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We use the dynamic mode decomposition (DMD) methodology to study weakly-turbulent flows
in two-dimensional Bose-Einstein condensates modelled by a Gross-Pitaevskii equation subject to
band-limited stochastic forcing. The forcing is balanced by the removal of energy at both ends
of the energy spectrum through phenomenological hypoviscosity and hyperviscosity terms. Using
different combinations of these parameters, we simulate three different regimes corresponding to
weak-wave turbulence, and high- and low-frequency saturation. By extracting and ranking the
primary DMD modes carrying the bulk of the energy, we are able to characterize the different
regimes. In particular, the proposed DMD mode projection is able to seamlessly extract the vortices
present in the condensate. This is achieved despite the fact that we do not use any phase information
of the condensate as it is usually not directly available in realistic atomic BEC scenarios. Being
model independent, this DMD methodology should be portable to other models and experiments
involving complex flows. The DMD implementation could be used to elucidate different types of
turbulent regimes as well as identifying and pinpointing the existence of delicate and hidden coherent
structures within complex flows.

PACS numbers:

I. INTRODUCTION

Building on existing experiments [1–6] and the re-
cent observation of turbulent cascades in a Bose-Einstein
condensate (BEC) [7], it is important to better under-
stand and characterize, in as quantitative a means as
possible, the complex dynamics associated with turbu-
lence in dispersive, nonlinear-wave systems. While small-
amplitude states whose statistics remain nearly Gaussian
permit a relatively complete analytic characterization of
turbulent cascades —embodied in the weak-wave turbu-
lence (WWT) theory initiated in Ref. [8] and collected in
Ref. [9] as noted in Refs. [10, 11]— the assumptions which
one makes to derive results in WWT necessarily must
generically break down over long-enough timescales.

This breakdown is best characterized by the forma-
tion of long-wavelength, larger-amplitude coherent struc-
tures (CSs). In classic, one-dimensional systems, char-
acterizing such structures in terms of solitons is rela-
tively straightforward; see for example Ref. [11]. How-
ever, in two-dimensions (2D), and for systems like the
Gross-Pitaevskii equation (GPE), or defocusing nonlin-
ear Schrödinger equation (NLSE), describing coherent
structures in quantitative terms is far more challeng-
ing. In the context of BECs, existing methodologies
for characterizing CSs are based on heuristic statistical
metrics [12]. In the broader context of two dimensional
WWT, along with classic approaches built around study-
ing qualitative features in Fourier transforms, methods
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based on tracking spikes in Gaussian curvature of the so-
lution were described in Ref. [13]. However, CSs in BECs
are not readily characterized as high curvature struc-
tures. Instead, the formation of CSs corresponds to the
elimination of vortices and the emission of sound waves
on the rising-amplitude-background-condensed state [12].
Thus long-time, highly evolved BEC flows can be com-
posed of relatively few vortices hidden behind a wide
range of propagating acoustic waves. Moreover, vortices
have been shown to play an important role is the mani-
festation of BEC turbulence [2, 14, 15]. However, iden-
tification of vortices is particularly problematic in stan-
dard, atomic, BEC experiments where only the density
is readily accessible [16–19]. Easily identifiable features
of the flow are then, both scarce and difficult to reliably
identify, making characterization of the transition away
from the WWT state difficult. In this paper, to address
this shortcoming, we study the use of the dynamic-mode
decomposition (DMD) [20–23] which is a modal decom-
position generated by discrete snap-shots of the spatio-
temporal evolution of the system under consideration.
The advantage of the DMD is in its great flexibility due
to it being a model-free means of analyzing flows.

By developing an adaptive mode selection strategy,
we are able to algorithmically decompose 2D BEC flows
into a mean and a series of ranked fluctuations. This
is done for purely WWT flows in which long-wavelength
damping suppresses the appearance of CSs and for flows
in which energy is allowed to accumulate at long wave-
lengths, thereby allowing the nucleation of CSs. As we
see from numerical simulations, the temporal mean of the
DMD dynamics provides a relatively smooth, in effect
de-noised, visualization of CSs. This allows for the ready
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visualization of those few vortices which remain after the
long-time transition from the low-amplitude four-wave
mixing state to a nearly constant background, three-wave
mixing, state mediated by sound waves traveling along
the background; see Refs. [9, 12, 24] for more details on
these transitions and states.
Our adaptive mode identification scheme extracts and

ranks the number of modes needed to represent 90% of
the relative energy of the flow. For all the flows studied,
over longer time scales, at most on the order of 10% of
the total number of modes is needed to meet this selec-
tion threshold. Thus, we show for these BEC complex
flows, that relatively small subspaces can be used to ac-
curately describe the dynamics. Moreover, we see that
the complexity of a flow is well-encoded by the size of
the subspace needed to capture the 90% relative-energy
threshold, with fully turbulent flows devoid of CSs re-
quiring the greatest number of modes and flows allowing
for long-wavelength CSs requiring the least. Therefore,
the DMD may also provide a quantitative means of iden-
tifying the degree of complexity in flows and thus puts
forward an interesting future avenue for identifying novel
and useful statistical quantities facilitating flow classifica-
tion. While we have performed this study in the context
of BECs, our approach to identifying the most significant
DMD modes should prove useful in other contexts where
complex flows prevent ready classification of significant
features.
The structure of the paper is as follows. In Sec. II we

introduce the BEC model that will be the subject of our
study and some generic aspect of WWT. Section III is
devoted to describe the DMD methodology. In Sec. IV
we apply this DMD methodology to characterize BEC
flows in different regimes. Namely, the WWT, the low-
frequency saturation, and the high-frequency saturation
regimes. Finally, in Sec. V we summarize our results
and bring forward a few interesting avenues for further
investigation.

