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Stochastic oscillators play a prominent role in different fields of science. Their simplified descrip-
tion in terms of a phase has been advocated by different authors using distinct phase definitions
in the stochastic case. One notion of phase that we put forward previously, the asymptotic phase

of a stochastic oscillator, is based on the eigenfunction expansion of its probability density. More
specifically, it is given by the complex argument of the eigenfunction of the backward operator cor-
responding to the least negative eigenvalue. Formally, besides the ‘backward’ phase, one can also
define the ‘forward’ phase as the complex argument of the eigenfunction of the forward Kolomogorov
operator corresponding to the least negative eigenvalue. Until now, the intuition about these phase
descriptions has been limited. Here we study these definitions for a process that is analytically
tractable, the two-dimensional Ornstein-Uhlenbeck process with complex eigenvalues. For this pro-
cess, (i) we give explicit expressions for the two phases; (ii) we demonstrate that the isochrons are
always the spokes of a wheel, but that (iii) the spacing of these isochrons (their angular density)
is different for backward and forward phases; (iv) we show that the isochrons of the backward
phase are completely determined by the deterministic part of the vector field, whereas the forward
phase also depends on the noise matrix; and (v) we demonstrate that the mean progression of the
backward phase in time is always uniform, whereas this is not true for the forward phase except in
the rotationally symmetric case. We illustrate our analytical results for a number of qualitatively
different cases.

I. INTRODUCTION

Both oscillations and noise are ubiquitous in many sys-
tems of interest in physics [1, 2], biology [3–5] and neu-
roscience [6, 7]. Synchronization and entrainment of de-
terministic oscillators may be analyzed by finding a co-
ordinate transformation to a one-dimensional phase vari-
able defined in terms of the asymptotic phase of a limit
cycle [8–11]. The classical approach breaks down in sev-
eral cases of interest including: (a) limit-cycle systems
endowed with noise [1, 12–18], (b) spiral-sink systems
with noise-sustained oscillations, also known as quasicy-
cles [19–23], and (c) systems with an attracting hetero-
clinic cycle [24–26].
Consider as an example for (b), the two-dimensional

Ornstein-Uhlenbeck process in the form of two linear
stochastic differential equations

dx1

dt
= A11x1 +A12x2 +B11ξ1 +B12ξ2

dx2

dt
= A21x1 +A22x2 +B21ξ1 +B22ξ2. (1)

In these equations the ξi represent independent
delta-correlated Gaussian white noise sources with
〈ξi(s)T ξj(t)〉 = δijδ(s − t). A trajectory for a particu-
lar choice of parameters, corresponding to a spiral sink,
is shown in Fig. 1. This system resembles a well behaved
oscillator in many respects: it displays a noisy rotation
around the origin in phase space (A), shows roughly os-
cillatory behavior also in the single components (B), and

exhibits a pronounced peak at a non-vanishing frequency
in the power spectrum of one of the components (C). The
quality factor of the oscillation (frequency of the spectral
peak divided by its width at half maximum height), is
rather high in the chosen example (QF ≈ 10). Despite
the apparent oscillations, however, considering the noise-
less system (setting Bij = 0 in eq. (1)), we cannot define
a phase of this spiral-sink system (see below subsec. II B).

In [25] we introduced a new definition of the asymp-
totic phase for robustly oscillatory stochastic systems,
based on a spectral decomposition of the backward (or
adjoint) Kolmogorov density operator. We note that an
equivalent decomposition was independently introduced
in the context of dephasing of genetic oscillators in [27]
and an alternative definition of the phase for stochastic
oscillators, based on a mean first passage time construc-
tion, was put forward in [28]; in this paper we exclusively
focus on the asymptotic phases based on the eigenfunc-
tion expansion.

Our asymptotic phase is well defined for noisy systems
whether the underlying mean-field dynamics exhibits a
stable limit cycle, spiral sink or a stable heteroclinic or-
bit, provided the eigenvalues and eigenfunctions of the
Kolmogorov operator and its adjoint operator satisfy a
set of natural conditions [25], detailed below. Moreover,
in the case of a stable limit cycle system, when the classi-
cal asymptotic phase is well defined, the isochrons for the
stochastic system with small noise levels closely resemble
the isochrons of the deterministic system.

Many questions regarding the asymptotic phase and
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FIG. 1. An example for the 2d Ornstein-Uhlenbeck process. We simulated eq. (1) with the parameters A11 = 0.47, A12 =
−1.25, A21 = 0.75, A22 = −0.53 and the noise values B11 = 0.4861, B12 = B21 = −0.1169, B22 = 0.3692; all shown values of
x1 and x2 in arbitrary units. Trajectory in phase space (x1, x2) (A), single trajectories as time series (B). We used a simple
stochastic Euler procedure for numerical integration. Power spectrum (C) of x1(t) (400 realizations of time series of 220 steps
with a time step of ∆t = 2.5 · 10−3; analytical result, eq. (34), is shown by a solid line. The asymptotic phase of the system,
Ψ(t) = Ψ(x1(t), x2(t)) [red line, see eq. (47)] is compared to the geometric phase ϑ(t) = arctan(x2(t)/x1(t)) [black line]; both
are shown as functions of time (D).

the forward phase are still open. We lack intuition about
the shape of the isochrons, their dependence on the noise
strength, and the difference between the backward and
forward phases. The purpose of this paper is to ex-
plore these issues for a case where we can obtain ana-
lytical insights, that is, the two-dimensional Ornstein-
Uhlenbeck process with complex eigenvalues of the drift
matrix (a special case of eq. (1)). For this system, we de-
rive explicit expressions for the asymptotic (backward)
phase and for the forward phase. We hope to con-
vince the reader that this example is nontrivial. In-
ter alia, we find qualitative differences in the forward
and backward phases. For instance, the backward phase
isochrons do not depend at all on the noise properties
of the system, i.e. on Bij , whereas the forward phase’s
isochrons do. Furthermore, if we plot the asymptotic
phase Ψ(t) = Ψ(x1(t), x2(t)) as a function of time (see
Fig. 1D), it progresses more steadily than the geometric
phase ϑ(t) = arctan(x2(t)/x1(t)). In fact, we will show
that the average rate of increase for the backward phase
does not depend on time, nor on the geometric phase.

