |∆̇θ1| ≤ 1 and

∆̇θ2 = 1; and (∆θ1, ∆θ2, ∆̇θ2) with ∆̇θ1 = 1 and |∆̇θ2| ≤ 1, and then obtain the tail velocities at other combinations

of (∆̇θ1, ∆̇θ2) by rescaling them into one of these three-dimensional spaces (if µb 6= µf two additional maps would be

needed, at ∆̇θ1 = −1 and ∆̇θ2 = −1).

In figure 8 we show the two sets of velocity maps used to construct {ẋ0(t), ẏ0(t), θ̇0(t)} for any values of body shape

variables and their velocities when ∆̇θ1 = 1 (top row) and ∆̇θ2 = 1 (bottom row). For each map, the values of ẋ0(t),
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FIG. 8: Contour plots showing the three components of the velocity map (ẋ0, ẏ0, and θ̇0) as functions of body shape and motion

parameters (top row) ∆θ1, ∆θ2, and ˙∆θ2 when ˙∆θ1 = 1 or (bottom row) ∆θ1, ∆θ2, and ˙∆θ1 when ˙∆θ2 = 1.

ẏ0(t), and θ̇0(t) are computed on a 653 grid in ∆θ1–∆θ2–(∆̇θ1 or ∆̇θ2) space. With these maps we then compute the

solutions {ẋ0(t), ẏ0(t), θ̇0(t)} for any choice of (∆θ1,∆θ2, ∆̇θ1, ∆̇θ2) by interpolation. The data are shown as contours

in six slice planes, which shows how solutions vary in the two horizontal dimensions (∆θ1,∆θ2) and more roughly

(with only six slice planes), in the vertical direction (∆̇θ1 or ∆̇θ2). The first key point about the maps is that for

three-link bodies, it is possible to visualize all the data needed to reconstruct their motion in a concise form, unlike for

bodies with more degrees of freedom. One can identify features in the maps that could allow for further simplification

of the models—the adjacent slice planes in figure 8 often have a similar contour patterns despite the large change

(0.2) in the vertical axis parameter between slices—but we do not pursue this here for brevity. The second key point

is that the contours are relatively smooth. Even though their shapes are not simple (due to the nonlinearity of the

frictional forces), the maps show that interpolation is likely to be successful with a moderate number of data points

(we find 65 in each dimension is sufficient) and this degree of smoothness in the data. We have observed from more

extensive data that {ẋ0(t), ẏ0(t), θ̇0(t)} are apparently continuous with bounded derivatives, but that their derivatives

change sharply where the regularization parameter is important, i.e. where static friction plays a role.

Static friction is potentially important when the speed (‖∂tX‖) is of the order of the regularization parameter

(δ = 10−4) over one or more entire links. If instead small velocities do not occur, or occur only at discrete points on

the body, δ has only a small effect on the net forces and torque. In figure 9 we show regions in the velocity map spaces

where static friction is important. Although the regions are small, they are involved in the motions that optimize
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FIG. 9: Regions in the space of body shape and motion parameters where static friction regularization model is involved. A) and B)

Contours show regions where the body speed lies between 0 and 10−3 over at least one of the three links, in the space of (A) ∆θ1, ∆θ2,

and ∆̇θ2 when ∆̇θ1 = 1 or (B) ∆θ1, ∆θ2, and ∆̇θ1 when ∆̇θ2 = 1. The red and violet boxes show two examples of contour planes in 2D

views at right. C, D, E, and F) Representative examples of body shapes and motions (labeled in A) where static friction regularization

model is involved. Distributions of body velocities (blue) and frictional forces (red) are shown.

efficiency, described in the next section. The regions can be classified into a small number of cases. Typical examples

are shown in panels C–F, with corresponding labels in panel A. Case C occurs when ∆θ1 and ∆θ2 are approximately

equal to π/2 or −π/2. The forces from the outer links are nearly equal and opposite, but a small net force and torque

is needed from the middle link to balance those on the outer links. Case D represents a broad region where one of the

link angle velocities (∆̇θ1 or ∆̇θ2) is zero and the other link angle is bent sharply (with magnitude between π/2 and

π) and has nonzero velocity. Case E represents a smaller region where one of the link angles has a small but nonzero

velocity. Case F occurs when the link angles have magnitudes near π and opposite signs. To understand why static

friction is involved we look at cases C and F more closely.