II. MODELLING AND WEAK-WAVE

TURBULENCE

In non-dimensional coordinates (see Appendix A for
details on the 3D to 2D reduction and the non-
dimensionalization), we model the BEC through a
stochastically-forced GPE [9, 12]

iψt = −∆ψ + |ψ|2 ψ + γf − i(νh∆
p + νl∆̃

−p)ψ. (1)

The GPE without the phenomenologically added damp-
ing and forcing terms is known to be a rigorous accu-
rate approximation to the behavior of large ensembles
of low-temperature bosons [25]. Our choice of forcing
and damping are made in order to explore more complex
dynamics of the GPE. Here ψ(x, t) is the wavefunction
in 2D space [x = (x, y)] which we restrict to satisfy-
ing periodic-boundary conditions in both directions with

common period 2L. Thus we have the equivalent Fourier
representation for ψ:

ψ(x, t) =
∑

m

am(t)eikm·x, (2)

m = (m,n), km =
π

L
m. (3)

Likewise, ∆ denotes the 2D Laplacian, γf (x, t) is the
stochastic forcing (see below), and the terms with co-
efficients νh and νl correspond to hyperviscosity and
hypoviscosity introduced with the high-order Laplacian
∆p. The regularized Laplacian ∆̃ is defined through the
Fourier transform of its symbol:

̂̃∆ = −
{

|km|2 , m 6= 0
(
π
L

)2
, m = 0.

(4)

We thus set the zero mode to one to avoid spurious
divergences when numerically integrating the system.
Note that we always remain in the defocusing, or ‘dark’,
case [26] and that we initialize our system with zero ini-
tial conditions, i.e. ψ(x, t = 0) = 0. The forcing γf is
chosen so as to be the spectrally-band limited function

γf (x, t) = γ0 e
2πiϕ(t)

∑

kl≤||km||2≤kh

eikm·x, (5)

where ||km||2 = π
L

√
m2 + n2, γ0 is the strength of the

forcing and the phase ϕ(t) is chosen as a random variable
uniformly distributed between 0 and 1. Thus, our forc-
ing is characterized by an injection range of wavenum-
bers via the choices of a “low” wavenumber threshold
kl and a “high” wavenumber threshold kh. We likewise
see that the forcing is unbiased in any particular spa-
tial direction so that, by starting with zero-initial condi-
tions, the solution ψ(x, t) largely mimics the forcing until
it has reached a large enough amplitude that nonlinear-
ity, through four-wave mixing, is able to transfer energy
across Fourier modes. The injection of energy through
the forcing γf (x, t) is ultimately balanced against the
strength of the hyperviscosity characterized by the mag-
nitude of νh and the hypoviscosity characterized by the
magnitude of νl.
We take the period 2L ≫ 1 so as to allow for long-

wavelength phenomena and space for large numbers of
vortices to form and interact. We note that the question
of what constitutes a ‘large’ domain is somewhat ambigu-
ous in this problem due to the forcing. Typically, when
modeling a BEC, a length scale is set via the ‘healing-
length’ [24], which ultimately determines the width of
vortices in the GPE. However, to do this one must have
a fixed particle number N =

∫
|ψ|2 dx, but due to the

forcing and viscosity we have that

1

2

dN
dt

=Im

{∫
γf (x, t)ψ

∗dx

}

−
∫
ψ∗

(
νh∆

p + νl∆̃
−p

)
ψ dx, (6)
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so that the particle number, and thus the chosen length
scale, necessarily change with time. Ultimately though,
for long times, a quasi-equilibrium is achieved through
the balance of injection due to the forcing γf and the
particle removal/energy dissipation due to the hypervis-
cosity removing high-frequency modes and the hypovis-
cosity removing low-frequency modes.
By stochastically forcing the system starting from a

zero-amplitude configuration, we are able to generate a
WWT state at some point in the temporal evolution of
the flow. This is characterized as complex flows driven
by nontrivial fluxes of energy and particle count across
ranges of wavenumbers. To quantify this concept with
respect to the energy, we define the associated isotropic
energy density Ed(k, t) as

Ed(k, t) = 2πk ω(k)n(k, t), (7)

where ω(k) is the dispersion relationship of the GPE, and
n(k, t) is given by

n(k, t) =
〈
|am(t)|2

〉
, ||m||2 = k, (8)

where 〈·〉 denotes averaging over modes with constant
wavenumber k. Associated with the energy density is an
affiliated energy flux ǫ so that

∂tEd + ∂kǫ ∼ 0. (9)

It is one of the major achievements in the WWT theory
that one can derive Boltzmann-like kinetic equations de-
scribing the evolution of n(k, t) [9]. Thus, by looking for
flows in which the energy density is in quasi-equilibrium
so that ∂tEd ∼ 0, which therefore implies that ∂tn(k, t) ∼
0, we can then distinguish quasi-equilibrium profiles of
Ed(k, t) by whether ǫ ∼ 0 or ǫ ∼ c, where c is some
constant. The zero case corresponds to no energy flux,
thereby describing a thermodynamically steady state as-
sociated with the equipartition of energy. It is the non-
zero energy flux states which distinguish WWT states,
and those that we are most interested in studying. As
noted in Ref. [9], the cascade associated with energy is
from long to short length scales, or from small to large
values of k. In contrast, while there is a cascade at-
tributable to the other naturally conserved quantity of
the GPE, i.e. the total particle count, the cascade in that
case is described as ‘warm’ meaning that it is made of up
non-trivial and trivial flux contributions; see Ref. [9] for
further details.

