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The unidirectional motion of a camphor boat along an annular water channel is observable. When
camphor boats are placed in a water channel, both homogeneous and inhomogeneous states occur
as collective motions, depending on the number of boats. The inhomogeneous state is a type of
congestion, that is, the velocities of the boats change with temporal oscillation, and the shock
wave appears along the line of travel of the boats. The unidirectional motion of a single camphor
boat and the homogeneous state can be represented by traveling wave solutions in a mathematical
model. Because the experimental results described above are thought of as a type of bifurcation
phenomena, the destabilization of traveling wave solutions may indicate the emergence of congestion.
We previously attempted studying a linearized eigenvalue problem associated with a traveling wave
solution. However, the problem is too difficult to analyze rigorously, even for just two camphor boats.
Therefore we developed a center manifold theory and derived a reduced model in our previous work.
In the present paper, we study the reduced model, and show that the original model and our reduced
model qualitatively exhibit the same properties by applying numerical techniques. Moreover, we
demonstrate that the numerical results obtained in our models for camphor boats are quite similar
to those in a car-following model, OV model, but there are some different features between our
reduced model and a typical OV model.

I. INTRODUCTION

Self-driven motion of animal and non-animal organ-
isms can be observed in several fields, such as biology [1],
chemistry [2], and nonlinear physics [3, 4]. Organisms
move spontaneously to aggregate and form self-organized
structures. In many cases, individual members do not in-
teract directly. Rather, they change their surroundings
in ways that have an influence on the behavior of other
members, which implies that the organisms have long-
range interactions [5, 6]. Therefore it is important not
only to clarify the mechanism of the self-sustaining mo-
tion of each organism, but also to study how organisms
behave as a whole system.
Spatiotemporal collective motions in chemical experi-

ments with camphor have been investigated experimen-
tally and theoretically in [7–12]. A camphor scraping
at an air–water surface exhibits several motions, includ-
ing clockwise/counterclockwise rotation, and translation
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[9]. Furthermore, it was shown in [7], [12] and [13] that
unidirectional motion can be observed when we place a
camphor boat in an annular water channel. In experi-
mental setups, a camphor boat is composed of a plastic
disk with a camphor disk stuck to its edge using an ad-
hesive. Camphor boats constitute a system that exhibits
two different states depending on the number of particles.
It was reported in [12] that when the number of boats is
less than 30, camphor boats move with a constant veloc-
ity and spatially disperse with the same spacing between
boats. Such a homogeneous state is termed a uniform

flow throughout this article. On the other hand, when
the number is larger than 30, the velocities of the boats
change with temporal oscillation, and a shock wave ap-
pears in the line of travel of the boats. We call such an
inhomogeneous state generated by particles a congested

state.

The spontaneous unidirectional motion of each cam-
phor boat is realized as a traveling wave solution in the
mathematical model proposed in [7] based on a New-
tonian equation for the motion of a camphor boat and
a reaction-diffusion equation for the density of camphor
molecules on the water surface. In the model, a travel-
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ing wave solution represents a state in which all camphor
boats exhibit unidirectional motion with the same speed,
and the same space exists between any pair of neigh-
boring boats. Actually, such a model can also generate
various collective motions of camphor boats. As seen
in Figs.3 and 4 of [12], congested states emerge in the
model when the parameters and the number of boats are
chosen appropriately. Therefore, it can be said that the
numerical results qualitatively agree with those obtained
through experiments.

The numerical results in [12] are also very similar to
those in a car-following model, termed an OV model [14].
This is described by a form of ordinary differential equa-
tions, exhibiting a congested state of vehicles, and having
a qualitative fit to the data widely extracted from high-
way traffic [15, 16]. The authors in [12] state that the
mathematical model for camphor boats can be reduced
to an OV model under the assumption that the relax-
ation time and the decay length of camphor density on
the water surface are much shorter than the motion of
camphor boats and the boat length. Thus, because the
reduced model is represented by a typical type of OV
model, the mathematical model for camphor boats qual-
itatively may have the same mathematical structure as a
typical OV model.

Here we recall that a traveling wave solution can
emerge with a certain parameter set via pitchfork bifur-
cation in a model for camphor boats [7]. Generally speak-
ing, a bifurcation point enables us to reduce a mathemat-
ical model to a lower dimensional dynamical system [17].
We follow a center manifold theory developed in [18] and
have already derived a reduced system near a bifurcation
point in our previous paper [19]. Another reduced system
for a camphor boat has been derived in a formal manner,
which verified that such a system can generate an oscil-
latory motion of the boat [20]. It was assumed in this
previous work that the reduced system had high nonlin-
earity, despite there being no mathematical theories that
guarantee the verification of the reduction process used to
derive such nonlinearity. Thus, the aim in this study is to
investigate our new reduced system both mathematically
and numerically. Moreover, we indicate the similarities
and differences between the reduced system and a typical
OV model.