Figure 10A and B show symmetric examples similar to figures 9C and 4. The outer links provide forces that are

nearly opposite and in the vertical direction, but have a small horizontal component. Due to the top-bottom symmetry

of the configuration, the velocity of the middle link can only be horizontal for the vertical forces to balance. Without

regularization, the horizontal force per unit length on the middle link could only be 0 or ±1, which cannot balance the

small horizontal forces from the outer links. Regularization allows for a smaller horizontal force with a nearly static

middle link, like the force from static friction. Figure 10C shows a symmetric version of figure 9F—symmetric with

respect to reflection through the body center. The outer links provide forces that are equal and opposite, but give a

small net torque. To provide a torque with zero net force, the middle link has a purely rotational motion. Without

regularization the force density on the middle link could only be 0, or -1 on one half and 1 on the other, giving a net
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A) B) C)

FIG. 10: Examples of symmetric body motions where the static friction regularization model is involved. Distributions of body velocities

(blue) and frictional forces (red) are shown.

torque of 0 or ±1/36 (since the link has length 1/3). Regularization allows a different torque to be obtained with

a nearly static middle link, like that due to static friction. The other cases in figure 9 are more difficult to explain

because they are not symmetric.

We now compute the distance traveled, work done, and their ratio λ, the efficiency, for the elliptical trajectories

shown in figure 7, parametrized by A0, A1, and B1. To aid our presentation we begin by showing in figure 11 the

results in the two-parameter space with A0 = 0. These are for motions that are symmetric with respect to the line

∆θ1 = ∆θ2, but there is no reason a priori to prefer such motions.

FIG. 11: Plots of (A) the distance traveled per period, (B) the work done against friction per period, and (C) the efficiency λ (dis-

tance/work) for elliptical paths with A0 = 0.

Figure 11A shows that the distance traveled per period is largest for a localized region of motions at the limit of

self-contact. The dark blue region beyond the outer boundary of the shaded region gives coefficients for motions that

involve self-contact. The distance is nearly zero for motions near the line A1 = B1, i.e. circular trajectories. These

trajectories approximate the traveling-wave motions shown in the previous section, and are effective for low Reynolds

number swimming [18, 20, 67, 68] given the 2:1 drag anisotropy of slender swimming bodies [47]. The line A1 = 0

corresponds to standing wave motions similar to that in the previous section, and results in zero distance traveled
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since the motion is the same but the trajectory is reversed under time reversal. The line B1 = 0 gives standing wave

motions that are antisymmetric about the body midpoint but also unchanged under time reversal, and thus also give

zero net distance traveled.

Panel B shows the work done per period, which has a much simpler distribution—it is nearly radially symmetric.

Larger coefficients A1 and B1 are clearly correlated with larger sweeping motions of the links. The work done has no

obvious relationship with the distance traveled (A), because the net translation (0.261 body lengths at maximum) is

only a small contribution to the total motion in most cases. The efficiency (C) has a pattern similar to the distance,

though of course smaller-amplitude motions are weighted more favorably. Nonetheless, the most efficient motion is

close to the distance-maximizing motion, and has efficiency 0.259. The quantities are invariant when the sign of B1

is changed, because the motion is simply reversed in time.

In figure 12A-C we show the same quantities but with A0 varied over its full range. At the middle of the A0 axis

is A0 = 0, so there the contour plots (in red boxes) show the same data as in the previous figure. When A0 = 0, the

largest distance is achieved at a point with A1 > B1. As A0 increases or decreases (moving up or down the vertical

axis), another local maximum occurs, this one having B1 > A1. In panel B, the work maintains an approximate

radial symmetry, and does not depend strongly on A0 (which varies the offset bias but not the sweeping amplitude

of the links’ motions). In panel C, the efficiency has three local maxima. The global maximum is found at A0 = 0,

has efficiency 0.259, and is labeled ‘D’ (here and in the previous figure). The motion is shown in panels D and E.