Our paper is organized as follows. In the next section
we recall the definitions of the backward and forward
phases for stochastic systems, as well as the definition of
the deterministic phase. In sec. III we introduce the two-
dimensional Ornstein-Uhlenbeck model and our specific
parametrization of it. In sec. IV we derive the two eigen-
functions of interest, extract the dependence of backward
and forward phases on the geometric phase, and discuss
their general properties. In sec. V we look at a number
of examples that give some insight into the differences

between the two phase types. We conclude in sec. VI
with a brief discussion and outlook.

Table I provides a list of notation.

Symbol Meaning
τ ∈ [0, T ) Asymptotic phase of deterministic LC (timelike).
θ ∈ [0, 2π) Asymptotic phase of deterministic LC (circular).
ϑ ∈ [0, 2π) Geometric phase (standard polar coordinates).
Ψ ∈ [0, 2π) Backward phase for stochastic oscillator.
Φ ∈ [0, 2π) Forward phase for stochastic oscillator.

TABLE I. Notation for different phase notions used in the
paper. Limit cycle period is T .

II. REVIEW OF THE PHASE DEFINITIONS IN
DETERMINISTIC AND STOCHASTIC SYSTEMS

In this section we recall notions of the asymptotic
phase of an oscillator for deterministic and stochastic
dynamical systems. For an n-dimensional dynamical sys-
tem, the reduction to a 1-dimensional phase description
assigns a scalar variable (the phase) to each point in the
underlying space. For a deterministic limit cycle oscil-
lator, the phase variable θ should satisfy dθ/dt = const
along trajectories. In the setting of stochastic dynamical
systems, we can obtain a reduced description of an oscil-
latory Markov process in terms of the eigenfunctions of
the generator of the process.
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A. Stochastic setting

As in [25], we assume the state of the system is given by
a point X in a (discrete or continuous) finite dimensional
space, X ∈ X , and evolves in continuous time t ∈ R as a
Markov process with transition density

P (x, t |x0, t0) =
1

|dx| Pr{X(t) ∈ [x,x+ dx) |X(t0) = x0}
(2)

where t > t0. We consider processes that are homoge-
neous in time, meaning P (x, t|x0, t0) = P (x, t−t0 |x0, 0).
We assume the density evolves according to a differ-

ential operator L with formal adjoint L†. That is, the
evolution with respect to the latter time t is given by a
forward Kolmogorov equation (or forward Fokker-Planck
equation, in the case of a system driven by additive Gaus-
sian white noise)

∂

∂t
P (x, t | x0, t0) = Lx[P (x, t | x0, t0)] (3)

while the evolution with respect to the earlier time t0 is
given by a backward or adjoint Kolmogorov equation (or
backward Fokker-Planck equation, in the Gaussian case),

− ∂

∂t0
P (x, t | x0, t0) = L†

x0
[P (x, t | x0, t0)]. (4)

The operator L† is also known as the generator of the
Markov process [29]. We will assume the forward and
backward operators L and L† have a biorthogonal set of
eigenfunctions Pλ, Q

∗
λ satisfying

L[Pλ] = λPλ (5)

L†[Q∗
λ] = λQ∗

λ (6)

〈Qλ|Pλ′ 〉 =
∫

X

Q∗
λ(x)Pλ′ (x) dx = δλ,λ′ , (7)

where δλ,λ′ is the Kronecker delta. We consider the case
in which this biorthogonal system is complete, in the
sense that for any x ∈ X , the conditional density may
be written in terms of the spectral decomposition

P (x, t | x0, t0) = P0(x) +
∑

λ

eλ(t−t0)Pλ(x)Q
∗
λ(x0). (8)

We assume the system has a unique invariant probability
distribution corresponding to the forward eigenfunction
P0 of the trivial eigenvalue λ0 = 0; the corresponding
backward eigenfunction is Q0 ≡ 1. We moreover assume
the remaining eigenvalues, which may be real or complex,
have negative real part.
As in [25], we will define a system to be “robustly oscil-

latory” if, in addition, it fulfills the following conditions:

1. The eigenvalue with least negative real part forms a
complex conjugate pair (λ, λ∗), with λ = µ + iω and
ω > 0.

2. The pair (λ, λ∗) has real part sufficiently far from the
rest of the eigenvalue spectrum, specifically ℜλ′ ≤ 2µ
for all λ′ 6= µ± iω.

3. The relaxation rate of the probability density is sig-
nificantly slower than the oscillation, in the sense that
|µ| ≪ ω.

Under these assumptions, we may write the eigenfunction
pair corresponding to the slowest decaying eigenvalue, λ,
in complex notation as

P1(x) = v(x)e−iΦ(x), Q∗
1(x0) = u(x0)e

iΨ(x0), (9)

which can be regarded as the definitions of the forward
(Φ) and backward (Ψ) asymptotic phases of the system.
That is, we may define the backward and forward phases
for a point x as functions of the coordinates x as

Ψ(x) = arg [Q∗
1(x)] , Φ(x) = − arg [P1(x)] , (10)

where arg(a+ ib) = tan−1(b/a) is the complex argument
of z = a+ ib. As shown in [25], the long-term behavior of
the probability density, as it approaches the steady-state
distribution P0(x), will be dominated by the difference
between the backward phase at the initial point Ψ(x0)
and the forward phase at the later point Φ(x):

P (x, t | x0, t0)− P0(x)

2u(x0)v(x)
≃ (11)

eµ(t−t0) cos [ω(t− t0) + Ψ(x0)− Φ(x)] , as t → ∞.