This paper is organized as follows; In Section II, we
introduce a mathematical model, which is a modification
of the model proposed in [7] (see (1)) and our reduced
model (see (2)). In Section III, we provide several numer-
ical results. First, space-time diagrams derived from (1)
and (2) are shown, which indicate that the two models
can generate congested states by changing the number of
camphor boats. Second, typical fundamental diagrams

are depicted, which are plots of the flow rate versus the
number density of particles (boats). Finally, we apply a
bifurcation analysis software named “AUTO” (see [21])
and demonstrate the global bifurcation structure of (2),
in which we find a slight difference between (2) and a
typical OV model. We note that it is difficult to ap-

ply AUTO to the original model (1) directly because (1)
includes a form of partial differential equation. In Sec-
tion IV, we formally discuss why our reduced model and
the OV model can possess almost the same mathemati-
cal structure, discuss their differences, and then state our
conclusions.

II. METHOD

A. Model for the self-sustaining motion of
camphor boats

We introduce the following mathematical model for the
self-sustaining motion of N camphor boats on the circuit
[0, L] ([7, 10, 19]);



















d2xi

dt2
(t) = −µ

dxi

dt
(t) + Fi(t),

∂u

∂t
=

∂2u

∂x2
− ku+

N
∑

i=1

f(x− xi(t); s),

(1)

where k and µ are positive constants. In this model,
a camphor boat is regarded as a particle, and the po-
sition of the i-th camphor boat is denoted by xi(t) for
i = 1, . . . , N . The surface concentration of a camphor
molecular layer is denoted by u = u(x, t) at position x
and time t. The first equation is described by the New-
tonian equation with the surface tension determined by
a nonlinear function γ of u. The difference in surface
tension at the edge of the i-th camphor boat is denoted
by Fi(t) and is defined by

Fi(t) =
1

2ρ
(γ(u(xi(t) + ρ, t))− γ(u(xi(t)− ρ, t))),

where ρ is the radius of the camphor boats, and the non-
linear function γ(u) is defined by γ(u) = γ1/(1+aun) for
a, γ1, n > 0 [7]. The surface concentration u of a camphor
molecular layer is assumed to yield the reaction-diffusion
equation with the function f(x; s), defined by

f(x; s) =











1, 0 < x < ρ,

s, − ρ < x < 0,

0, otherwise,

which means that camphor molecules are supplied only
from (−ρ, ρ) i.e., where a camphor boat contacts the wa-
ter surface. Let s ∈ [0, 1], which means that camphor
boats may be inhomogeneous media and that the amount
of the supply on (−ρ, 0) is not larger than on (0, ρ). The
function u is assumed to satisfy the periodic boundary
condition x = 0, L.

B. Reduced system

As seen in Fig. 1, (1) exhibits a congested state, which
results from the destabilization of a uniform flow. In
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other words, the traveling wave solution of (1) must be
unstable in a certain parameter region. Then, we chal-
lenged this observation by studying the linearized eigen-
value problem of (1) to prove the instability of the uni-
form flow. However, it appears almost impossible to ver-
ify rigorously, even if there are only two boats. Thus
we changed our approach to a reaction-diffusion type as
in (1), and derived a more simplified model mathemati-
cally related to (1). The position and velocity of the i-th
particle are denoted by xi = xi(t) and vi = vi(t), re-
spectively. Applying the theory in [22] to (1) in a formal
manner, we can derive an ordinary differential system,
which describes the dynamics of xi and vi, given by











dxi

dt
= vi,

dvi
dt

= G(vi) +Mfe
−α(xi−xi−1) −Mbe

−β(xi+1−xi)

(2)
for i = 1, . . . , N and G(v) = a0+a1v+a2v

2+a3v
3 for con-

stants a0, a1, a2, a3,Mf ,Mb, α, and β. We assume that
0 ≤ xi(0) < xi+1(0) < L for any i = 1, . . . , N − 1 and
xi(t) 6= xj(t) for i 6= j and t. Because we suppose that
xi(t) and u(x, t) satisfy the periodic boundary conditions
in (1), the position x = L is identified with x = 0. In ad-
dition, we set xN+1 = x1+L and x0 = xN−L. According
to the center manifold theory, the bifurcation structure
of (1) determines the nonlinear term G(r), and a cu-
bic function takes a canonical form in the case of pitch-
fork bifurcation ([17]). Additionally, Mfe