The second best local optimum is found at A0 = 1.1, has efficiency 0.207, and is labeled ‘F’. The motion is shown in

panels F and G. The third local optimum (not shown) has A0 = 2.5, efficiency 0.094. In panel D, the snapshots of the

globally optimal motion are arranged in two rows: first half-period (top) and second half-period (bottom), for which

the body shape is a mirror image of that in first half-period (Θ has opposite sign). The snapshots are shown at equal

time intervals during the half-periods (time is labeled at the bottom). At the top are four colored lines showing the

speeds of the four endpoints of the three links versus time for the first half-period. We see that at two times, 0.07 and

0.43, three of the four endpoints (and two of the three links) are almost static. Here the static friction regularization

is involved in the force balance. At t = 0.07, one link extends rightward while the other two remain fixed. At t =

0.43, one link is retracted rightward towards the other two. The snapshots are shown at their true locations in the lab

frame in panel E; the body moves about 0.26 body lengths. For the second local optimum, the snapshots are shown

in panel F, in time increments of 0.05 over an entire period. Near t = 0.33 and 0.67, two of the links are almost static,

while the third link moves in the direction of locomotion. The motion is shown in the lab frame in panel G. The

distance traveled is about 37% of that in panel E and the work done is about 47%. Both of the optimal motions can

be described as follows: One of the outer links is rotated forward (i.e. in the direction of locomotion), with the other

two mostly static (for t = 0.38-0.5 in D, 0.2-0.5 in F), then the other outer link is rotated forward with the other two

mostly static (from t = 0-0.12 in D, 0.5-0.8 in F), then the middle link is moved, which requires the two outer links to

rotate (from t = 0.12-0.38 in D, 0.8-1 and 0-0.2 in F). The motions are roughly speaking similar to concertina motion,

where the snake moves part of its body (like one of the outer links) forward, pushing off of (or pulling towards) the

rest of the body (like the other two links) that is held fixed by static friction, forming an “anchor” [1, 3, 72]. Because
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FIG. 12: Contour plots of (A) the distance traveled, (B) the work done against friction, and (C) the efficiency λ (distance/work) for

elliptical paths with various A0. D) For the most efficient symmetric elliptical body motion (labeled ‘D’ in panel C and Fig. 11C), the

top four lines show the speeds of the four link endpoints (from tail to head: black, blue, red, and green). Below are snapshots of the body

during the first (top row) and second (bottom row) half-periods. E) A subset of snapshots from panel D in the lab frame. F) For the

motion giving the second best local optimum in efficiency (labeled ‘F’ in panel C), the same data as in panel D. G) A subset of snapshots

from panel F in the lab frame.

the body has only three links, moving the middle link forward requires all three links to move and rotate, so this part

of the motion is somewhat distinct.
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VI. OPTIMAL MOTIONS

We now look for more general smooth motions that can achieve the highest possible efficiency for any inextensible

body, not necessarily one with three links. Because computational optimization is difficult in the isotropic regime

[48], here we instead construct a theoretical solution that was inspired by the concertina-like motions in the previous

section. Although the three-link optima are the inspiration for the theoretical solution, it is not easy to approximate

the theoretical solution with a superposition of low-frequency and three-link modes (or low-degree polynomials as in

[48]), so here we begin with a theoretical construction and then verify its optimality computationally.

First, we show that an upper bound on efficiency for any motion is the reciprocal of the smallest friction coefficient

(1 in the isotropic case). The distance traveled by the body (13) is the same for all s since the body moves as a

translation without rotation after one period. Thus we can write

d =

∥∥∥∥∫ 1

0

∫ 1

0

∂tX(s, t)dsdt

∥∥∥∥ . (22)

The work done against friction is (14) with f from (7). Let us ≡ ∂tX · ŝ and un ≡ ∂tX · n̂. We have

−f(s, t) · ∂tX(s, t) =
µtu

2
n + µsu

2
s√

u2s + u2n
(23)

where

µs(s, t) ≡
(
µfH(∂̂tX · ŝ) + µb(1−H(∂̂tX · ŝ))