This asymptotic behavior allows one to extract the for-
ward and backward phase from numerical simulations of
the stochastic process, and in principle also from data.
When considering a stochastic trajectory X(t) we may

alternatively represent the phases as functions of time

Ψ(t) ≡ Ψ(X(t)), Φ(t) ≡ Φ(X(t)), (12)

i.e. as stochastic processes in their own right.

B. Deterministic setting

Here, instead of an evolving density P (x, t | x0, t0), we
consider a trajectory x(t) satisfying an ordinary differen-
tial equation with initial condition x0:

dx

dt
= F(x), x(0) = x0. (13)

If the system has a periodic solution with period T , that
is, x(t) = x(t+T ), then we may define a time-like phase
τ as a map from the orbit Γ = {x(t) | 0 ≤ t < T } to the
circle τ ∈ [0, T ) satisfying the scalar differential equation

dτ

dt
= 1, (14)

with initial condition τ(0) = τ0 [30]. The phase τ0 as-
sociated with a reference point γ0 ∈ Γ may be chosen
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arbitrarily, and τ is interpreted mod T . If all trajectories
with initial conditions close to the periodic orbit converge
to Γ then we have a stable limit cycle x = γ(t). The set
of initial conditions converging to Γ is its basin of attrac-

tion, B. For any initial condition x0 ∈ B, one defines its
asymptotic phase as the scalar τ(x0) such that

lim
t→∞

|x(t)− γ(t+ τ(x0))| = 0, as t → ∞, (15)

for the trajectory x(t) with initial condition x(0) = x0.
This phase reduction, introduced in [9], has proven in-
valuable in the study of weakly coupled and weakly
driven oscillators [8, 10, 11, 31, 32]. As originally dis-
cussed by Guckenheimer [9], the asymptotic phase may
equivalently be described in terms of isochrons, which are
the level sets of a differentiable function T (x) satisfying

dT (x(t))

dt
= ∇T (x) ·F(x) = 1, (16)

for all points x ∈ B. Under the natural boundary condi-
tions imposed by continuity of T at the limit cycle, we
may identify τ = T , up to an additive constant (compare
eq. (14)). For a limit cycle with period T , the normal-
ization of the phase variable to the interval [0, T ) is con-
ventional. In order to emphasize the phase as a map to
the circle, the phase normalization θ ≡ (2πτ/T ) ∈ [0, 2π)
may be used instead. In this case eq. (16) is changed to
dθ/dt = 2π/T .
Transient oscillatory activity may arise in determinis-

tic models that do not possess limit cycles, for example
spiral sink systems and stable heteroclinic cycles. A de-
terministic dynamical systems has a stable heteroclinic

cycle if there is a closed attracting set Γhet composed
of trajectories connecting a repeating sequence of saddle
equilibrium points [24, 33–36]. In this situation, there
is no periodic trajectory with a finite period. Instead,
trajectories near Γhet traverse the same neighborhood of
phase space with progressively longer and longer inter-
vals required to pass each saddle point in turn. Because
there is no finite period, the phase and the asymptotic
phase cannot be defined; see [24] for a discussion of the
phase reduction problem for the deterministic case, and
[25] for the stochastic case.
A spiral sink system possesses a stable equilibrium

point for which the Jacobian matrix has a complex con-
jugate pair of eigenvalues. As a simple example, consider
the rotationally symmetric system

dx

dt
=

(

µ −ω
ω µ

)

x, or, ṙ = µr, ϑ̇ = ω (17)

(in standard polar coordinates) with µ < 0 and ω > 0.
It is well known that one cannot assign an asymptotic
phase to points in the basin of attraction of a spiral sink
fixed point such as eq. (17), because (unlike for a limit
cycle, cf. eq. (15)) all initial points converge to the same

trajectory at long times, namely x(t) → 0 as t → ∞. If
we seek solutions of eq. (16) for the vector field eq. (17),

we find a one-parameter family of solutions

T (r, ϑ) = kϑ+
1− kω

|µ| ln r, (18)

for arbitrary constant k ∈ R. The corresponding
“isochrons” are given, in polar coordinates, as logarith-
mic spirals ϑ(r) = ϑ0 +

kω−1
|µ| ln r. Setting k = 1/ω gives

evenly spaced “spokes of a wheel” isochrons, ϑ = const,
but this is only one choice in an infinite collection of so-
lutions consistent with constant “phase” progression.
In contrast, we will show in the remainder of the pa-

per that when a system with spiral sink dynamics is per-
turbed by noise, the isochrons of the forward and back-
ward phase may be defined uniquely and unambiguously.
This surprising result is a major contribution of our pa-
per.

III. THE MODEL: TWO-DIMENSIONAL
SPIRAL SINK WITH WHITE NOISE

We consider a two-dimensional Ornstein-Uhlenbeck
process in a setting such that the origin becomes a stable
sink. This is of course a classical stochastic process that
has been well studied [19]; much of the information we
review in the following and adapt to our special notation
can be found in standard text books, e.g. [37] and [38].
The general Langevin equation is

ẋ = Ax +Bξ, 〈ξi(t)ξj(t′)〉 = δi,jδ(t− t′), i, j = 1, 2.
(19)

We first discuss suitable choices and the properties of the
two matrices A and B.
We assume that the two eigenvalues of A are complex

(they are then a complex conjugate pair). As we will
show below, for the stochastic spiral sink, the eigenval-
ues of A coincide with the slowest decaying eigenvalues
of the forward and backward operators, discussed in sub-
sec. II A. Therefore, to avoid introducing superfluous no-
tation, we will write the eigenvalues of A as λ± = µ± iω;
recall that µ < 0 and ω > 0. We will use a specific no-
tation for the matrix A by which we can write λ± in a
convenient way:

