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We study the change in the size and shape of the mean limit cycle of a stochastically driven non-
linear oscillator as a function of noise amplitude. Such dynamics occur in a variety of nonequilibrium
systems, including the spontaneous oscillations of hair cells of the inner ear.The noise-induced dis-
tortion of the limit cycle generically leads to its rounding through the elimination of sharp (high
curvature) features through a process we call corner-cutting. We provide a criterion that may be
used to identify limit cycle regions most susceptible to such noise-induced distortions. By using
this criterion, one may obtain more meaningful parametric fits of nonlinear dynamical models from
noisy experimental data, such as those coming from spontaneously oscillating hair cells.

I. INTRODUCTION

Nonlinear dynamical models are used to investigate the
complex dynamics of many living systems that manifest
self-sustained limit cycle oscillations driven by an internal
energy-consuming process. Examples include chemical
networks underlying the Circadian rhythm, patterns of
activity in neuronal networks, and cardiac dynamics [1–
6]. Another example of such an active nonlinear system
is provided by the inner ear. The auditory system parses
pressure waves, ranging over several orders of magnitude
in frequency, and detects even Ångstrom-scale displace-
ments of the mechanically sensitive hair cells [7]. While
the mechanisms behind this extraordinary sensitivity are
not entirely known, previous work suggests that an inter-
nal active mechanism amplifies the incoming signal [8, 9].
The active process is also believed to underlie the excep-
tional sensitivity and frequency selectivity of the auditory
system.

Detection of sound in the inner ear is performed by
mechano-electrical transducers - bundles of stereocilia -
that protrude from the hair cells [10]. The stereocilia
contain mechanically gated ion channels that open and
close as the bundles are deflected by sound waves [11].
The channels are also connected to an internal active mo-
tor complex, primarily comprising of Myosin 1c, whose
movement along actin filaments regulates the tension in
the tip links connecting the stereocilia [12]. This inter-
play of ion-channel gating and myosin motor activity can
lead to spontaneous limit cycle oscillations, which have
been observed in vitro [13, 14].

The dynamics of individual hair cells, as well as the
overall mechanical response of the inner ear, have been
modeled with various systems of nonlinear differential
equations of multiple levels of complexity [15, 28–30]. A
simple two-dimensional mathematical system exhibiting
the supercritical Hopf bifurcation, known as the normal
form equation, has been shown to reproduce the main
aspects of the auditory response [16–18]. A benefit of
simple analytic models is that they account for a number
of complex phenomena, such as amplification, compres-

sive nonlinearity, etc., with sparse a priori assumptions,
and few free parameters.
For studies that seek a more direct mapping between

variables of the model and underlying physiological pro-
cesses, more complex models are warranted and have
been explored in the literature [19–22]. These models
allow for direct comparisons between the numerical pre-
dictions and experimentally accessible observables. How-
ever, they necessarily include a larger number of fit-
ting parameters and generally have more complex and
higher dimensional limit cycles, as they account for more
dynamical variables. For example, even a relatively
sparse three-dimensional model that explicitly incorpo-
rates stereociliary position, myosin motor activity, and
the somatic membrane potential [31] includes many more
biologically relevant parameters than the simple two-
dimensional models based on the Hopf bifurcation. Given
that the experimental records are necessarily stochastic,
and typically limited to only a fraction of the total set of
dynamical variables in these complex models, the pres-
ence of many free parameters in a model raises questions
regarding how to appropriately fit the data. There is an
inherent tradeoff between constructing biologically real-
istic models and limiting the number of free parameters.
Stochasticity is an inherent feature of hair cell oscilla-

tors in particular and biological systems in general [23].
Hair bundle motion is affected by thermal Brownian
motion from the surrounding fluid; the internal myosin
motor complexes are subject to non-equilibrium noise
stemming from their attachment and detachment from
actin filaments. The membrane potential is affected
by ion channel clatter and shot noise in ionic trans-
port [20, 24, 25]. Hence, even if the macroscopic variables
of the system, such as the position of the hair bundle and
the somatic membrane potential, obey a low-dimensional
dynamical model, these noise sources preclude experi-
mental access to the deterministic limit cycle. Instead,
one may observe a number of stochastic but cyclic tra-
jectories and determine a mean limit cycle by averaging
over many such trajectories. We previously observed the
discrepancy between the deterministic and mean limit
cycles, using a three-dimensional model with Gaussian
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noise. Introduction of stochastic fluctuations not only
caused the trajectories to vary from cycle to cycle, but
also changed the shape and size of the mean limit cycle.
Fig. 1 illustrates differences between the deterministic
limit cycle (red) and the average (dashed black) of the
hair bundle’s stochastic trajectory (green), modeled us-
ing noise values corresponding to equilibrium fluctuations
at room temperature, as determined by the fluctuation-
dissipation theorem [31]. This plot is a mapping of the
three-dimensional limit cycle onto the experimentally ac-
cessible manifold defined by the bundle deflection and
membrane potential measurements [26].
There has been a growing interest in studying how

noise affects the dynamics of limit cycle oscillators [32].
In this manuscript we explore how the mean limit cycle
of the stochastic system differs from the deterministic or
zero-temperature limit cycle of the underlying dynamical
system. By doing so, we are able to determine whether
noise leads to significant discrepancies between the exper-
imentally accessible dynamics and deterministic theoret-
ical models. Specifically, we explore the causes for the
rounding of the zero-temperature limit cycle that makes
unavailable to experimentalists the sharper features of
the deterministic system. To explore this question quan-
titatively, we focus on a generalization of the simple two-
dimensional Hopf oscillator, to which we introduce terms
that add finer structure to the shape of the deterministic
limit cycle. We then are able to observe how these finer
details of the shape of the limit cycle are deformed by
stochastic forces.
We argue that the generic effect of noise on the limit