−α(xi−xi−1) and

Mbe
−β(xi+1−xi) represent the influence of the surface ten-

sion and of the diffusion of camphor molecules, respec-
tively, from the neighboring particles. In the associated
Supplemental Material [23], the process of the derivation
of the reduced system is presented. The precise reduction
process is also described in our paper [19].
Mathematical analysis of (2) is much easier than that

of (1) although we need more mathematical arguments
to derive (2) from (1) rigorously (see [24]). More pre-
cisely, we assume that there exists a solution v for
G(v) + Mfe

−αL/N − Mbe
−βL/N = 0. Then, the eigen-

value λ in the linearized eigenvalue problem of (2) as-
sociated with the uniform flow v can be explicitly rep-
resented by λ = (G′(v) ±

√

G′(v)2 − 4h(ω))/2, where

h(ω) = αMfe
−αL/N(1− ω) + βMbe

−βL/N(1− ω), ω is a
(2N)-th root of unity, and its complex conjugate is repre-
sented by ω. With this formula, we can easily study the
parameter dependencies of λ and locate the bifurcation
points. On the other hand, it is difficult to derive such
explicit characterization of eigenvalues for the uniform
flow in (1). Therefore our reduced system (2) is useful
for rigorous analysis.

C. Numerical simulations

We implement numerical simulations involving (1) and
(2) for various densities of particles in a one-dimensional

circuit. To change the density of particles continuously,
we change the length L while maintaining the number of
particles N as fixed. For the initial positions of parti-
cles, we only consider two cases. In the first case, we set
xi(0) = iL/N for any i, which is called the uniform initial
state. In the second case, we set xi(0) = iL/3N for any
i, called the congested initial state. In other words, any
two neighboring particles are positioned with the same
distance in (0, L) in the first case and in (0, L/3) in the
second case. Furthermore, we add small fluctuations for
xi(0). The initial velocities of all particles are equal to 0.
Integration of (2) was performed by applying the fourth-
order Runge-Kutta iterative scheme with a time step of
0.0001.
We estimate the states of collective motions based on

the flow rate of particles. Throughout this article, the
flow rate is defined as the average of the velocities of all
particles, which is more precisely given by

1

L

N
∑

i=1

1

T2 − T1

∫ T2

T1

vi(t)dt (3)

for T1 < T2. This definition for the flow rate is slightly
different from [12], but is analogous to that in traffic flow
[25].

III. RESULTS

A. Space-time diagrams and fundamental diagrams

We first show that (1) can exhibit congested states as
observed in the experiment in Fig. 3 of [12]. In Fig. 1,
each solid line shows the position of each camphor boat
at time t. A few camphor boats move at a relatively
slower speed in a region which is relatively darker. We
call such a region a congested region. Actually, the con-
gested regions in Figs. 1 (a) and (b) move forward and
backward, respectively. As shown in Fig. 2(b) in [12],
the congested region moves in the same direction as the
motion of the camphor boats. However, the direction of
motion of the congested region is opposite to that of the
particles in the simulation (Fig. 3 in [12]).
We also obtain a fundamental diagram for (1). Fig. 2

shows that the flow rate for low densities is monotonically
increasing, while that for high densities is monotonically
decreasing, which is qualitatively the same as the result
of the experiment in [12]. To describe distinctive fea-
tures of the fundamental diagram, we separate the den-
sity into five regions, as suggested in [15]. First, it is easy
to verify the unique existence of a uniform flow in (1) for
the parameter set of Fig. 2. In Region I, only uniform
flow emerges, and the flow rates increase monotonically
in both initial states. In Region III, the uniform flow
is destabilized and a stable congested state is achieved.
These results indicate that the uniform flow becomes un-
stable as the density increases. Although the uniform
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FIG. 1. Space-time diagrams for (1). Congested regions
move forward (a) and backward (b). We set N = 47, L =
80, µ = 2, ρ = 0.25, k = 1.44, s = 0, γ1 = 2112, a = 1, n = 2,
and the time increment is 0.00001 in (a) while N = 8, L =
40, µ = 5, ρ = 0.25, k = 5.5, s = 0, γ1 = 20, a = 100, and
n = 2 in (b). In both (a) and (b), the number of the space
grid is 2400.

flow cannot be realized in Region III, it re-appears in Re-
gions IV and V. On the other hand, a congested state can
be observed not only in Region III, but also in Regions
II and IV. Therefore, the uniform flow and the congested
state can coexist in Regions II and IV. Note that these
results are completely consistent with those in [15].
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○
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FIG. 2. Fundamental diagram in (1). The circles and crosses
denote the flow rates for the solutions having a uniform initial
state and a congested initial state, respectively. All velocities
of particles are assumed to be 0 initially, and all parameters
are the same as in Fig. 1(b) except for L. We set T1 = 100
and T2 = 400 in (3) to compute the flow rates.