A =

(

µ+ αµ −ω0 + αω

ω0 + αω µ− αµ

)

, (20)

λ± =
Tr(A)± i

√

4 det(A)− (Tr(A))2

2

= µ± i
√

ω2
0 − (α2

µ + α2
ω) = µ± iω, (21)

where the last equation defines the frequency of rotation
ω. Throughout, we require µ < 0 (stability of the fixed
point at the origin) and ω0 > 0 (counter-clockwise rota-
tion). Setting αµ = αω = 0, we would obtain a rotation-
ally symmetric stable sink, thus, {αµ, αω} quantify the
deviation from this special case. Obviously, to keep com-
plex eigenvalues, we have to require that ω2

0 > α2
µ + α2

ω
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which we will assume to hold true throughout the fol-
lowing. We note that the phases will not change when
we use a different unit of time and, hence, we could set
either the real or the imaginary part of the eigenvalue to
unity, without loss of generality. However, for the sake of
broader applicability, we keep µ and ω0 in the following.

The complex-valued left and right eigenvectors of A
satisfy

Av± = λ±v±, w∗
±A = λ±w

∗
±, (22)

(the asterisk denotes complex-conjugate transpose of a
vector). They are given in terms of our parameters by

v± = Neiη
(

αω − ω0

±iω − αµ

)

, w± =

(

αω + ω0

∓iω − αµ

)

,

(23)
where the normalization factorsN > 0 and eiη are chosen
so that w∗

±v± = 1, from which follows η = π−atan
(αµ

ω

)

.

Turning to the noise matrix B, we note that what en-
ters the theory is only the symmetric diffusion matrix

D =
1

2
BBT

=
1

2

(

B2
11 +B2

12 B11B21 +B12B22

B11B21 +B12B22 B2
22 +B2

21

)

= ε

(

1 + βD βc

βc 1− βD

)

. (24)

Here we have expressed D by deviations from the
isotropic-noise case (βD = βc = 0) that can occur when
the noise is of different strength in the two variables
(quantified by −1 ≤ βD ≤ 1) or when the noise in
both variables is correlated (βc > 0) or anticorrelated
(βc < 0), with the constraint β2

c + β2
D ≤ 1. We note

that because the system is linear there is no qualitative
change to be expected when we turn up the overall noise
intensity ε. Without the fixed values of the decay rate
−µ and noise intensity ε we have the five parameters left:
ω0, αµ, αω, βD, and βc.
The forward and backward operators corresponding to

eq. (19) read (using Einstein’s summation convention)

L[P (x)] = −∂i (AijxjP (x)) +Dij∂
2
ijP (x) (25)

L†[Q∗(x)] = Aijxj∂i (Q
∗(x)) +Dij∂

2
ijQ

∗(x). (26)

The covariance matrix Σx, corresponding to the station-
ary solution L[P ] = 0, satisfies the Lyapunov equation

AΣx +ΣxA
T +D = 0. (27)

Moreover, it can be expressed as [38]

Σx =
〈

x(t)xT (t)
〉

(28)

= − 1

Tr(A)
D − [A− Tr(A)I]D[A− Tr(A)I]T

Tr(A) det(A)
.

In what follows, we will assume Σx to be invertible.

Inserting all the different terms, we arrive at

Σx,1,1 =
(1 + βD)[µ(µ − αµ) + αω(ω0 − αω)] + (ω0 − αω)

2 + βc(µ− αµ)(ω0 − αω)

−µ(µ2 + ω2)

Σx,2,2 =
(1− βD)[µ(µ + αµ)− αω(ω0 + αω)] + (ω0 + αω)

2 − βc(µ+ αµ)(ω0 + αω)

−µ(µ2 + ω2)

Σx,1,2 = Σx,2,1 =
αµω0 − αωµ− βD(µω0 − αωαµ) + βc(µ

2 − α2
µ)

−µ(µ2 + ω2)
. (29)

By means of the inverse of the covariance matrix

Σ−1
x,1,1 = −µ

(1− βD)[µ(µ+ αµ)− αω(ω0 + αω)] + (ω0 + αω)
2 − βc(µ+ αµ)(ω0 + αω)

(ω0 + αωβD − αµβc)2 + µ2(1− β2
c − β2

D)

Σ−1
x,2,2 = −µ

(1 + βD)[µ(µ− αµ) + αω(ω0 − αω)] + (ω0 − αω)
2 + βc(µ− αµ)(ω0 − αω)

(ω0 + αωβD − αµβc)2 + µ2(1− β2
c − β2

D)

Σ−1
x,1,2 = Σ−1

x,2,1 = µ
αµω0 − αωµ− βD(µω0 − αωαµ) + βc(µ

2 − α2
µ)

(ω0 + αωβD − αµβc)2 + µ2(1 − β2
c − β2

D)
, (30)

we can express the stationary probability density as fol-
lows:

P0 =
exp(− 1

2x
TΣ−1

x x)

2π det(Σx)
. (31)

We note that the case of a symmetric probability density
is more general than the special case of the rotationally

symmetric drift matrix plus an isotropic noise. Formally,
we may ask under what conditions the stationary vari-
ance will be a multiple of the identity, Σx ∝ I. Setting
Σx,1,1 = Σx,2,2 and Σx,1,2 = 0 in eq. (29) yields a unique
solution

αµ = µβD and αω = µβc. (32)
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Thus a necessary condition for an isotropic distribution
is that any asymmetry in the individual dissipation rates
is compensated by a matched asymmetry in the individ-
ual noise terms (αµ = µβD), and any asymmetry in the
coupling between the variables is compensated by an an-
ticorrelation in the driving noise (αω = µβc).