III. DYNAMIC-MODE DECOMPOSITION

For completeness, let us we review some details of the
DMD methodology. In what follows, we choose the mea-
surable quantity g(l)(t) = |ψ(xl, t)| or

g(l) (t) =

∣∣∣∣∣∣

∑

0≤||m||
∞

≤K

am(t)eikm·xl

∣∣∣∣∣∣
, (10)

where we sample at the l = 1, · · · , (2K+1)2 points xl in
the affiliated numerical mesh. This choice corresponds
to sampling the magnitude of the wave-function ψ at
the mesh-points of our numerical simulations. In typi-
cal BEC experiments, the direct observable is the density
that is proportional to |Ψ|2 and thus the magnitude |Ψ|
is readily available (using |Ψ|2 instead of |Ψ| does not
alter the results presented herein). The DMD method
in the context of this paper consists of first generating

a sequence of N + 1 samples of g(l), say g
(l)
n = g(l)(tn),

at times tn = nδt, n = 0, · · · , N . Connecting the two
time states corresponds to a linear operator, called the
Koopman Operator [23], which we denote by eLδt, so that

gn+1 = eLδtgn, gn = {g(l)n }(2K+1)2

l=1 (11)

where the superscripts are used to denote space while
the subscripts denote time. In Appendix B, we explain
some of the original physical motivation introduced in
Ref. [27], used elsewhere for data reduction and analysis
in Ref. [28], to help provide insight as to why the DMD
method is effective.
Defining the (2K + 1)2 ×N matrices V1 and V2 where

V1 =








g
(1)
0
...

g
(2K+1)2

0


 · · ·




g
(1)
N−1
...

g
(2K+1)2

N−1







,

V2 =








g
(1)
1
...

g
(2K+1)2

1


 · · ·




g
(1)
N
...

g
(2K+1)2

N







, (12)

the DMD approximates eLδt (see Appendix B) via a
finite-dimensional matrix A given by

S = U †AU = U †V2WΣ−1. (13)

where we have used a singular value decomposition
(SVD) of V1 so that V1 = UΣW †, where U and W are
matrices of sizes (2K +1)2 ×N and N ×N respectively,
whose columns form orthonormal sets of vectors, and Σ
is a N×N diagonal matrix containing the singular values
of V1, which are the non-negative square roots of the non-

negative eigenvalues of V †
1 V1. This in effect makes A the

least-squares solution to the non-square matrix problem

V2 = AV1, (14)

corresponding to the one-step time map between V1 and
V2. Therefore, by computing the associated eigenvalues
and eigenvectors of S, say µj and φ̃j respectively, then,
for N large enough with sufficiently controlled spacing
in the time-series, these eigenvalues and eigenvectors will
approximate those of eLδt. Likewise, this allows us to
write each vector gn in our time-series as

gn =

N∑

j=1

bjµ
n
j φj + rn, φj = Uφ̃j , (15)
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where rn denotes the residual at the n-th sampling time
and the coefficients bj are found from the initial condition

g0 =

N∑

j=1

bjφj . (16)

See Ref. [29] for a recent exposition which studies the
convergence of DMD generated spectral information to
the spectral information of the affiliated Koopman oper-
ator.

IV. CHARACTERIZING COHERENT STATES

A. Methodology for implementing and analyzing

the DMD

In order to realize the WWT regimes of the GPE, fol-
lowing Ref. [12], using a Fourier based pseudo-spectral
decomposition in space, we run the simulations over a
domain of size L = 128 with a total of KT = 512 modes
in each spatial direction. Using a two stage Runge-Kutta
scheme with a time step of δt = 0.1 for the low-frequency
forcing and δt = 0.075 for the high-frequency forcing, by
simulating up to tf = 1.5 × 104, we are able to capture
the complex dynamics that we are interested in. These
choices for numerical time steps kept the simulations sta-
ble and accurate without sacrificing too much computa-
tional speed and efficiency as well. Conforming to the
choices in Ref. [12], we typically choose νh = 2 × 10−6,
νl = 1× 10−18, and p = 8. These choices also reflect the
minimal values necessary to generate reliable long time
dynamics that produce complex or turbulent dynamics
on reasonable simulation time scales.
Throughout each simulation, we sample every five nu-

merical timesteps in the low-frequency forcing cases and
every seven numerical timesteps in the high-frequency
case, so that the sampling rate is δts = 0.5 and δts =
0.525, respectively. Different choices of sampling rates
were explored with these choices appearing to give the
most robust and readily understandable results.
We begin sampling at time ti corresponding to the last

two percent of the total time steps, so that we sample the
last 300 units of time, thereby ensuring we are in fact
performing DMD on a fully turbulent or mixed flow. To
justify this decision, letting tf = 1.5× 104, in panels (b)
and (c) of Fig. 1 we compare the plot of |ψ(x, y, t)| at
t = tf/2 to that of |ψ(x, y, t)| at t = 0.98tf ; see Fig. 2 (a)
for the plot of |ψ(x, y, t)| at t = tf . Likewise, in Fig. 1
(a) we compare n(k, t), from Eq. (8), at times t = tf/2,
0.98tf , and t = tf . As can be seen, while relatively small-
scale features have emerged in the flow by t = tf/2, the
underlying spatial symmetry of the forcing is still plainly
present. This symmetry has clearly been removed at t =
0.98tf . Furthermore, we see that the spectra n(k, t) are
essentially identical for t = 0.98tf and tf , while there is
markedly less energy in the higher-frequency components
at t = tf/2. Based on these results we are confident that

the last two percent of the flows examined throughout the
remainder of the paper represent ‘equilibrated turbulent’
flows, at least in the same sense that is meant in Ref. [12].