)
. (24)

Therefore

−f(s, t) · ∂tX(s, t) ≥ min(µt, µf , µb)
√
u2s + u2n = min(µt, µf , µb)‖∂tX(s, t)‖ (25)

and

W ≥ min(µt, µf , µb)

∫ 1

0

∫ 1

0

‖∂tX(s, t)‖dsdt ≥ d min(µt, µf , µb). (26)

so

λ =
d

W
≤ 1

min(µt, µf , µb)
. (27)

This upper bound corresponds to a body that translates uniformly in the direction of lowest friction. Such a motion

cannot have zero net force for nonzero friction, but we now show simple motions that satisfy the equations of motion

and saturate this upper bound in the limit of a small parameter, for any choice of friction coefficients, including the

isotropic case. These are concertina-like motions, in the sense that part of the body forms an anchor, remaining static

due to static friction, allowing the rest of the body to be pushed or pulled forward.

We first assume isotropic friction. The body is initially straight (see figure 13A, top). The motion has three stages.

In stage one, a straight segment in the rear half of the body but near the midpoint (between the circle and triangle

in figure 13A) forms a “bump.” It deforms from straight to curved, but keeping the tangent angles at its endpoints

unchanged, so the endpoints get closer. This pulls the rear of the body forward, because the front portion (front half)
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FIG. 13: Motions and performance of optimally efficient crawlers. A) Snapshots of the crawler during the first half-period of motion.

The circle and square are the endpoints of the bump region, and the triangle is the body midpoint. B) Snapshots during the second half

period. C) Plot of work done against friction over one period outside the bump region (“Workouter”, red), that done inside the bump

region (“Workinner”, blue), the total work (black), and the distance covered in one period (green), versus the bump region width parameter

ε. D) The efficiency λ = Work/Distance versus the bump region length ε. E) Snapshots of an efficient (symmetric) crawler when µt is the

smallest friction coefficient.

of the body (the “anchor”) is static due to static friction. If the front portion of the body slides with an O(1) velocity,

the rear portion of the body is not large enough to provide a balancing force. Therefore, the front portion of the

body’s velocity is O(δ). At the end of stage one (red body in panel A), the bump reaches its maximum amplitude.

In stage two (from the red body to the blue body), the bump travels forward along the body, to the region between

the triangle and the square. The blue shape is thus a mirror image of the red shape. Here the body endpoints do

not move, because the region away from the bump (left of the circle and right of the square) is an anchor. Stage

three (from the blue body to the last straight configuration in A) is essentially the reverse of stage one—the bump

flattens out, pushing the region in front of the square forward, with the back region of the body fixed because now

it is an anchor. The net result is that the body has moved rightward some amount (which can be seen comparing

the body endpoints over the sequence of motions). In addition to moving rightward, the body undergoes a much

smaller vertical displacement and rotation because the bump is upward. To achieve a motion with zero net rotation

(and zero net vertical displacement), we then perform the mirror image of the motion (panel B) for 0.5 ≤ t ≤ 1, with
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Θ(s, t+ 0.5) = −Θ(s, t). Then we see that the mirror image motion in the lab frame is a solution:

θ̇0(t+ 0.5) = −θ̇0(t), ∂tθ(s, t+ 0.5) = −∂tθ(s, t), (28)

ẏ0(t+ 0.5) = −ẏ0(t), ∂ty(s, t+ 0.5) = −∂ty(s, t), (29)

ẋ0(t+ 0.5) = ẋ0(t), ∂tx(s, t+ 0.5) = ∂tx(s, t). (30)

We have the same horizontal displacement but the vertical displacement and rotation are reversed. Panel B shows

the snapshots in the simulation of the second half of the motion (at the beginning/end of the three stages only). The

length of the bump (half the arc-length distance from the circle to the square) is a control parameter ε that we can

shrink to zero. We show now that the distance traveled is proportional to ε, and the work done can be decomposed

into two parts. The work done inside the bump region (left of the circle and right of the square) is proportional to

