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We uncover unusual topological features in the long-time relaxation of the q-state kinetic Potts
ferromagnet on the triangular lattice that is instantaneously quenched to zero temperature from a
zero-magnetization initial state. For q = 3, the final state is either: the ground state (frequency
≈ 0.75), a frozen three-hexagon state (frequency ≈ 0.16), a two-stripe state (frequency ≈ 0.09), or
a three-stripe state (frequency < 2 × 10−4). Other final state topologies, such as states with more
than 3 hexagons, occur with probability 10−5 or smaller, for q = 3. The relaxation to the frozen
three-hexagon state is governed by a time that scales as L2 lnL. We provide a heuristic argument
for this anomalous scaling and present additional new features of Potts coarsening on the triangular
lattice for q = 3 and for q > 3.

I. INTRODUCTION

When a ferromagnet with multiple degenerate ground
states is quenched from above to below its critical point,
a coarsening domain mosaic emerges in which distinct
phases compete to prevail in the ordering dynamics [1, 2].
In contradiction to continuum theories of coarsening,
which predict that the ground state is ultimately reached,
the long-time states that persist in discrete spin systems
can be surprisingly rich when the quench is to zero tem-
perature, T =0. Such states are actually metastable but
infinitely long lived when this quench to T = 0 is in-
stantaneous. These persistent states may be static and
geometrically simple, such as stripe states in the kinetic
Ising ferromagnet in spatial dimension d = 2 [3, 4]. An
unexpected and simplifying feature of these stripe con-
figurations is that their occurrence probabilities can be
computed exactly in terms of the spanning probabilities
of continuum percolation [7–12].

In contrast, for the d = 3 kinetic Ising ferromagnet,
these persistent states are often topologically complex
and non-stationary [5, 6]. An even more striking feature
of the d = 3 Ising ferromagnet is that the probability
to reach the ground state rapidly decreases with L and
realizations that do reach the ground states play an in-
significant role for large L. Almost always, the final state
consists of two, and only two, clusters—one spin up and
one spin down. These two clusters are intertwined so that
each cluster typically has a high genus. On the surfaces
of these clusters, there are a small but finite fraction of
“blinker” spins—spins in which three neighbors are in the
spin-up state and three neighbors are in the spin-down
state. Consequently, blinkers can freely flip between the
spin-up and spin-down states with no energy cost.

The domain geometry that arises when the kinetic q-
state Potts ferromagnet is instantaneously quenched to
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zero temperature is richer still [13–21]. The Potts sys-
tem has been extensively investigated because of its ap-
plications to diverse coarsening phenomena, such as soap
froths [22–24], magnetic domains [25–30], cellular tissue
and other natural tilings [31–33]. For T = 0 quenches,
the ground state is rarely reached for large q [34, 35] and
“blinker” (freely flippable) spins arise on the square lat-
tice [36]. A domain mosaic on the square lattice may also
get stuck in a nearly static, geometrically complex state
for times that are much larger than the coarsening time
scale. This metastability is eventually, but not always,
disrupted by a macroscopic avalanche in which either a
lower-energy geometrically complex state or the ground
state is reached [36].

In this work, we investigate intriguing and apparently
overlooked features of the coarsening of the 3-state Potts
ferromagnet on the triangular lattice. Our two main re-
sults are: (a) When quenched to T = 0, roughly 75% of
all trajectories end in the ground state, 16% in an un-
expected frozen three-hexagon state (Fig. 1(a)), 9% in
a two-stripe state, and a tiny fraction in a three-stripe
state; the probability to reach more complex geometries,
such as frozen states with more than three hexagons,
is of the order of 10−5. (b) The approach to the fi-
nal states is governed by three distinct time scales: (i)
the conventional coarsening time L2, with L the linear
dimension of the system, (ii) a time that appears to
grow as L2 lnL, which governs the approach to frozen
three-hexagon states, and (iii) a time that grows roughly
as L3.5, which governs the relaxation of off-axis three-
hexagon states or diagonal stripe states to the ground
state. These results will be presented in the following
sections.