-0.4 -0.2 0 0.2

-9

-8

-7

-6

-5

FIG. 1: (Color online) Low-frequency forcing case with kl = 4,
kh = 6, and γ0 = 2.1×10−3 under the presence of hyperviscos-
ity and hypoviscosity with respective strengths νh = 2×10−6

and νl = 1×10−18 and power p = 8 with tf = 1.5×104. Panel
(a) depicts the wave-action spectrum distribution n(k, t) [see
Eqs. (8) and (7)] for times t = tf/2 (dotted green curve),
t = 0.98tf (dashed red curve), and t = tf (black solid curve).
The curves for t = 0.98tf and t = tf are almost indistinguish-
able from each other suggesting that the system has reached
equilibrium. Panel (b) and (c) depict the field’s amplitude
|ψ(x, y, t)| for, respectively, t = tf/2 and t = 0.98tf .

Proceeding, we have the approximation

gn ≈ A
(
t(s)n

)
=

N∑

j=1

bje
λj(t

(s)
n −ti)φj , (17)

where

λj =
logµj

δts
, t(s)n = ti + nδts, n ≥ 0. (18)

As we see in the simulations, typically each generated
DMD mode has a corresponding temporal eigenvalue λj
such that −0.02 ≤ Re (λj) ≤ 0 suggesting that all modes
(with some rare exceptions, see below) are either station-
ary or transitory. This is in accord with the fact that we
are looking at a driven Hamiltonian system in which we
are mainly examining dynamics within the inertial range,
so that the dynamics is largely represented via a measure
preserving flow, thereby insuring nearly imaginary spec-
tra of the associated Koopman operator. See Appendix B
for more details.
To performmode selection, we implement the following

strategy. At each discrete sampling time t
(s)
n , we sort the
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sequence

{∣∣∣bjeλj(t
(s)
n −ti)

∣∣∣
}N

j=1
(19)

according to magnitude from largest to smallest, induc-
ing a mapping between indices, say j = f(l;n). It is im-
portant to note, by emphasizing the sampling step n, we
are drawing attention to the fact that the sorting map
between indices can change at every discrete sampling
step. We then select from this sorted listed the minimal
number of modes, say Nr(n), such that

∣∣∣
∣∣∣ANr(n)

(
t
(s)
n

)
−
∣∣∣ψ(·, ·, t(s)n )

∣∣∣
∣∣∣
∣∣∣
2∣∣∣

∣∣∣ψ(·, ·, t(s)n )
∣∣∣
∣∣∣
2

≤ 0.1, (20)

where

ANr(n)

(
t(s)n

)
=

Nr(n)∑

l=1

bf(l;n)e
λf(l;n)(t

(s)
n −ti)φf(l;n). (21)

Thus, Nr(n) represents the minimal number of maxi-
mally sorted modes which represent 90% of the total en-

ergy of the GPE at t
(s)
n . Similarly, we define the time

dependent compression ratio Cr(n) = Nr(n)/N measur-
ing the proportion of modes needed to describe the bulk
of the dynamics (i.e., 90% of the energy). We note that
throughout each simulation presented in what follows, if
we use all of the available modes, the relative error mea-
sured above is at most on the order of 10−11 over the
course of the DMD sampling process, or the norms of

the residuals rn are only at worst 10−11
∣∣∣
∣∣∣ψ(·, ·, t(s)n )

∣∣∣
∣∣∣
2
.

In other words, taken in its entirety, the DMD provides
an extremely accurate reconstruction of the flow over the
time which it is applied.
While in some sense an arbitrary choice, we have found

the 90% threshold to provide an efficient way to deter-
mine the most relevant modes while still providing signif-
icant reductions in the compression ratio, thus reflecting
the way in which the DMD method is able to capture
many of the features of complex flows via relatively low-
dimensional representations. As noted above, the modes
of interest can change from sampling step to sampling
step. To quantify the effect of this change, we measure
the Jaccard index [30]

J (n) =
|In ∩ In−1|

|In|+ |In−1| − |In ∩ In−1|
, (22)

Ij = {f(1; j), f(2; j), · · · , f(Nr(j); j)} ,

with |·| denoting the number of elements in a given set
of indices. As suggested from our results below, in prac-
tice it is clear that the DMD method converges onto a
stable subset of modes over longer time scales. However,
our mode selection scheme also allows us to better under-
stand the dominant processes happening over the length

of time of the DMD sampling, thereby allowing for ob-
servations of transitory and multiple-scales behavior.

Focusing then on those modes which will ultimately
dominate towards the end of the DMD process, given that
the total time scale over which we perform the DMD is
300 units of non-dimensional time, we define those modes
such that −0.02 ≤ Re (λj) ≤ 5 × 10−3 to be weakly-
transitory. This choice reflects results from the simula-
tions where it is typical to see the magnitude of the coef-
ficients bj to be on the order of 102 for Re (λj) ∼ −0.02
and 10−2 for Re (λj) ∼ 0.005. Our definition of a weakly-
transitory mode ensures then that an initial amplitude of
102 is scaled to 0.5, or just a little over ten percent by the
end of the DMD sampling process. Likewise, an initial
amplitude of 10−2 becomes at most 0.02. Thus, by fo-
cusing on these weakly-transitory modes, we can focus on
those modes which characterize our 90% energy criterion
over longer time scales.

B. Modal descriptions

We first examine the results of the DMD by probing
the most significant modes which represent the amplitude
of the flow at the final time tf = 1.5× 104.