Next we show numerical results generated by our re-
duced model given by (2). We find in Fig. 3 that both a
uniform flow and a congested state appear from (2) de-
pending on the density of particles. As well as Fig. 1,
each solid line represents the position of each particle
at time t. Note that all parameters are the same ex-

cept for the length of the circuit L in (a) and (b). The
difference between the densities of particles in (a) and
(b) results in destabilization of the uniform flow, as seen
in (a), and emergence of the congested state in (b). In
(b) and (c), different types of congested states appear.
There is one congested region in each figure (b) and (c).
The directions of the congested region in (b) and (c) are
antiparallel and parallel to the motions of the particles,
respectively. These results are also obtained using (1).
Moreover, the fundamental diagram shown in Fig. 4 for
(2) is qualitatively the same as in Fig. 2. Our new sys-
tem given by (2) as well as (1) can yield the same results
as observed in the experiments by selecting the system
parameters appropriately.

particle positions
0

0

0

0 (b) (c)

110 120
3501000

tim
e

0

0 (a)

210
1000

FIG. 3. Space-time diagrams for (2) ((a): uniform flow, and
(b), (c): congested states). In (a) and (b), all parameters
are the same except for the length of the circuit L. We set
L = 210 in (a) and L = 110 in (b), respectively. Only the
difference between the densities of particles in (a) and (b)
causes the uniform flow shown in (a) to no longer be stable in
(b). In (b) and (c), different types of congested states emerge
and the congested region moves backward in (b) and forward
in (c). We set N = 31,Mf = 0,Mb = 1.5, β = 0.21, a0 =
1.2, a1 = −1.46, a2 = 1.39, and a3 = −0.55 in (a) and (b),
and N = 31, L = 120, Mf = 0,Mb = 2.6, β = 0.1, a0 =
8.0, a1 = −5.2, a2 = 1.42, and a3 = −0.14 in (c).

B. Global bifurcation diagram in (2) and multiple
congested regions

Applying the AUTO software to (2), we can present a
global bifurcation diagram (see Fig. 5). The figure con-
sists of a straight line and six curves, which correspond to
the uniform flow and to periodic solutions of (2), respec-
tively. The three curves D, E, and F are dashed, which
implies that all periodic solutions on those branches are
unstable. On the other hand, curves A, B, and C include
both solid and dashed marks. This means that stable pe-
riodic solutions emerge via bifurcation. In particular, we
find a stable congested state at each point on the solid
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curve of A, which is consistent with the results for a typi-
cal OV model obtained in [26], meaning that a congested
state has only one congested region. On the other hand,
stable periodic solutions with multiple congested regions
can be observed on the solid curves in B and C. Moreover,
such stable periodic solutions can coexist. For example,
setting L = 50 and carrying out numerical simulations
of (2), we obtain three types of periodic solutions with
different numbers of congested regions. In Fig. 6 (a)–
(c), there are one, two, and three congested regions in
the circuit, respectively. Because we fix L = 50 and all
the parameters in the simulations are the same as those
used in Fig. 5, only the differences in the initial condi-
tions affect the numerical results. Such solutions with
multiple congested regions cannot be observed in the OV
model, as stated in [14]. Therefore, we conclude that our
reduced model (2) has many of the same features as a
typical OV model, but exhibits a qualitatively different
mathematical structure.
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FIG. 4. Fundamental diagram in (2). The circles and crosses
denote the flow rates for the solutions having a uniform ini-
tial state and a congested initial state, respectively. All ve-
locities of particles are assumed to be 0 initially. In both
cases, N = 40,Mf = 0,Mb = 31.6875, α = 0.0, β = 0.42,
a0 = 25.35, a1 = −9.49, a2 = 2.78, and a3 = −0.338462. We
set T1 = 500 and T2 = 1000 in (3) to compute the flow rates.

We discuss the qualitative properties of congested re-
gions, which are symbolized by Ri (i = 1, . . . , 6) in Fig. 5
(a)–(c) more precisely. Each congested region moves
backward with respect to the moving direction of parti-
cles with a constant velocity, and the cluster size, which
is referred to as the number of particles in the region
and was introduced in [14], is constant in time. All con-
gested regions have almost the same velocities, which are
estimated as 0.918 (R1), 0.916 (R2), 0.91 (R3), and 0.89
(R4, R5 and R6). It appears that any neighboring con-
gested regions among R4, R5 and R6 have similar sepa-
ration in (c), but the separation of two intervals between
congested regions R2 and R3 is different.