In the absence of a driving noise, the stationary dis-
tribution collapses to a delta distribution at the origin,
and the covariance matrix reverts to the zero matrix.
As shown in subsec. II B, in this case one can no longer
uniquely define an asymptotic phase function. However,

as we will show in sec. IV, as long as the noise has finite
amplitude and Σx has full rank, the asymptotic phase ob-
tained from the backward equation, as well as the phase
from the forward equation, is well defined.
The cross-spectral matrix with the power spectra of

x1(t) and x2(t) on the diagonal can be obtained from the
well-known expression [38]:

Sxx(f) = 2[A+ 2πifI]−1D[AT − 2πifI]−1. (33)

Specifically, for the first element of the matrix, the power
spectrum of the first variable, we obtain explicitly in
terms of our parameters

Sx1x1
(f) = 2

(µ+ αµ)
2 + (ω0 − αω)

2 + (2πf)2 + βD((µ+ αµ)
2 − (ω0 − αω)

2 + (2πf)2) + 2βc(αω − ω0)(µ+ αµ)

[µ2 + ω2 − (2πf)2]2 + 4µ2ω2
.

(34)

We note that the quality factor (the ratio between the
peak frequency fpeak and the full width at half maximum,
∆f) of a robustly oscillatory OU process is very close
to half the ratio of the imaginary and real parts of the
system’s eigenvalue, i.e.

QF =
fpeak
∆f

≈ ω

2µ
. (35)

IV. ANALYTICAL EXPRESSIONS FOR THE
ASYMPTOTIC PHASES

We aim to find the eigenfunctions with the smallest
negative real part for the forward and backward opera-
tors. In particular, we seek the complex arguments of
these functions, which define our forward and backward
phases. For the general system eq. (19), no expresssions
of the eigenfunctions in terms of elementary functions is
known. However, Leen et al. [39] recently derived expres-
sions for a simpler system that we will use. This system
is given by

ẏ = Ayy+Byξ, 〈ξi(t)ξj(t′)〉 = δi,jδ(t− t′), i, j = 1, 2
(36)

and is simpler because its covariance matrix is a multiple
of the identity matrix:

Σy =
〈

y(t)yT (t)
〉

=
1

2
I. (37)

We can transform our original model, eq. (19), to eq. (36)
obeying eq. (37) as follows:

y = Cx with C =







uT
1 /

√
2γ1

uT
2 /

√
2γ2






(38)

where uk and γk with k = 1, 2 are the normalized
eigenvectors and eigenvalues of the original (symmet-
ric) covariance matrix Σx, respectively. Indeed Σy =
〈

yyT
〉

=
〈

CxxTCT
〉

= CΣxC
T and using the property

uT
i uj = δij , we obtain eq. (37). Furthermore, with this

transformation follow relations between drift and diffu-
sion matrices of the original and the transformed system:

Ay = CAC−1, By = CB. (39)

If, for long times, the conditional probability density in
y is given by

P (y, t|y0, 0) ≃ (40)

P0(y) + eλ̄+tP+(y)Q
∗
+(y0) + eλ̄−tP−(y)Q

∗
−(y0)

where P±(y) and Q±(y0) are the corresponding eigen-
functions of forward and backward operators with small-
est real part of the corresponding eigenvalues λ̄±. Ap-
plying eqs. (7), (9), and (12) in Leen et al. [39], we
obtain these eigenfunctions in terms of vy,± = Cv± and
w∗

y,± = w∗
±C

−1, the corresponding right and left eigen-

vectors of the transformed drift matrix Ay = CAC−1.
They read:

Q0(y0) = 1, (41)

P0(y) =
e−y

T
y

π
, (42)

P±(y) = − 2

π
e−y

T
yyTvy,±, (43)

Q∗
±(y0) = 2w∗

y,±y0. (44)

Inserting these expressions into eq. (25)-eq. (26), together
with eq. (27) and the fact that Σy = 1

2I, it can be checked
that these functions satisfy the forward and backward
equations, respectively, with eigenvalues λ0 = 0 (for Q0

and P0) and λ̄± = λ± (for P± and Q∗
±, respectively)

identical to the eigenvalues of A given in eq. (20).
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From the above asymptotic expansion of the den-
sity P (y, t|y0, 0) and its transformation P (x, t|x0, 0) =
P (y(x), t|y0(x0), 0)|dy/dx|, we obtain

P (x, t|x0, 0) ≈
1

π

∣

∣

∣

∣

dy

dx

∣

∣

∣

∣

exp

[

−1

2
xTΣ−1

x x

]

×
(

1− 4
{

eλ+t(xTCTvy,+)(w
∗
y,+Cx0) + c.c.

})

. (45)

Noting that for a linear transformation the Jacobian
|dy/dx| = const, we can conclude that the first eigen-

functions in the original variables read

P+(x) ∝ xTCTvy,+e
− 1

2
x
TΣ−1

x x = xTΣ−1
x v+e

− 1
2
x
TΣ−1

x x,

Q∗
+(x0) ∝ w∗

y,+Cx0 = w∗
+x0. (46)

The forward and backward phases can now be ex-
tracted from these expressions taking into account that
the only complex-valued objects in them are v+ and w∗

+.
Specifically, for the backward phase we obtain the concise
expression in terms of the geometric phase ϑ:

Ψ(ϑ) = atan

(

ω

(αω + ω0) cot(ϑ)− αµ

)

(47)

while the expression for the forward phase, involving the inverse of the covariance matrix, is more lengthy

Φ(ϑ) = π − atan
(αµ

ω

)

− atan

(

A1 + tan(ϑ)

A2 +A3 tan(ϑ)

)

(48)

where

A1 =
βc(α

2
µ − µ2) + βD(µω0 − αµαω)− αµω0 + αωµ

βD(αω(ω0 − αω) + µ(µ− αµ)) + βc(µ− αµ)(ω0 − αω) + µ(µ− αµ) + ω0(ω0 − αω)
,

A2 =
1

ω

µ
[

βD(µω0 − αµαω) + βc(ω
2
0 − α2

ω)− αµω0 + αωµ
]

+ (ω2 + µ2)(βcαµ − βDαω − ω0)

βD(αω(ω0 − αω) + µ(µ− αµ)) + βc(µ− αµ)(ω0 − αω) + µ(µ− αµ) + ω0(ω0 − αω)
,

A3 = −µ

ω

βD(ω0(ω0 − αω) + αµ(µ− αµ))− βc(ω0 − αω)(µ− αµ) + αµ(µ− αµ) + αω(ω0 − αω)

βD(αω(ω0 − αω) + µ(µ− αµ)) + βc(µ− αµ)(ω0 − αω) + µ(µ− αµ) + ω0(ω0 − αω)
.