1. Weak-wave turbulence case

In this case, we take a low frequency band for the forc-
ing with kl = 4, kh = 6 and strength γ0 = 2.1 × 10−3.
To recreate the WWT results of Ref. [12], we keep both
hypoviscosity and hyperviscosity in place, see Fig. 2. In
particular, we see in panel (a) the fully evolved amplitude
of the GPE at tf , i.e. |ψ(x, y, tf )|, compared against
the DMD computed mean, i.e. λ = 0 mode, depicted
in panel (b). As seen, we can characterize the WWT
regime in part by noting the lack of clear structure in
the mean mode. Note, however, that there is a weak cir-
cular symmetry present in the mean mode due to the
spatially symmetric forcing being centered at the ori-
gin. The finer details seen in panel (a) can in part be
recovered by looking beyond the mean mode to higher
oscillatory/weakly-transitory modes as depicted in pan-
els (c)–(e). It is relevant to mention that, by a plot of

a weighted DMD mode, we mean that we plot
∣∣∣bjUφ̃j

∣∣∣,
thereby allowing us to visualize the spatial structure as-
sociated with the mode as well as its relative contribution
controlled by the magnitude of bj since each mode Uφ̃j
is scaled to have unit vector norm.

2. Low-frequency saturation case

Through the remaining simulations, we remove the hy-
poviscosity (νl = 0) while keeping the hyperviscosity
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FIG. 2: (Color online) DMD decomposition for the weak wave
turbulence case. This case corresponds to a low-frequency
forcing with kl = 4, kh = 6, and γ0 = 2.1 × 10−3 under the
presence of hyperviscosity and hypoviscosity with respective
strengths νh = 2× 10−6 and νl = 1× 10−18 and power p = 8.
Depicted are: (a) the amplitude |ψ(x, y, tf )|, (b) the λ = 0
DMD mean mode, and (c)–(e) the next three most significant
weakly-transient modes, i.e. bf(j;n)φf(j;n) for j = 2, 3, 4. The
corresponding eigenvalue for each mode is indicated. In con-
trast with the next two figures, we do not depict the phase
of the wavefunction here as it does not contain any promi-
nent features because, for this low-frequency forcing case, no
vortex structures are nucleated.

(νh = 2 × 10−6) with γ0 = 2.1 × 10−3, thereby allow-
ing for saturation at longer-wavelengths to occur. In
this case, we expect the formation of long-wavelength
coherent structures characterized by the presence of rel-
atively few vortices on an elevated density background
with acoustic waves scattering throughout. This is in-
dicative of the ‘Kibble-Zurek’ mechanism discussed in
Refs. [12, 31] used to explain analogies between coher-
ent structure formation in BEC’s and cosmology. After
removing the hypoviscosity, by looking at the relatively
low frequency forcing explored above, it is at this point
that we can plainly see the advantage of using the DMD
by comparing the fully evolved solution to the GPE in
Fig. 3(a) to the mean DMD mode depicted in Fig. 3(c).
The mean mode clearly identifies a finite number of vor-

FIG. 3: (Color online) DMD decomposition for the low-
frequency saturation case. Same parameter values as in Fig. 2
after removing the hypoviscosity (νl = 0). Depicted are: (a)
the amplitude |ψ(x, y, tf )|, (b) the phase of the wavefunc-
tion (assumed not to be observable in our methodology), (c)
the λ = 0 DMD mean mode, and (d)–(f) the next three
most significant weakly-transient modes, i.e. bf(j;n)φf(j;n) for
j = 2, 3, 4. The corresponding eigenvalue for each mode is
indicated. In the phase plot we indicate with (red) arrows
the location of two vortex-dipole pairs.

tices interacting through a finite amplitude background.
We can establish that these dips in |ψ| are in fact vor-
tices by examining the phase of ψ, which we have from
our numerics. The dips we see in Fig. 3(c) correspond to
windings in the phase plotted in Fig. 3(b). Specifically,
the phase plot indicates the presence of two vortex-dipole
pairs (location indicated with the arrows in the panel).
It is interesting to note that these two vortex-dipole pairs
are visible in the DMD modes despite the fact that no
phase information was used to obtain these modes. It
is also evident that tight vortex dipoles move relatively
fast in the flow and thus are “smeared out” by the DMD
decomposition. Therefore, as can be noticed in Fig. 3
the vortex dipole with the largest separation (top left) is
more visible in the DMD modes than the vortex dipole
with the tighter separation (bottom center).

It is crucial to stress that we are able to clearly cap-
ture the presence of vortices via the DMD without the
assistance of any phase information (as we are only mea-
suring the magnitude of the wavefunction). If one had
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FIG. 4: (Color online) DMD decomposition for the high-
frequency case. Same parameters and layout as in Fig. 3
but this time for a high frequency forcing with kl = 60 and
kh = 63. In the phase plot we indicate with red and white
arrows the respective locations of two vortex-dipole pairs and
two independent vortices.

direct access to the wavefunctions’ phase, then it would
be straightforward to extract the location (and sign)
of vortices by computing the vorticity of the fluid ve-
locity associated with the BEC flow (see for instance
Ref. [32] and references therein). However, most experi-
ments lack the possibility of directly measuring the phase
of the wavefunction[36], in which case, the DMD pro-
posed here could serve as a valuable tool to extract the
location of any vortex present in the condensate —albeit
the fact that the DMD cannot directly indicate the sign
of said vortices. One of the main advantages of the DMD
method in detecting vortices (or other long-lived coherent
structures) hinges in the fact that they are clearly visi-
ble in the lowest DMD modes (see Figs. 3 and 4). Thus,
these distinctive structures in the DMD modes cannot
be confounded with transient density dips that could be
provide false positives for the presence of a vortex.