ε2 (blue squares in panel C). The velocities in the bump region ∼ ε, the frictional force density ∼ 1, and the bump

region length ∼ ε, so by (14)

Winner ∼
∫ 1

0

∫ 0.5+ε

0.5−ε
1 · εdsdt = O(ε2). (31)

The work done outside the bump region (Wouter, red crosses in C) approaches the distance traveled (green triangles)

as ε → 0, and both are proportional to ε. Wouter is approximately the unit frictional force density times the body

speed in the region outside the bump multiplied by the length of that region ∼ 1:

Wouter ∼
∫ 1

0

∫
{0≤s≤0.5−ε}∪{0.5+ε≤s≤1}

1 · ∂tx(s, t)dsdt ∼ d. (32)

Adding (31) and (32) we have λ = 1+O(ε). This is shown in panel D for the motions in panels A-B. When ε decreases

below 0.1, we find it is necessary to decrease the numerical regularization parameter δ from 10−4 to 10−6 or 10−8 so

it does not affect the results (i.e. so δ is much smaller than the typical speed of body deformation ≈ ε).

Now assume the friction coefficients are anisotropic. If the smallest friction coefficient is µf , then the head and tail

should be at the right and left ends in panels A-B. If instead µb is smallest, the head and tail should be reversed.

If instead µt is the smallest friction coefficient, then we adopt the motion in panel E. The body is bent into an

approximate rectangle with two bump regions, and now the outer regions are oriented transverse to the direction of

locomotion, to take advantage of the lower friction with this orientation. By symmetry, net forces and torques are

zero when the net motion is solely in the horizontal direction (the mirror image stroke in panel B is not required

now). The stages of motion are essentially the same as in panel A, but for brevity, in panel E the snapshots are shown

only at the beginning/end of each stage. With anisotropic friction, the above estimate for Winner (31) is multiplied

by max(µt, µf , µb) to obtain an upper bound, while that for Wouter (32) is multiplied by min(µt, µf , µb). The global

upper bound for λ (27) is achieved in the limit ε→ 0.

We have assumed an inextensible body. For an extensible body, a one-dimensional version of the above motion is

obtained by projecting the body density distribution at each instant onto the horizontal axis. Similar longitudinal

motions are used by certain soft-bodied animals (e.g. worms) that alternately contract and extend longitudinal

muscles [73]. Snakes, however, are nearly inextensible due to their backbone [35].
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VII. CONCLUSION

In this work we have studied the locomotion of bending and sliding bodies under isotropic friction. In [48] we found

that it is difficult to compute optimal motions in this regime with a model that uses kinetic friction. Therefore, in

this paper we developed a regularization approach to handle cases where static friction is needed to find a solution.

The previous optimization study [48] was also hampered by nonrobustness and occasional breakdown of the nonlinear

solver for the body motion, particularly in the vicinity of isotropic friction. Therefore, in this paper we introduced a

fixed-point iteration method that can compute the body tail velocities robustly from all initial guesses without the need

for a line search method. We first used the method to show that the most efficient motions with anisotropic friction—

traveling wave deformations—lead to little or no locomotion with isotropic friction. Next, we used the method to

compute the velocity map for the three-dimensional body shape and shape velocity spaces of a three-link crawler.

We used these maps to obtain a general picture of the locomotion efficiency landscape for the 3D space of coefficients

giving symmetrical elliptical paths in the space of the body link angles. We found that static friction regularization is

involved in small (but important) regions of the velocity map and described their necessity in symmetric cases. The

distance traveled and efficiency are very small for motions corresponding to standing waves or traveling waves. The

efficiency has three local maxima, and the top two (0.21 and 0.26) occur at motions that are similar to concertina

locomotion—a sequence of motions in which one of the links moves forward while the other two links remain almost

motionless.