II. TRIANGULAR 3-STATE POTTS
FERROMAGNET

It is convenient to represent the triangular lattice as a
periodically bounded square array with additional diag-
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(a)

t = 0.001L2 t = 0.010L2 t = 0.040L2 t = 12.544L2
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FIG. 1. Realizations of zero-temperature coarsening in the 3-state Potts ferromagnet on a periodically bounded triangular
lattice of linear dimension L = 384 that freeze into (a) a static three-hexagon state and (b) the ground state after evolving
through a long-lived off-axis three-hexagon configuration.

onal interactions to the upper-right and lower-left next-
nearest neighbors (on the square lattice). It is worth
mentioning that this periodic system cannot be wrapped
onto a two-dimensional torus. The Hamiltonian of the
system is defined as

H = −2J
∑
i,j

[
δ(si, sj)− 1

]
, (1)

where δ(a, b) is the Kronecker delta function, and the sum
runs over all nearest-neighbor spin pairs i, j. In this rep-
resentation, each misaligned spin pair contributes +2J
to the energy, while each aligned pair contributes zero.
We choose the coupling strength J to be equal to 1 by
measuring all energies in units of J .

We use the following simple T = 0 single spin-flip dy-
namics: flip events that decrease or conserve the systems
energy are accepted with probability 1 [15, 37], while flip
events that increase the energy have zero probability of
occurring. We use an event-driven algorithm to imple-
ment this dynamics in a rejection-free manner [15, 37].
Spins are categorized into classes k, that are labeled by
the number Fk of distinct permissible flip events that
spins in this class may undergo. The total weight of each
class is Wk = FkNk, where Nk is the number of spins
in the kth class. To flip a spin, we select a class with
a probability proportional to its weight Wk and allow a
randomly chosen member spin to flip to any energeti-
cally allowed spin state with unit probability. The time
is then incremented by ∆t = − ln(r)/

∑
k Fk, where r is

a uniform random number on the interval (0, 1), and the

summation is over the total number of permissible flips
in the system at the time of the event. We then update
the lists of spins in each class.

We simulate systems of linear dimension L between
12 and 384, with 105 realizations for each size. We
choose an initial condition that is either a random zero-
magnetization state or an antiferromagnetic state. Both
give virtually identical results and we henceforth restrict
ourselves to the antiferromagnetic initial condition for
simplicity. In this case, we only need to average over tra-
jectories of the spin state of the system, rather than av-
eraging over many spin-state trajectories and also many
initial conditions.

III. TIME DEPENDENCE OF THE
RELAXATION

In the conventional picture of phase-ordering kinetics,
a finite system of linear dimension L that is prepared in a
random initial state and then instantaneously quenched
to T = 0 will eventually reach the ground state in a time
that grows with system size as L2 [1, 2]. We therefore
expect that the probability S(t) that the system has not
yet reached the ground state at time t, which we define
as the “survival” probability, will decay exponentially
with time, S(t) ∼ e−t/τ(L), with an associated relaxation
time τ(L) that grows as L2. Equivalently, S(t) can be
viewed as probability that flippable spins still exists at
time t. Very different relaxation occurs in the kinetic 3-
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state Potts ferromagnet on the triangular lattice. Here,
the time dependence of S(t) appears to be governed by
at least three distinct time scales (Fig. 2).

For this Potts system, the survival probability decays
to zero for all realizations in a finite time; the longest
lifetime in 105 realizations for L = 384 is 29.989L2.
This inertness of all final states also arises in the kinetic
Ising ferromagnet on the square lattice. A static final
state contrasts with the kinetic Potts ferromagnet on the
square lattice, where blinker spins persist and S(t) never
decays to zero [36].

FIG. 2. Time dependence of the survival probability S(t) for
(a) t/L2 ≤ 1.5 and (b) t/L2 ≤ 30 for a system of linear di-
mension L = 384. In (a), the lines schematically indicate the
different decay rates associated with coarsening, relaxation to
the frozen three-hexagon state, and relaxation to the off-axis
three-hexagon/diagonal stripe states.

At short times (0.05 <∼ t/L <∼ 0.1), S(t) decays expo-
nentially in time, with a characteristic decay time that
scales as L2, corresponding to standard coarsening. This
coarsening regime is more readily visible by studying the
probability E(t) that the system goes “extinct” at time
t; this extinction time corresponds to the time when the
last flippable spin disappears. This extinction-time dis-
tribution is just the negative of the time derivative of the
survival probability. As shown in Fig. 3, this distribu-
tion has a well-defined short-time peak whose location
increases with L as roughly L2.