It is interesting to note the relative similarity in the
finer, higher-frequency features seen in Fig. 3(d)–(f) to
those in Fig. 2 (c)–(e). This suggests that it is possible
to characterize the low-frequency saturation case as a
long-wave condensed mean containing CSs with a weakly-
turbulent background fluctuating about this mean.

3. High-frequency saturation case

We now look at higher-frequency forcing where we let
kl = 60 and kh = 63, see Fig. 4. As in the low-frequency,
long-wavelength saturated case above, we see that the
mean DMD mode depicted in panel (c) clearly isolates
the dynamics of the vortices present in the configura-
tion which are obscured through the higher-frequency
spatial features in the solution to the GPE depicted in
panel (a). This again is confirmed by looking at the
phase in Fig. 4(b). Specifically, the phase profile indi-
cates the presence of two independent vortices (see white
arrows) and two vortex-dipole pairs (see red arrows). As
the independent vortices drift slowly through the flow,
they have a high contrast in the DMD modes. On the
other hand, as before, tight (i.e., fast moving) vortex-
dipole pairs have a relatively weaker contrast in the DMD
modes. However, in contrast with the low-frequency forc-
ing case above though, we see in the higher-order modes
in panels (d)–(f), far sharper, or higher-frequency, spa-
tial features, thus clearly reflecting the different forcing
mechanism in play in this situation. This is particularly
true for the fast moving vorte-dipole pairs which remain
clearly visible in the DMD modes for the high-frequency
case when compared to the low-frequency one. Finally,
it is worth mentioning that the DMD analysis not only
provides evidence of the presence of coherent structures
such as vortices, but it also gives a sense of their dy-
namics. For instance, it is clear from the higher order
DMD modes depicted in Fig. 4 what is the trajectory
of the vortex-dipole pairs. Namely, the center top pair
moves up vertically relatively fast, while the top-right
pair moves slowly in a north-west diagonal trajectory.
Interestingly, the contrast of the trace left by the coher-
ent structure’s trajectory could be used as a measure for
their corresponding speed through their trajectory: the
fainter the trace the faster the speed.

C. Comparison across flows via spectral

characteristics

We now compare the spectral characteristics and com-
pression ratios for the WWT, the low-frequency satura-
tion (LFS), and high-frequency saturation (HFS) cases
studied above. Here, we focus less on isolating some
relatively small number of modes and opt to examine
the characteristic responses of each measured quantity
across the different flows thereby allowing for the identi-
fication of classifying features that may not be as read-
ily apparent given the overall complexity of each flow.
As observed in the left panels of Fig. 5, all the modes,
with the exception of the ones highlighted using trian-
gular and circular points, have eigenvalues with nega-
tive real parts. This indicates that all these modes are
weakly damped and thus weakly-transitory. Among the
modes which are weakly-transitory, the mean (see trian-
gular points) always begins as the dominant mode with
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respect to its magnitude of |bj |. Note that in the WWT
regime, see panel (a) in Fig. 5, there is a mode (see circu-
lar point) with an eigenvalue with a small, but positive,
real part [Re(λi) ≈ 5×10−3]. This mode, although iden-
tified as a growing one, has a relatively small magnitude
(bj ≈ 0.009) and thus very weakly participates in the
DMD. In fact, using the 90% energy mode selection cri-
terion, this mode is not even part of the selected basis.
On the other hand, we see from the right set of panels
in Fig. 5, that the higher temporal frequencies of oscilla-
tion correspond to smaller magnitudes of |bj|, reflecting
a kind of energy decay in time akin to what one usually
sees via Fourier transforms in time or space. However,
focusing on the regime of weakly-transitory modes, we
see marked differences in the spread of the magnitudes
of |bj | with respect to the real part of the eigenvalues λj .
Thus, the way in which weakly transitory effects mani-
fest themselves are distinguished in the different classes
of flows.
The impact of the spectra described above manifests

itself in the different dynamics and long time behavior
of the compression ratio Cr(n) and the Jaccard indices
J (n) as depicted in Fig. 6. As can be observed, the
greater complexity of the WWT flow necessitates larger,
and at times, more erratic numbers of modes in order
to maintain the 90% threshold used for modal selection.
This likewise manifests as significant fluctuations in J (n)
before it ultimately settles into a state in which the se-
lected modes overlap by about 95%. We also see the
greater complexity in the HFS case in comparison to the
LFS case by way of the overall larger compression ratio
needed in the HFS case throughout most of the simula-
tion; see in particular the detail plots in panels (g) and
(h) of Fig. 6. Moreover, we see that the Jaccard index
is more volatile in the HFS case, with strong deviations
in the choice of finite-dimensional subspace even close to
the end of the simulation. We note that the compari-
son of the Jaccard index in the LFS and HFS cases must
be made with the compression ratio in mind. By this we
mean that while there is volatility in J (n) for both cases,
this volatility is over a far larger subspace in the HFS case
than in the LFS case as seen by comparing the details
of the compression ratio plots in panels (g) and (h). A
partial explanation for this is that in the HFS case, in or-
der for energy to transfer to the longer wavelengths, one
must first form the higher frequency contributions and
spindle CSs structures as seen in Fig. 4(c)–(e). Lastly,
we note the presence of jumps in the compression ra-
tio which clearly correspond, predominantly, to the more
transitory modes, determined from examining the most
leftward eigenvalues depicted in the left panels of Fig. 6.