It will prove useful to have the expressions for the derivatives, that can be interpreted as densities of the respective
isochrons. For the backward phase, we obtain

dΨ

dϑ
=

ω

ω0 − αω + 2αω cos2(ϑ)− 2αµ cos(ϑ) sin(ϑ)
, (49)

whereas for the forward phase, this derivative reads

dΦ

dϑ
=

A1A3 −A2

1 +A2
3 + [A2

1 +A2
2 −A2

3 − 1] cos2(ϑ) + 2[A2A3 +A1] sin(ϑ) cos(ϑ)
. (50)

A number of conclusions can be drawn analytically
from eqs. (47-50):

1. The asymptotic phase of a stochastic oscillator is
uniquely defined in terms of the backward phase
eq. (47). Hence, in marked contrast to the determin-
istic case, where we obtain an entire family of possible
phase definitions (cf. eq. (18) and the surrounding dis-
cussion), we do not have any ambiguity in the phase
definition in the stochastic case, except for an arbi-
trary additive off-set. As we will see, our asymptotic
phase defines the phase uniquely even in the case of
vanishing noise and extracts the most simple, i.e. the
non-logarithmic, definition of phase (see points 2 and
3 below).

2. The isochrons (the lines of equal phase) are rays start-

ing from the origin: a rescaling of the vector x0 (which
describes a straight line starting in the origin), for in-
stance, cannot change the complex phase of the com-
plex number w∗

+x0 (this factor just rescales the com-
plex number itself); the same argument holds true
for the forward phase, i.e. the complex argument of
xTΣ−1

x v+ upon varying x. Another manifestation of
this simple geometry is that both forward and back-
ward phases are only functions of the geometric phase
but not of the radial coordinate.

3. Changing the geometric phase ϑ of the vector x0, how-
ever, we do not necessarily get a proportional change
in the complex argument of Q∗

+. This means that al-
though the isochrons are the spokes of a wheel, these
spokes are sometimes closer together and sometimes
further apart, i.e. the functions Ψ(ϑ) and Φ(ϑ) are
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only in exceptional cases linear (the phase densities
dΨ(ϑ)/dϑ and dΦ(ϑ)/dϑ are then constant).

4. The backward phase cannot depend on the noise prop-
erties of the system, because it is entirely determined
by the drift matrix A, more specifically, by the left
eigenvector of A. Furthermore, the backward phase
is also independent of the decay rate −µ (which does
not enter the eigenvectors) but depends only on ω0, αω,
and αµ.

5. The geometric phase will not progress at a steady pace,
even in the deterministic case. To see this, transform
the system to polar coordinates to find in the deter-
ministic case (ε = 0)

dϑ

dt
= ω + αω[cos

2(ϑ)− sin2(ϑ)]− 2αµ sin(ϑ) cos(ϑ).

Because of the nonlinearities on the right hand side,
progress in the geometric phase will not be constant
and this will not be different in general for a finite
noise intensity ε > 0. In contrast, taking the time
derivative of the complex-valued backward function,
that we write as a product of an amplitude u and the
complex exponential of the phase Ψ, we obtain

dQ∗
+

dt
=

d

dt
ueiΨ(t) =

du

dt
eiΨ(t) + i

dΨ

dt
ueiΨ(t)

=
d

dt
w∗

+x

= w∗
+(Ax+Bξ) = λ+w

∗
+x+w∗

+Bξ

= (µ+ iω)ueiΨ(t) +w∗
+Bξ. (51)

Focusing on the underlined parts, dividing by the com-
plex exponential, and averaging over the noise, we ar-
rive at two simple equations for the time-dependent
mean values

d 〈u〉
dt

= µ 〈u〉 , d 〈Ψ〉
dt

= ω. (52)

Hence, the mean amplitude decays exponentially and
the average backward phase evolves at a constant ve-
locity.

6. The forward phase does in general depend on the noise
matrix D, as well as on the drift matrix A, because
it involves the inverse of the covariance matrix that is
shaped by the coefficients in the matrix D. Hence, in
general forward and backward phases are distinct.

7. With a few algebraic manipulations and a comparison
of coefficients of trigonometric functions in the deriva-
tives eq. (50) and eq. (49), it can be shown that for an
isotropic noise (βD = βc = 0), forward and backward
phases (apart from their off-set) are shifted versions
of each other with respect to the geometric phase, i.e.
the derivatives are

dΨ

dϑ

∣

∣

∣

∣

ϑ+arctan(µ/ω0)

=
dΦ

dϑ

∣

∣

∣

∣

ϑ

for βD = βc = 0. (53)

8. In the limit as µ → 0 (hence, quality factor QF → ∞)
both forward and backward densities are equal

dΨ(ϑ)

dϑ
=

dΦ(ϑ)

dϑ
for µ = 0. (54)

If µ is small compared to the effective frequency ω, i.e.
for large quality factor, the two phases will be close to
each other.