We then proposed a class of concertina-like motions that saturate the upper bound for efficiency for any choice of

friction coefficients. The optimal smooth motions of section VI require short wavelengths ∼ ε (and large frequencies

∼ 1/ε to travel an O(1) distance), which explains why the numerical optimization using 45 or 190 modes in [48] did

not converge to such motions. It is interesting, however, that in the optimal time-harmonic motions with only three

links, concertina-like motions can be seen. Although static friction arises in the optimal motions shown here, we

believe that solutions with similar motions—and similar efficiencies—may exist with only the kinetic friction model

(i.e. without regularization). In other words, the motion may be altered so that instead of remaining static, the

“anchor” portion of the body slides slowly but has enough kinetic friction to balance that on the remainder of the

body.
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Appendix A: Invariance of body velocities under translation and rotation

We take time derivatives of (1)-(3), using vector notation for position:

∂tθ(s, t) = θ̇0(t) + ∂tΘ(s, t). (A1)

∂tX(s, t) = Ẋ0(t) +

∫ s

0

(
θ̇0(t) + ∂tΘ(s, t)

)
n̂ds′. (A2)

Given Θ(s, t) and ∂tΘ(s, t), we first solve (11) with θ0(t) = 0 and X0(t) = 0 to obtain a solution {Ẋ0b(t), θ̇0b(t)} in the

body frame for the unknowns {Ẋ0(t), θ̇0(t)} in (A1)-(A2). The solution {Ẋ0b(t), θ̇0b(t)} represents the tail velocity if

the body is rotated by −θ0(t) so that the tail has zero tangent angle. The position X and tangent and normal vectors

ŝ, n̂ in the lab frame are simply those in the body frame rotated by θ0(t). If we set θ̇0(t) = θ̇0b(t) and let Ẋ0(t) be

Ẋ0b(t) rotated by θ0(t), then we find that the lab frame velocity ∂tX in (A2) is the body frame velocity rotated by

θ0(t). Hence f in (12) is that in the body frame rotated by θ0(t) and X⊥ · f is unchanged (this dot product and those

in f are unchanged by the rotation)—so both f and X⊥ · f still integrate to zero under the transformation from the

body to lab frame. To summarize: if {Ẋ0b(t), θ̇0b(t)} solve (11) with {X0(t), θ0(t)} equal to zero (i.e. in the body

frame), then Ẋ0(t) = Rθ0(t)Ẋ0b(t) and θ̇0(t) = θ̇0b(t) solve (11) with general {X0(t), θ0(t)}, when the body is also

rotated by θ0(t) (i.e. the body is in the lab frame). Here

Rθ0(t) =

cos θ0(t) − sin θ0(t)

sin θ0(t) cos θ0(t)

 , (A3)

the matrix that rotates by θ0(t).

Appendix B: Rescaling of motions under rescaling of time

When the body shape motion Θ(s, t) is uniformly sped up or slowed down—i.e. when

Θ(s, t)→ Θ(s, ct), ∂tΘ(s, t)→ c∂tΘ(s, ct) (B1)

for some constant c > 0, then the force and torque balance equations are satisfied when the tail motion undergoes the

same scaling:

{x0(t), y0(t), θ0(t)} → {x0(ct), y0(ct), θ0(ct)}, {ẋ0(t), ẏ0(t), θ̇0(t)} → c{ẋ0(ct), ẏ0(ct), θ̇0(ct)} (B2)

and so does the overall body motion:

X(s, t)→ X(s, ct), ∂tX(s, t)→ c∂tX(s, ct). (B3)

We can see this by first plugging the transformed quantities into (A1)-(A2), to verify that those equations are still

obeyed. We also have ∂̂tX(s, t) → ∂̂tX(s, ct), and so the frictional force f(s, t) → f(s, ct) by (12), assuming c > 0

(note that ŝ(s, t) → ŝ(s, ct) and n̂(s, t) → n̂(s, ct)) and the torque density X⊥ · f has the same transformation. If

µb = µf then the H(∂̂tX · ŝ) term drops out of f in (12) and the same scaling holds for c < 0 also (f changes sign

uniformly in this case). If instead µb 6= µf , then the solutions are not simply time-reversed when the shape change is

time-reversed.
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Appendix C: Zero net rotation for motions symmetric with respect to ∆θ1 = −∆θ2.