V. CONCLUSIONS

In the present work, we simulated different turbulent
flows in a 2D BEC modeled by the Gross-Pitaevskii equa-
tion with stochastic, band-limited, forcing. The injection
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FIG. 5: (Color online) Spectra of the DMD modes. The left
(right) panels depict log10 |bj | vs. the real (imaginary) part
of λj . The top, middle, and bottom set of panels corre-
spond, respectively, to the WWT, low-frequency saturated,
and high-frequency saturated regimes. The triangular points
in the left panels correspond to the eigenvalues of the weighted
mean. The circular mode in panel (a) correspond to a weakly-
growing mode with a relatively small weight (bj ≈ 0.009) such
that it does not have a sizable contribution to the DMD dy-
namics.

of energy through the forcing was balanced by energy re-
moval at both ends of the energy spectrum by adding hy-
poviscosity and hyperviscosity phenomenological terms
in the model equation. We borrowed the dynamic-mode
decomposition (DMD) methodology in order to charac-
terize the nature of the obtained complex flows corre-
sponding to weak-wave turbulence, low-frequency satu-
ration, and high-frequency saturation regimes. In views
of deploying the DMD methodology to more general com-
plex flows, including ones coming from experimental re-
alizations, we extracted and ranked the DMD modes so
to only keep a small, manageable, percentage of them.
The modal selection ranking was defined by keeping all
modes necessary to reconstruct 90% of the energy of the
system. This dynamic reduction resulted in keeping just
10% of the total number of modes. Within this reduced
modal set, we used the spectral information of the modes
to characterize the different turbulent regimes. This in-
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FIG. 6: (a)–(f) Evolution of the compression ratio Cr(n)
(left) and Jaccard index J (n) (right) corresponding, from
top to bottom, to the WWT, low-frequency saturated, and
high-frequency saturated regimes. Panels (g) and (h) depict
details of the compression ratio for the high-frequency and
low-frequency saturated regimes respectively.

formation was used in tandem with: (a) the compression
ratio that gives a measure of the proportion of modes
necessary to capture the desired level of energy with the
DMD subset and (b) the Jaccard index of the modal set
which provides a measure of the stationarity of the cho-
sen modal set.

Our results tend to suggest that the DMD decompo-
sition is successful in differentiating the distinct types of
complex flows and, in particular, it seems to be very use-
ful in extracting coherent structures that might otherwise
be hidden in the complexity of the flow. For instance, we
were able to extract the location (and some of the dy-
namics) of vortices despite the fact that we did not use
any phase information of the BEC flow to build the DMD
modal set. This feature of the DMD to be able to detect

hidden coherent structures seems particularly appealing
in the realm of atomic BEC where vortices cannot be
readily pinpointed without the use of the wavefunction’s
phase, which is typically not available in most atomic
BEC experiments. For instance, it would be interesting
to use the DMD methodology for BEC flows that, by con-
struction, promote the nucleation of coherent structures
(such as vortices; cf. Refs. [33, 34]) in order to separate
the dynamics associated with these coherent structures
and the complex background flow.
The DMD methodology is, by construction, model ag-

nostic and it is well suited for experimental situation
where a large amount of data is usually extracted. There-
fore, it is a good candidate to provide useful informa-
tion about the main characteristics of complex flows and
the potential hidden coherent structures that they might
host. It would be interesting to test whether the results
presented here are relevant to other complex flows scenar-
ios like classical flows and whether the DMD is useful to
indeed characterize and differentiate different turbulent
states.

Appendix A: Dimensional reduction and

non-dimensionalization of the GPE

In physical units, an unforced 3D BEC, trapped in a
harmonic potential V (x, y, z) = 1

2 (ω
2
xx

2 + ω2
yy

2 + ω2
zz

2),
can be modelled, for temperatures close to zero, by the
Gross-Pitaevskii equation [26]:

i~
∂

∂t
ψ3D =

[
− ~2

2m
∆+ g3D |ψ3D|2 + V (x, y, z)

]
ψ3D,

(A1)
where ψ3D(x, y, z, t) is the 3D wavefunction, ωi are the
trapping frequencies (strengths) of the confining trap
along the three cardinal directions, and the nonlinearity
g3D = 4π~2as/m is given in terms of the s-wave scat-
tering length as and the mass of the atoms m. In this
3D setting, |ψ3D|2 dx dy dz describes probabilities in the
sense that

N =

∫∫∫
|ψ3D|2dx dy dz (A2)

recovers the total number of particles under considera-
tion. A 2D reduction of the BEC can then be achieved
by assuming that one of the trapping strengths is much
larger than the other two, i.e., ωx, ωy ≪ ωz. In that case,
one can separate the full 2D wavefunction as

ψ3D(x, y, z, t) = ψ2D(x, y, t)× ψ0(z)× e−iµzt/~, (A3)

where ψ2D(x, y, t) is the effective 2D wavefunction and
ψ0(z) is the z-ground state with chemical potential µz.
The above separation is based on the assumption that,
when dealing with moderate energies, the ωz is large
enough so that excitations along the z-direction cannot
be promoted and, thus, the wavefunction always remains
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in its ground state along this transverse direction. Then,
by normalizing ψ0(z), applying the separation of vari-
ables (A3), and averaging (i.e., integrating) along the
z-direction, one obtains the effective 2D GPE

i~
∂

∂t
ψ =

[
− ~2

2m
∆+ g2D |ψ|2

]
ψ, (A4)

where we have assumed very weak trapping strengths in
the x- and y-directions (ωx, ωy ≃ 0). In this 2D reduc-
tion, the new effective 2D nonlinearity is given by

g2D =
g3D√
2πaz

, (A5)

and az = ~/(mωz) is the transverse oscillator length. It
is remarkable that, in this setting, one can use the trans-
verse trapping strength ωz to control the effective nonlin-
earity of the 2D reduced model. As the transverse wave
function ψ0(z) is normalized, |ψ(x, y, t)|2 now describes
the (probability) density in 2D and thus

N =

∫∫
|ψ2D|2dx dy (A6)

now recovers the total number of particles under con-
sideration. Finally, introducing the scalings (oscillator
length units)

x̃ =
x√
2 ξ
, ỹ =

y√
2 ξ
, t̃ = ωzt, ψ̃ =

√
~ωz

g2D
ψ, (A7)

where

ξ2 =
~

mωz
(A8)

is the so-called healing length, yields (after dropping the
tildes for ease of notation) the non-dimensional 2D GPE

iψt = −∆ψ + σ |ψ|2 ψ, (A9)

where σ = sgn(as) defines the sign of the nonlinearity
corresponding to an attractive, or self-focusing, BEC for
σ = −1 and to a repulsive, or defocusing, BEC for σ = 1.