At long times, defined by t/L2 >∼ 0.5, S(t) decays ex-
tremely slowly due to the formation of long-lived diag-
onal stripe states [3, 4] or off-axis three-hexagon states
(one such example is given in the 3rd panel of Fig. 1(b)).
From the asymptote of Fig. 2(a), we roughly estimate
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FIG. 3. Time dependence of the extinction-time distribution
E(t) for a system of linear dimension L = 384 with 0 ≤
t/L2 ≤ 1.

the probability for the Potts system to fall into either
of these states as 5 × 10−3 for the largest system that
we simulated. When such states form, a large fraction
of spins on the diagonal interfaces are in zero-energy en-
vironments and thus are freely flippable. As a result,
interfaces that are misaligned with the lattice axes are
able to diffuse. When two diffusing diagonal interfaces
meet, energy-lowering spin flip events occur in which two
disjoint spin domains merge. Subsequently, the system
quickly falls to the ground state.

For the analogous diagonal stripe states in the kinetic
square-lattice Ising ferromagnet, we previously argued
that this time to reach the ground state via the diagonal
stripe state scales as Lµ with µ = 3 (although simulation
data indicates that this exponent is closer to 3.5) [3, 4].
For the Potts ferromagnet, we find that this correspond-
ing relaxation time, TD, defined as the time for a system,
which enters an off-axis three-hexagon state or a diagonal
stripe state, to eventually reach the ground state, again
scales as Lµ, with µ ≈ 3.5 (Fig. 4).

To identify these different time scales, it is helpful to
define the reduced moments of the extinction time dis-
tribution Mn ≡ 〈tn〉1/n, with the moment itself defined
as

〈tn〉 ≡
∫ ∞
0

dt tnE(t) . (2)

By construction, Mn has the units of time for any n and
each Mn defines a characteristic time scale of the coars-
ening process. For large n, Mn is dominated by the slow-
est events in E(t) and we identify these with the off-axis
three-hexagon/diagonal stripe state relaxation time TD.
These high-order moments grow as Lµ, with µ = 3.49
for M8 and µ = 3.50 for M10. Conversely, for small n,
Mn is dominated by the fastest events in E(t), which we
identify with the usual coarsening time scale. These low-
order moments grow as Lν with ν = 2.03 for M1/10 and
ν = 2.06 for M1/2.

The most interesting dynamics occurs within an inter-
mediate time range defined by 0.2 <∼ t/L2 <∼ 0.5. Here,
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FIG. 4. The time scales for the kinetic triangular Potts fer-
romagnet: (i) TD, the off-axis three-hexagon/diagonal stripe
relaxation time, which is obtained from Mn for large n (n = 8
and n = 10 in the plot). (ii) TH (◦), the three-hexagon relax-
ation time. (iii) The coarsening time, which is obtained from
Mn for small n (n = 1

2
and n = 1

10
in the plot). The dashed

lines have slopes 3.5 and 2.

S(t) decays with time somewhat more slowly than in the
coarsening regime; we argue that this slower time depen-
dence is a manifestation of the spin system reaching a
frozen three-hexagon state. We quantify this relaxation
by measuring the average time TH for the system to reach
this three-hexagon state. As a function of L, a naive
power-law fit suggests that TH ∼ Lη, with η ≈ 2.18.
However, there is a consistent, but small, downward cur-
vature in the data of TH versus L on a double logarithmic
scale (which becomes visible by magnifying Fig. 4 and/or
viewing the data for TH edge on), and a power-law fit is
clearly inappropriate.