We show here that motions of three-link bodies that are symmetric with respect to the line ∆θ1 = −∆θ2 (e.g.

figure 7) result in zero net rotation over a period. For such motions we can assume (as in section V) that the body

motion starts on the line ∆θ1 = −∆θ2 in configuration space (by shifting time by a constant if necessary), so the

body lies on this line at t = 0 and 1, and at t = 1/2 by the symmetry of the path. The symmetry implies that

the link angle differences at t and 1 − t are related by ∆θ1(t) = −∆θ2(1 − t) and ∆θ2(t) = −∆θ1(1 − t). Thus if

the three links at time t have tangent angles {θ0(t), θ0(t) + ∆θ1(t), θ0(t) + ∆θ1(t) + ∆θ2(t)} then those at 1− t have

tangent angles {θ0(1− t), θ0(1− t)−∆θ2(t), θ0(1− t)−∆θ2(t)−∆θ1(t)}. This implies that θ(s, t)− θ(1− s, 1− t) =

θ0(t) + ∆θ1(t) + ∆θ2(t)− θ0(1− t), which is independent of s. In other words, the body at time 1− t has the same

shape (tangent angle) as that at time t, up to an overall rotation, when the body at time 1 − t is viewed from the

opposite end—starting at s = 1 and ending at s = 0. If we define a new coordinate u = 1 − s, we can describe the

tangent angle at time 1− t in a body frame running from u = 0 to u = 1 using the function Θu(u, t) as

θ(u, 1− t) = θu=0(1− t) + Θu(u, 1− t). (C1)

We have Θ(s, t) = Θu(1− s, 1− t) and ∂tΘ(s, t) = −∂tΘu(1− s, 1− t), so in the body frames the two shapes are the

same and their rates of change are opposite. Therefore, following the solution procedure described below equations

(A1)-(A2), the solutions for the rotation rates at s = 0 and u = 0 are opposite (if µb = µf ):

θ̇s=0,b(t) = −θ̇u=0,b(1− t) (C2)

Here b denotes body frame, but these are also the rotation rates in the lab frame as discussed below equations

(A1)-(A2):

θ̇s=0(t) = θ̇s=0,b(t) = −θ̇u=0,b(1− t) = −θ̇u=0(1− t). (C3)

We can use these results to compute the net rotation from t = 0 to t = 1 (over a period), θs=0(1)− θs=0(0). Since the

body has ∆θ1 = −∆θ2 at t = 0, 1/2, and 1, at those times the tangent angle at u = 0 (in the direction of increasing

u) is that at s = 0 plus π:

θs=0(1)− θs=0(0) = θu=0(1) + π − θu=0(1/2) + θu=0(1/2)− θs=0(0) (C4)

= θu=0(1)− θu=0(1/2) + θs=0(1/2)− θs=0(0) (C5)

=

∫ 1

1/2

θ̇u=0(t)dt+

∫ 1/2

0

θ̇s=0(t)dt (C6)

=

∫ 1

1/2

−θ̇s=0(1− t)dt+

∫ 1/2

0

θ̇s=0(t)dt (C7)

=

∫ 0

1/2

θ̇s=0(w)dw +

∫ 1/2

0

θ̇s=0(t)dt (C8)

= 0, (C9)

where w = 1 − t. In words, whatever rotation occurs from t = 0 to 1/2 is undone from 1/2 to 1, when we view the

body from the opposite end.
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Appendix D: Algorithm to solve for body motions given Θ(s, t) (e.g. smooth body motions in figures 5, 6, and

13)

Inputs:

• Body shape functions (Θ(s, t), Θ̇(s, t)) for all t ∈ [0,∆t, . . . , 1],

• Body position in body frame (Xb(s, t) =
∫ s
0

(cos Θ(s′, t), sin Θ(s′, t))ds′)

• Initial guess (arbitrary, e.g. zero) for tail velocities {ẋ00(t), ẏ00(t), θ̇00(t)}

• Tolerance η � 1.

Output: Body position in lab frame (X(s, t)).

1. For n = 0, 1, 2, . . .

At all t ∈ [0,∆t, . . . , 1] (in parallel),

(a) Compute ∂tX
n(s, t) using (A2) with {ẋn0 (t), ẏn0 (t), θ̇n0 (t)} and n̂ in the body frame.