Appendix B: Observables for the Hamiltonian flow

Throughout this section, we ignore the effects of forc-
ing and damping so as to make deriving motivating re-
sults relatively straightforward. Thus, starting from the
well-known Hamiltonian of the GPE/NLSE

H =

∫
|∇ψ|2 dx +

1

2

∫
|ψ|4 dx, (B1)

the GPE may be rewritten in variational form as

iψt =
δH

δψ∗
. (B2)

Using a Fourier expansion, we get the equivalent Hamil-
tonian system

i∂tam (t) =
δH

δa∗
m
(t)

(B3)

where H > 0 becomes

H =
∑

m

ω(km) |am|2

+
1

2

∑

m1,m2,m3,m

am1am2a
∗
m3
a∗mδ

m,m3
m1,m2

, (B4)

where

δm,m3
m1,m2

= δ(m1 +m2 −m3 −m), (B5)

with δ(·) being the Kronecker delta function or tensor.
To truncate the system so that it is consistent with the

pseudo-spectral method that we employ to integrate the
GPE, we introduce the wraparound function τ where,
letting KT = 2K + 1, if we define for an integer m̃ the
function

τ(m̃) ∈ {−K, · · · , 0, · · · ,K} , (B6)

so that

(m̃+K) ≡ (τ(m̃) +K)modKT , (B7)

then if m = (m,n), we define τ(m) so that

τ(m) = (τ(m), τ(n)) . (B8)

This allows us to account for the effect of aliasing due
to nonlinearity in our pseudo-spectral method. We then
require that

0 ≤ ||m||∞ ≤ K, ||m||∞ = max {|m| , |n|} , (B9)

which yields the affiliated dynamical system

i∂tam = Fm(a), a ∈ C
2K+1, 0 ≤ ||m||∞ ≤ K, (B10)

where a ∈ C(2K+1)2 denotes the set of all the am values
and where

Fm(a) = ω(km)am +
∑

am1am2a
∗
τ(m1+m2−m), (B11)

where the sum is carried out for 0 ≤ ||m1||∞ , ||m2||∞ ≤
K. We define the affiliated flow for initial conditions
a0 via the flow map Φ(t; a0). We readily see that the
functional

H̃(a;K) =
∑

0≤||m||
∞

≤K

ω(km) |am|2

+
1

2

∑
am1am2a

∗
τ(m3)

a∗τ(m)δ
m,m3
m1,m2

, (B12)

where the second sum is carried out for 0 ≤
||m||∞ , ||m1||∞ , ||m2||∞ , ||m3||∞ ≤ K, provides a
Hamiltonian of the finite-dimensional system.
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Fixing the number of modes, K, one can define the
density

ρ(a) =
1

Z
e−H̃(a;K), (B13)

where the normalization constant is Z =∫
C(2K+1)2 e

−H̃(a;K)da. Following Ref. [28], this yields
the average, or expectation, functional E[f ] for any
well-defined observable f to be:

E[f ] =

∫

C(2K+1)2
f(a)ρ(a)da. (B14)

From the density, we can define an invariant measure µ,
which allows us to readily define the affiliated Hilbert

space L2(C
(2K+1)2 , µ) with inner product 〈f, g〉 = E[fg].

Using the method of characteristics, we can define for
our flow the associated Liouville operator L so that the
solution to the equation

ut = Lu, u(a0, 0) = g(a0) ∈ L2(C
(2K+1)2 , µ), (B15)

has the solution

u(a0, t) = eLtg(a0) = g(Φ(t, a0)). (B16)

Using the semigroup property of eLt and Φ, we see that
by choosing a fixed timestep δt, we have

g(Φ(t+ δt, a0)) = eLδtg(Φ(t, a0)). (B17)

Thus, for any reasonably defined quantity g, there exists
a linear operator eLδt which transports that quantity for-
ward in discrete steps of time. The Hamiltonian struc-
ture of the underlying finite-dimensional system ensures
that eLδt is a unitary operator, which is to say that it

preserves the L2(C
(2K+1)2 , µ)-norm of a given function.

Thus, the linear Koopman operator is given in our Hamil-
tonian context by eLδt. Generalizations of this approach
are found in Refs. [20, 22, 23] and elsewhere.
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and D. S. Hall. Dynamics of a few corotating vortices in
Bose-Einstein condensates. Phys. Rev. Lett., 110 (2013)
225301.

[18] T. W. Neely, E. C. Samson, A. S. Bradley, M. J. Davis
and B. P. Anderson. Observation of vortex dipoles in an
oblate Bose-Einstein condensate. Phys. Rev. Lett., 104



12

(2010) 160401.
[19] D. V. Freilich, D. M. Bianchi, A. M. Kaufman, T. K. Lan-

gin and D. S. Hall. Real-time dynamics of single vortex
lines and vortex dipoles in a Bose-Einstein condensate.
Science, 329, 5996 (2010) 1182–1185.
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