To help determine the asymptotic behavior of TH , we
examine the local slopes in the plot of TH versus L that
are based on six successive data points of the eleven data
points in all (i.e., between points 1–6, points 2–7, . . . ,
points 6–11). These local slopes systematically decrease
as the upper limit increases and linearly extrapolate to a
value of approximately 2.1. This systematic dependence,
as well as an exponent close to an integer value suggests
the possibility that TH might be better accounted for
by the form TH ∼ L2 lnL. Indeed, a power-law fit of
TH/ lnL versus L gives a much better fit to the data
data, albeit with an exponent value of 1.93. However,
the data the local exponent based on successive 6-point
slopes now shows a very small upward curvature which
suggests a larger asymptotic exponent value. Linear ex-
trapolation of the local slopes gives an exponent estimate
of 1.95. Based on these numerical results, we are led to
the conclusion that TH ∼ L2 lnL.

This dependence of TH on L appears to have a sim-
ple geometrical origin. To reach a frozen three-hexagon
state, an initial realization first has to condense to a state
that consists of three clusters, none of which span the sys-

tem (shown in the 3rd panel of Fig. 1(a) and schematically
on the left side of Fig. 5). This three-cluster state con-
tains geometric distortions whereby the six T-junctions—
points where three interfaces meet—are out of registry
compared to the aligned T-junctions in the frozen three-
hexagon state (4th panel of Fig. 1(a)). Each of the inter-
faces between pairs of adjacent T-junctions is thus tilted
with respect to a triangular lattice direction. This means
that a substantial fraction of the spins on each such in-
terface are freely flippable. As indicated in Fig. 6, each
freely flippable spin on an interface is equivalent to an
independent random walker that can hop along the in-
terface [38].

L/k

L

FIG. 5. Schematic evolution of the evolution of an off-registry
3-hexagon state to a frozen 3-hexagon state. The red circles
indicate freely flippable spins and the heavy dots indicate T-
junctions.

The tilted interfaces must gradually straighten for the
configuration to reach the frozen three-hexagon state;
see the Supplemental Material [39] that contains movies
showing the relaxation to this static three-hexagon state,
as well as to an unstable off-axis three-hexagon state,
and to other generic configurations. This straightening
process occurs by the motion of the equivalent random
walkers. When a random walker reaches a T-junction,
the position of the latter moves by one lattice spacing.
This displacement corresponds to the random walker be-
ing absorbed at the T-junction. Thus we can view the
process of interface straightening as equivalent to the suc-
cessive absorption of the order of L independent random
walkers on a finite interval whose length is also of the
order of L.

B

A A

B

FIG. 6. (a) A diagonal stripe interface on the triangular lat-
tice. The A and B spins on corners can flip with no energy
cost. (b) The configuration after a spin flip.

When there are k walkers in an interval, their typical
separation is L/k; this is also the distance between the
end of the interval and the closest walker to the inter-
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val end. The first-passage time until this closest walker
reaches the end of the interval and is absorbed there is
given by tk = L

k

(
L− L

k

)
[40]. When all the walkers along

the interfaces have been absorbed, the final, frozen three-
hexagon state has been reached. By adding these indi-
vidual absorption times until all walkers have been ab-
sorbed, the time to reach the frozen three-hexagon state
is (ignoring constants of order 1),

τ = tL + tL−1 + . . .+ t1 =

L∑
k=1

L

k

(
L− L

k

)
' L2 lnL . (3)

While our argument is crude, it appears to capture the
mechanism that underlies the approach to the frozen
three-hexagon state. Our prediction is consistent with
the simulation results shown in Fig. 4.

IV. FINAL STATES

A striking aspect of the coarsening of the 3-state tri-
angular Potts ferromagnet is that a new type of final
state—a configuration that consists of three hexagons—
is reached with a non-zero probability for L → ∞. Fig-
ure 7 shows the L dependence of the probabilities for the
system to eventually reach: the ground state (probabil-
ity close to 0.75), a frozen three-hexagon state (proba-
bility close to 0.16), a two-stripe state (probability close
to 0.09), and three-stripe state (with probability of the
order of 10−4) for the largest system simulated. The
three-stripe state plays a negligible role in the coarsen-
ing dynamics. Because of the non-monotonic and/or slow
L dependences of the final-state probabilities, our esti-
mates for their L→∞ values are necessarily crude. Sim-
ilar extrapolation issues were encountered in the kinetic
Ising ferromagnet and the square-lattice Potts ferromag-
net [3, 4, 36].