MA
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3.0

length
30 50 70
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F

FIG. 5. Bifurcation diagram using (2). This numerical anal-
ysis was performed by AUTO. The solid and dashed lines
show that associated solutions are stable or unstable, respec-
tively. We set N = 25. The other parameters in (2) are the
same as those in Fig. 4.
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R₆

FIG. 6. Space-time diagrams for (2). We set L = 50 and
N = 25 and applied the same parameters used in Fig. 4 for
all numerical results (a)–(c). On the other hand, the initial
conditions are different.

IV. SUMMARY AND DISCUSSION

In the present article, congested states of camphor
boats, which are types of collective motions in a one-
dimensional lane, have been studied by using theoretical
approaches. The experimental results shown in Fig. 2
of [12] indicate that camphor boats exhibit both a uni-
form flow and a congested state depending on the density
of particles. Such qualitative behaviors of camphor boat
motions are consistent with those of traffic flow described
in [14]. From this viewpoint, we have investigated the
mathematical model given by (1) and the new reduced
system given by (2) theoretically and numerically to clar-
ify the similarities and differences between these models
and a typical OV model.

The space-time diagrams for (1) and (2) are qualita-
tively the same as for a typical OV model (see Figs. 1 and
3). The fundamental diagrams in Figs. 2 and 4 are very
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FIG. 7. Dynamics of (4) and (5) for each ∆x. The solid lines
are graphs of v = V (∆x) in (a) and v = G−1(Mbe

−β∆x) in
(b), where G−1 is the inverse function of G. To show (a), we
set V (∆x) = a(tanhβ(∆x − ∆x0) + M) with a = 16.8, β =
0.086,∆x0 = 25,M = 0.913, which are the same parameters
as in [15], while all parameters used for (b) are the same as
in Fig. 4.

similar to that in [15]. These facts imply that (1), (2),
and the OV model share the same mathematical struc-
ture for exhibiting congestion phenomena, although they
also differ in some behaviors, as discussed below.
To highlight the similarities based on the qualitative

properties of (2) and the OV model, we focus on the
following two equations;

dv

dt
= a(V (∆x)− v), (4)

dv

dt
= G(v) −Mbe

−β∆x, (5)

where V (∆x) in (4) is smooth, uniformly bounded, and
monotonically increasing, called an optimal velocity func-

tion or OV function simply. The two equations (4) and
(5) are associated with the OV model and (2), respec-
tively. These are ordinary differential equations for ve-
locity v with relative distance ∆x. Here we consider
∆x as a fixed parameter. Fig. 7 shows the dynamics
of the solutions and the graphs of the nullclines of (4)
and (5). Moreover, the arrows in the figures are associ-
ated with the vector fields of (4) and (5) for each ∆x > 0,
which implies that velocity v in each equation converges
to a steady state for any initial value and ∆x. The ∆x-
dependency of the nullcline shown in (a) is qualitatively
the same as in (b) based on the facts that it increases
monotonically, converges in the limit ∆x → ∞, and has

only one inflection point. We expect that these simi-
larities qualitatively generate the same behaviors in the
solutions obtained by the OV model and (2).

We have found some differences between the models
for camphor boats and a typical OV model. The first
is the flow direction of a congested region. In the traf-
fic flow model, the congested region moves in a direction
opposite to the motion of each particle. On the other
hand, the congested region of camphor boats moves in
the same direction as the motion of each particle in the
experiment. By selecting system parameters appropri-
ately, (1) and (2) can also exhibit both congested states
with congested regions whose directions are parallel and
antiparallel to the motions of particles. As far as we
know, no previous research has worked out a simulation
for a reaction-diffusion model as that represented by (1),
in which the same results as in the experiment are gen-
erated. As a conclusion, the system defined by (2) is not
only written in the form of simple ordinary differential
equations, but also has a rich structure.

Second, we noted a difference in the global bifurcation
diagrams numerically obtained by AUTO. As stated in
[26], any state with multiple congested regions appears
to be unstable and gradually transitions to a state with
a single congested region in the OV model. On the other
hand, (2) exhibits stable congested states, which can in-
volve multiple congested regions. Moreover, such states
can coexist using the same parameter set. As a con-
clusion, we can state the possibility that the collective
motions observed in camphor boats include qualitatively
different properties from those in vehicles.
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