9. For the case of a rotationally symmetric probability
density, i.e. when eq. (32) holds true, it can be shown
that the densities of the phase are shifted versions of
each other and the shift is π/2:

dΨ

dϑ

∣

∣

∣

∣

ϑ±π/2

=
dΦ

dϑ

∣

∣

∣

∣

ϑ

for αµ = µβD, αω = µβc. (55)

V. ILLUSTRATION OF SPECIFIC CASES

Here we give several numerical examples of isochrons,
their density, and the stationary probability density of
the system. It is useful to classify the distinct cases of
anisotropy that can be caused by anisotropic terms in the
drift matrix (αµ, αω) or in the diffusion matrix (βD, βc)
by the two parameter vectors

α =

(

αµ

αω

)

, β =

(

βD

βc

)

. (56)

In the following, we demonstrate that i) for the complete
isotropic case (α = 0, β = 0) both phase isochrons are
uniformly distributed (as can be expected); ii) for a uni-
form density of isochrons of the backward phase, the for-
ward phase’s isochrons can be non-uniformly distributed
(e.g. for (α = 0, β 6= 0); iii) for isotropic noise (β = 0) but
anisotropic drift matrix (α 6= 0) both isochron densities
are non-uniform, but are shifted versions of each other;
iv) for an isotropic stationary distribution P0 (which hap-
pens for α = µβ) there can be non-uniform densities of
backward and forward phases; v) backward and forward
phase are particulary different for α = −µβ.
Starting with the first case of a completely isotropic

system (α = β = 0), we show in the first row of Fig. 2 the
isochrons of the backward (A1) and forward (A3) phases
in the (x1, x2) plane, their density (i.e. their derivative
with respect to the geometric phase ϑ) as a function of
ϑ (A2), and the stationary probability density (A4) vs.
(x1, x2). In this case, not surprisingly, we find a rotation-
ally symmetric probability density and uniformly spaced
spokes of a wheel as the isochrons of both forward and
backward phase; the densities for both phases are flat.
This is a direct demonstration that our asymptotic phase
singles out the simplest of the possible solutions from the
family of functions, eq. (18), possible for the determinis-
tic system.
For an isotropic drift matrix (α = 0) but anisotropic

diffusion matrix (β 6= 0), the asymptotic phase (back-
ward phase) will remain uniform because it does not de-
pend on β (cf. conclusion 4 in sec. IV) and this we can
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FIG. 2. Isotropic drift and diffusion matrices (first row, A), isotropic drift and anisotropic diffusion (second
row, B), anisotropic drift and isotropic diffusion (third row, C) Shown are the isochrons for the backward phase
(first column, A1-C1) and the forward phase (third column, A3-C3), the densities of the isochrons dΨ/dϑ and dΦ/dϑ as
functions of the geometric phase (second column, A2-C2) according to eq. (49) and eq. (50), respectively, and the stationary
probability densities P0(x1, x2) according to eq. (31) (fourth column, A4-C4) with contour lines in yellow; P0(x1, x2) (grey
scale) and typical mean trajectories (black lines) also shown in first and third column for comparison. Parameters, first row:
αµ = αω = βD = βc = 0; second row: αµ = αω = 0, βD = βc = −0.68493; third row: αµ = αω = 0.30822, βD = βc = 0; in all
panels ω0 = 1, µ = −0.45. Horizontal and vertical axes in first, third and fourth rows are x1 and x2, respectively; points on all
axes are given in arbitrary units.

indeed see in Fig. 2B1 and B2. The forward phase, in con-
trast, depends on β and is now nonuniform as becomes
apparent in Fig. 2B2 and B3. Also with an anisotropic
noise we obtain in general an anisotropic probability den-
sity (cf. Fig. 2B4) as can be expected due to the correla-
tions and unequal intensities of the noise sources driving
the two components of the Ornstein-Uhlenbeck process.

Next, we choose an isotropic diffusion matrix (β = 0)
but anisotropic drift matrix (α 6= 0). In this case, in
accordance with conclusion 7 in sec. IV, eq. (53), both
phase densities are shifted versions of each other as be-
comes evident in Fig. 2C1-3. The probability density is
again anisotropic (Fig. 2C4).

As we have observed in sec. III, for a specific relation

between drift and diffusion anisotropies, eq. (32), or in
terms of our vector notation, for

α = µβ, (57)

the stationary probability density is isotropic despite
the possible anisotropies of the single A and D matri-
ces. Indeed, if we combine the two anisotropies from
Fig. 2B and C, we obtain parameters that obey this con-
dition, and consequently, the stationary probability den-
sity is rotationally symmetric (Fig. 3A4). In this case,
the isochrons of the two phases are still nonuniformly
distributed (Fig. 3A2) and the directions of maximum
density are orthogonal to each other (cf. Fig. 3A1 and
A3). Indeed, as we have demonstrated in conclusion 9 in
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FIG. 3. Non-uniform densities of backward and forward phases coexist with an isotropic stationary probability
density of the system. Two different cases of α = µβ where we rotated the vectors used in (A1-A4) by π/2 for the
panels (B1-B4). Shown are the isochrons for the backward phase (A1,B1) and the forward phase (A3,B3), the densities of the
isochrons dΨ/dϑ and dΦ/dϑ (A2,B2) as functions of the geometric phase according to eq. (49) and eq. (50), respectively, and the
stationary probability densities P0(x1, x2) according to eq. (31) (A4,B4); P0(x1, x2) (grey scale) and typical mean trajectories
(black lines) also shown in first and third column for comparison. Parameters in all panels: ω0 = 1, µ = −0.45. First row:
βD = βc = −0.68493, αµ = αω = µβD. Second row: βc = −βD = 0.68493, αµ = −αω = µβD. Horizontal and vertical axes in
first, third and fourth rows are x1 and x2, respectively; points on all axes are given in arbitrary units.

sec. IV, the two isochron densities are identical after a
shift by ±π/2 in the argument ϑ, eq. (55).