Intriguingly, the energy of any three-hexagon state
(such as the example shown in Fig. 1(a)) equals 24L,
independent of the individual hexagon sizes. By exam-
ining the 4th panel of Fig. 1(a), the total length of each
of the vertical, horizontal, and tilted interfaces in this
state must equal L. Since there are two spins in differ-
ent states on either side of the interface, there are 6L
interfacial spins in total. Because an interfacial spin has
four neighbors in the same state and two neighbors in
a different state, each such spin contributes +4J to the
total energy. Consequently, the final energy of any frozen
three-hexagon state is 24L. Although the total perime-
ter of the three-hexagon state is fixed, the area of each
hexagon is a random quantity whose distribution has a
well-defined peak near 1

3 (Fig. 8). This behavior visually
mirrors what was found previously in the kinetic Ising
ferromagnet. Here, roughly 1/3 of all realizations con-
densed into a stripe state, in which the width distribution
of the stripes was reasonably fit by a Gaussian distribu-
tion [3, 4].

0.73
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0.00 0.05 0.10 0.15 0.20 0.25 0.30
1/ log2(L)
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0.50

0.75

×10−3

PS3

FIG. 7. Probabilities of freezing into the ground state, PG, a
two-stripe state, PS2 , a frozen three-hexagon state, PH , and a
three–stripe state PS3 as a function of 1/ log2 L. Our L→∞
estimates of these probabilities are 0.75, 0.09, 0.16, and 0
respectively (arrows).
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0.04

0.06
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FIG. 8. Distribution of the domains areas in the three-
hexagon final states for a system of linear dimension L = 384.

Finally, for the 3-state Potts ferromagnet, we also ob-
serve static final states that contain more than three
hexagons with a vanishingly small probability. Shown
in Fig. 9 is an example of a twelve-hexagon state that
was observed once in an ensemble of 105 realizations for
a system of linear dimension L = 384. Using the same
reasoning as that given for the three-hexagon state, it is
straightforward to infer that the energy of this twelve-
hexagon final state is 48L. Intriguingly, we did not see,
static states that consist of six hexagons in 105 realiza-
tions. In hindsight, six-hexagon states should not ap-
pear because such states cannot be symmetrically situ-
ated within a finite-size square domain.
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FIG. 9. A twelve-hexagon final state in the q = 3-state Potts
ferromagnet. This configuration was found to occur once in
105 realizations for a system of linear dimension L = 384.

V. POTTS FERROMAGNET WITH q > 3
STATES

Given the rich dynamical behavior of the 3-state Potts
ferromagnet, it is natural to investigate this same model
with more than three spin states. The dynamics and
long-time states of the q > 3 system shares many fea-
tures with the 3-state Potts ferromagnet, but additional
unusual feature arise. As the number of spin states is
increased, the coarsening mosaic becomes visually more
picturesque and the possible final states are correspond-
ingly more complex [13–19]. Final states that contain
more than three hexagons now arise with non-negligible
probabilities. To give some examples, for q = 6 and L =
60 and 120, we observed five-hexagon states 99 and 106
times, respectively, out of 105 realizations (Fig. 10(a)).
For q = 20 and L = 60 and 120, five-hexagon states were
observed 215 and 165 times, respectively, out of 105 re-
alizations. We also observed 7 eight-hexagon states out
of 105 realizations for q = 20 and L = 60, but did not
observe any such states for L=120 (Fig. 10(b)).

(a) (b)

FIG. 10. (a) A five-hexagon final state of the q = 6-state
Potts system, and (b) an eight-hexagon state in the q = 20
Potts system.

Final states that contain blinker spins also exist, but

these are extremely rare. We observed blinker spins for
q = 5 and q = 6 states with a probability of the or-
der of 10−4, but only for small system sizes. We did
not observe blinker spins in any triangular Potts ferro-
magnet with L > 40. Both of these exotic long-time
states—multi-hexagon states and blinker spins—occur
sufficiently rarely that they play a negligible role in char-
acterizing the coarsening dynamics.

10−7

10−5

10−3

10−1

ρ
n

q = 3 q = 4

10−2 100 102

t/L2

10−7

10−5

10−3

10−1

ρ
n

q = 6

10−2 100 102

t/L2

q = 20

FIG. 11. Time evolution of the densities of each spin type,
ρn, sorted by abundance order. Solid (red) curves: top three
abundances; dotted (blue) curves, next three abundances,
dot-dash (green) curves, next six abundances, dashed (grey)
curves, lowest eight abundances. The data are based on 104

realizations on systems of linear dimension L = 240.