(b) Solve the three equations (18) for the three unknowns {ẋn+1
0 (t), ẏn+1

0 (t), θ̇n+1
0 (t)} by Gaussian elimination

(the equations are linear in the three unknowns).

(c) Stop when the norms of the integrals in (18) with ∂tX
n changed to ∂tX

n+1 (i.e. the nonlinear residuals at

iterate n+ 1) are less than η.

End

2. The computed rotational tail velocity in the body frame is θ̇0b(t) = θ̇n+1
0 (t), the same as the rotational tail

velocity in the lab frame θ̇0(t). Integrate it to obtain θ0(t).

3. The computed Ẋ0b(t) is Ẋn+1
0 (t). Integrate Ẋ0(t) = Rθ0(t)Ẋ0b(t) to obtain X0(t).

4. Integrate (A2) to obtain X(s, t).

Appendix E: Algorithm to solve for time-harmonic motions of three-link bodies using interpolation (e.g.

figures 8-12)

Inputs:

• A discrete array of values of (∆θ1,∆θ2) ∈ feasible region (figure 7), and a discrete array of values of ∆̇θ1 (or

∆̇θ2) ∈ [−1, 1] and ∆̇θ2 (or ∆̇θ1 respectively) = 1

• A discrete array of values of the coefficients (A0, A1, B1) in (21).

Outputs:

• Computed velocity maps

(∆θ1,∆θ2, ∆̇θ1)→ {ẋ0(t), ẏ0(t), θ̇0(t)} with ∆̇θ2 = 1 (E1)

(∆θ1,∆θ2, ∆̇θ2)→ {ẋ0(t), ẏ0(t), θ̇0(t)} with ∆̇θ1 = 1 (E2)
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• Body position in lab frame (X(s, t))

1. At all points on the (∆θ1, ∆θ2, ∆̇θ1/2) grid in parallel, form Θ(s) = ∆θ1H(s − 1/3) + ∆θ2H(s − 2/3) and

Θ̇(s) = ∆̇θ1H(s− 1/3) + ∆̇θ2H(s− 2/3). Use these in place of Θ(s, t), Θ̇(s, t) in step 1 (the iterative algorithm)

in appendix D, to compute {ẋ0(t), ẏ0(t), θ̇0(t)}. These are the values of the velocity maps.

2. Given a set of link angle motions, e.g. of the form (21) for a set of (A0, A1, B1) values, use interpolation within

the velocity maps to find {ẋ0(t), ẏ0(t), θ̇0(t)} that correspond to each choice of (A0, A1, B1) and t.

3. Perform the integrations in steps 2-4 in appendix D with {ẋ0(t), ẏ0(t), θ̇0(t)} to obtain X(s, t) for each choice of

(A0, A1, B1) .

Comment: Using this algorithm on a single processor, with ∆t = 0.01 and a grid with spacing π/20 in (A0, A1,

B1), the computations needed to produce the data in figure 12 require tens of seconds using the velocity map and

interpolation. Without the velocity map and only the algorithm in appendix D, the time is several minutes.

Appendix F: Effect of δ regularization

FIG. 14: Comparison of values of {ẋ0(t), ẏ0(t), θ̇0(t)} in velocity maps (E1) and (E2) for δ = 0.001 (v3), δ = 0.0001 (v4), and δ = 10−5

(v5).

Figure 14 compares the values of the velocity maps for δ = 0.001 (v3), δ = 0.0001 (v4), and δ = 10−5 (v5). Each

vi is a vector containing the values of {ẋ0, ẏ0, θ̇0} for each choice of (A0, A1, B1) in a 653 grid, for the velocity maps

(E1) and (E2), concatenated. Because there are three values {ẋ0, ẏ0, θ̇0} at each of the 653 points and two velocity

maps, each vi has length 6× 653.

The difference |v4−v5| is about
√

10 less than |v3−v4| at each index, indicating that results converge as
√
δ. The

maximum value of |v4 − v5| is about 0.0025, indicating the magnitude of error in v4, the velocity map values used in
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