For comparison, Fig. 3B shows what happens if we
rotate the α and β vectors by π/2 (with α and β still
obeying the condition eq. (57)): evidently, the probabil-
ity density is still isotropic (Fig. 3B4) while the isochrons
have been rotated by π/4 (see Fig. 3B1 and B3) and the
isochron densities have merely shifted by the same angle.

We finally look at a case that seems to be far away
from matching eq. (57) by switching the sign of β com-
pared to Fig. 3. Then we get a pronounced anisotropy in
the stationary probability density (cf. Fig. 4A4) and the
densities of the isochrons of backward and forward phases
look now qualitatively different (Fig. 4A2). These den-
sities are not merely shifted versions of each other, but
the forward phase displays much stronger variations in
its density, which also can be seen on comparison of the
spacing of the isochrons shown in Fig. 4A1 and A3. As
before, an equal rotation of the vectors α and β (as done
in (Fig. 4B) does not change the picture qualitatively,
but everything (isochrons, stationary density) is rotated.

VI. CONCLUSIONS

In this paper we have derived and studied the asymp-
totic phase for a simple stochastic oscillator, the two-
dimensional Ornstein-Uhlenbeck process. Difficulties
that are pertinent to the deterministic version of this
system (the linearized version of a spiral sink) can be re-
solved by introducing our unambiguous asymptotic phase
and taking the limit of a vanishing noise intensity. Our
phase, defined by the complex argument of the eigen-
function of the backward Kolmogorov operator, singles
out the simplest solution (spokes of a wheel) from the
entire family of possible phases, eq. (18). To obtain the
deterministic phase we do not have to let the noise inten-
sity go to zero because (for the specific system considered
here, the two-dimensional Ornstein-Uhlenbeck process)
the asymptotic phase does not depend on the intensity
and correlation properties of the driving white Gaussian
noise at all.

Although the asymptotic phase is independent of the
radial variable leading to the spokes of a wheel for the
isochrons, there is a nontrivial dependence of the density
of isochrons as a function of the geometric phase angle.
The density change is such that the mean progression in
the asymptotic phase is always uniform - in contrast to
the progression of the geometric phase if the drift func-
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FIG. 4. Reversing the relation between the anisotropy vectors leads to enhanced anisotropy in the system.
Two different cases of α = −µβ (vector β is switched in sign compared to Fig. 3). As before we rotated the vectors used
in (A1-A4) by π/2 for the panels (B1-B4). Shown are the isochrons for the backward phase (A1,B1) and the forward phase
(A3,B3), the densities of the isochrons dΨ/dϑ and dΦ/dϑ (A2,B2) as functions of the geometric phase according to eq. (49)
and eq. (50), respectively, and the stationary probability densities P0(x1, x2) according to eq. (31) (A4,B4); P0(x1, x2) (grey
scale) and typical mean trajectories (black lines) also shown in first and third column for comparison. Parameters in all panels:
ω0 = 1, µ = −0.45. First row: βD = βc = 0.68493, αµ = αω = −µβD. Second row: βc = −βD = 0.68493, αµ = −αω = −µβD.
Horizontal and vertical axes in first, third and fourth rows are x1 and x2, respectively; points on all axes are given in arbitrary
units.

tion deviates from the isotropic case (i.e. when αµ 6= 0
or αω 6= 0). This can be regarded as the defining feature
of the asymptotic phase.

We also studied the phase related to the forward Kol-
mogorov operator’s eigenfunction with smallest real part
of the eigenvalue, or the forward phase, for short. The
isochrons for this phase turned out to be the spokes of a
wheel as well, but the density of the spokes as a function
of geometric phase was shown to be generally different
from that of the backward phase and to be dependent
on the diffusion matrix (i.e. on the intensities and cor-
relations among the noise forces driving the two compo-
nents of the system). This marked difference between
forward and backward phase can be understood based
on the role of forward and backward eigenfunctions in
the evolution of the system, eq. (11). The forward eigen-
function which characterizes the evolution at long times
forward in time is shaped by how correlated the noise
may be in the two components. The backward phase
(the true asymptotic phase) characterizes the initial con-
ditions that brought the system to the considered point
in time. In our examples we also demonstrated that even
for a system with perfectly isotropic stationary probabil-
ity density, the density of backward and forward phase
may depend non-uniformly on the geometric phase.

We identified several cases where the densities of back-
ward and forward phases are merely shifted versions of
each other: for a rotationally symmetric stationary prob-
ability density (with a shift of π/2), for an isotropic noise
matrix (with a shift of arctan(µ/ω0)), and in the limit of
infinite quality factor by µ → 0 (with a vanishing phase
shift).

A simple extension of the results considered here would
be an n-dimensional Ornstein-Uhlenbeck process with
n > 2 when two of the eigenvalues of the Kolmogorov
operator form a complex conjugate pair with real part
that is much smaller in absolute value than the real parts
of all other eigenvalues. In this case, the system would
rapidly collapse to a two-dimensional manifold (the slow
fiber, see [40]), the phase reduction can be accomplished
by projection onto this plane, and the isochrons of the
asymptotic phase will be spokes of a wheel in this plane.

Our results may also prove useful in nonlinear stochas-
tic systems where a spiral sink may coexist with other
dynamics, e.g. with a limit cycle. For example, the sub-
threshold dynamics of the stochastic planar Morris-Lecar
model can be described by a two-dimensional Ornstein-
Uhlenbeck process [18]. Subthreshold oscillations have
been experimentally manipulated by Stiefel et al. [17]
as a way of using phase resetting (by inhibitory stim-
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uli) as a mechanism for extended temporal integration.
Phase resetting presumes the existence of a phase even
though until now there was no well-defined notion of
phase related to subthreshold oscillations (essentially a
noise-driven dynamics close to a spiral sink). Our results
provide a framework for further investigations in this di-
rection.
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