Another intriguing aspect of the large-q Potts ferro-
magnet is the near universality of the long-time densities
of the most-common spin type, the second most-common
type, etc., (Fig. 11). Let us denote by ρ1, the fraction of
the most-common spin type in the final state, ρ2, the sec-
ond most-common spin fraction, etc. Starting with the
antiferromagnetic state, with equal numbers of each spin
type, the final fractions of the three most abundant spin
types are (ρ1, ρ2, ρ3) ≈ (0.870, 0.096, 0.034) for q = 3 and
(0.893, 0.073, 0.036) for q = 6 (solid red curves in Fig. 11).
For q between 3 and 6, the fraction of spins types out-
side the top three abundances is less than 2× 10−4. For
q > 6, the final fractions ρn for the five most abundant
spin types are nearly universal, while the final fractions
ρn for n > 5 are negligibly small. Thus simulations of
Potts ferromagnets with q > 6 will not reveal new long-
time physical features compared to Potts ferromagnets
with q ≤ 6. It is possible there could be final states that
contain richer arrangements of hexagons, but these states
would play a negligible role in understanding the overall
coarsening process.
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VI. CONCLUDING REMARKS

The kinetic q-state Potts ferromagnet on the triangu-
lar lattice exhibits a variety of intriguing topological fea-
tures. For q = 3, the final configurations are all static
and either: the ground state, frozen three-hexagon states,
two-stripe states, or three-stripe states, with respective
frequencies of 75%, 9%, 16%, and < 0.02%. Frozen final
states that contain more than three hexagons occur with
a probability that is less than 10−5. The dynamics is
governed by three distinct time scales: a coarsening time
that grows as L2, a hexagonal state condensation time
TH , and an off-axis hexagon/stripe condensation time
that grows roughly as L3.5. We argued, based on map-
ping freely flippable spins on hexagonal domain interfaces
to a set of independent absorbing random walkers in a
finite interval, that TH ∼ L2 lnL, a prediction that is
consistent with simulation data.

We also found that the dynamical behavior of q > 3-
state Potts ferromagnet on the triangular lattice is not
materially different than that of the 3-state Potts ferro-
magnet. For q > 3 and when the initial state is anti-
ferromagnetic, only the three most abundant spin types
are present in measurable amounts at long times. A new
feature of the final states for q > 3 is that frozen configu-
rations that contain more than three hexagons arise. The
occurrence probability for these exotic configurations is
much larger than in the q = 3 Potts system, but still only
of the order of 10−3.

There are a variety of open questions raised by this
work. First, is it possible to compute the probability to
reach the frozen three-hexagon state? The percolation
mapping proved decisive to understand the occurrence
of various stripe topologies in the kinetic Ising ferromag-
net [7–12]. Perhaps there is a mapping between final
states of the 3-state Potts ferromagnet and the 3-color
percolation model, which has only begun to be inves-
tigated [41, 42]. A second open question is to under-
stand the area or the perimeter distribution of the three-
hexagon state.

The fact that the final states are simply categorized on
the triangular lattice also raises the question of whether
there are simple final states for the 3-state Potts ferro-
magnet on other 6-coordinated lattices, such as the sim-
ple cubic lattice. Perhaps there is underlying simplicity
when the lattice coordination number is an integer mul-
tiple of the number of Potts states. Another unresolved
question is the characterization of the final states of the
3-state Potts ferromagnet on the square lattice. While
these final states are visually rich and many are appar-
ently non-static [36], they have yet to be quantitatively
characterized.

We thank Ben Hourahine and Cris Moore for help-
ful discussions. JD thanks EPSRC DTA5 grant
EP/N509760/1, the Mac Robertson Trust, and the Santa
Fe Institute. SR thanks support from NSF grant DMR-
1608211. We acknowledge ARCHIE-WeSt High Perfor-
mance Computer based at the University of Strathclyde
as well as grant EP/P015719/1 for computer resources.
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