cycles of dynamical systems is to smooth out the more
sharp (high curvature) parts of the trajectory. This effect
will impose an upper bound on the useful level of com-
plexity of numerical models, as detailed features, result-
ing in complex limit cycles in phase space, will be shown
to be experimentally inaccessible. Our analysis further-
more allows one to determine from the model precisely
which features of the limit cycle are most susceptible to
noise. By using that information, one should be able to
more meaningfully decide on suitability of various nonlin-
ear models of biological dynamics for interpreting one’s
data.
The remainder of this article is organized as follows. In

section II, we detail a two-dimensional regular Hopf os-
cillator in the stably oscillating regime. In section III, we
analyze the generalized version and illustrate the effects
of stochasticity and of the internal active drive. Finally,
we conclude in section IV, where we review the differ-
ences between the experimentally accessible trajectory
and the theoretical model.

II. REGULAR HOPF OSCILLATOR

The supercritical Hopf oscillator is the lowest dimen-
sional system (d = 2) that admits limit cycle oscilla-
tions. The normal form of this dynamical system can be

described in terms of the generalized position variable,
Z(t) = X(t) + iY (t), obeying the differential equation

Ż = Z (µ− iω) + bZ|Z|2 + ηZ (1)

The dynamics of the deterministic system depend on the
model parameters {µ, ω, b}. For µ > 0, the stable solu-

tion is given by the limit cycle of radius R0 =
√

µ/b and
oscillation frequency ω. To fully specify the model, we
introduce the stochastic force term ηα, where α = X,Y
are the Cartesian coordinates. The complex noise am-
plitude discussed in Eq. 1 is related to these two noise
terms by ηZ = ηX + iηY . Here and throughout this
study, we assume that this noise is uncorrelated, Gaus-
sian white noise with a vanishing mean and the second
moment given by

〈ηα(t)ηβ(0)〉 = 2Tδαβδ(t), (2)

where α = X,Y . We introduce T as the amplitude of the
white noise. We note, however, that in many systems,
and in hair cells in particular, the noise may be nonther-
mal. This does not affect our results as long as those
nonthermal noise sources are not strongly correlated in
time. Even in that case, we expect that our qualitative
results are not strongly dependent on the assumption
of such frequency-independent noise amplitudes. How-
ever, our results do depend critically on the assump-
tion that the noise amplitude not be too anisotropic.
Strongly anisotropic noise could result in a new pattern
of noise-induced deformations of the limit cycle distinct
from those discussed here. Similarly, cross correlations
between the noise in the x and y channels may result in
unique stochastic behavior not accounted for here.
We remind the reader that the trajectories of these

nonlinear dynamical systems may be thought of as the
classical motion of an overdamped particle in d dimen-
sions, moving in response to a force field. For a two-
dimensional system, the force field may be decomposed
into the gradient of a scalar potential, which may be in-
terpreted as the potential energy landscape for the sys-
tem, and the curl of a vector potential. It is this lat-
ter nonconservative force that provides the drive allow-
ing stable limit cycles to exist. The parameters {µ, ω, b}
may be used to define the scalar (φs) and vector (φv)
potentials of the system from which one may derive the
conservative and nonconservative forces. Shortly we will
introduce new features into the Hopf oscillator model by
changing the landscape of effective potential.
The system of dynamical equations given by Eq. 1 may

be expressed in terms of a two-dimensional vectorX(t) =
X(t)x̂+Y (t)ŷ obeying overdamped motion in a force field
f(X):

Ẋ = f(X) (3)

where the force field is given by

f(X) = ∇φs(X) +∇× φv(X). (4)
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The existence of such a decomposition of the generic
vector field f is assured by Helmholtz’s theorem. For the
specific case of the Hopf system introduced in Eq. 1, the
scalar and vector potentials may be simply computed:

φs = −µ(X2 + Y 2)

2
+

b(X2 + Y 2)2

4
(5)

φv = −ω(X2 + Y 2)

2
ẑ. (6)

The scalar potential has one of two forms depending
on the sign of µ. For negative values, the potential has
a single minimum at the origin, and the deterministic
dynamical system has a single fixed point. For positive µ,
the origin is a local maximum of the scalar potential, and
a new set of local minima appear on the circle of radius
R0 =

√

µ/b about that center. This form of the potential
is the well-known “Mexican hat” shown in Fig. 3 . For
finite values of the drive ω > 0, we observe that the curl
of the vector potential fv = ∇ × φv is tangent to the
circular ring. It drives the x variable anticlockwise along
the limit cycle, defined by the circular ring of minima.
The transition between the stable fixed point and the
stable limit cycle of angular velocity ω occurs at µ = 0
and is known as the supercritical Hopf bifurcation.
Turning to the motion of the stochastically driven sys-

tem, we observe that, across a range of noise amplitudes,
the trajectories remain constrained to the trough of the
scalar potential at R0 =

√

µ/b that stabilized the de-
terministic limit cycle. Because the scalar potential is
locally symmetric for positive and negative radial dis-

placements from the limit cycle and since the vector po-
tential has no radial component, the mean limit cycle
of the stochastic system is identical to the deterministic
one. Fig. 2 illustrates these stochastic dynamics.

In Fig. 2A, we show a representative trajectory (light
blue) superposed upon the mean limit cycle (red). We
plot in Fig. 2B typical X(t), Y (t) traces, as might be
obtained from hair cell data. Herein, µ = 80, b = 1, ω =
200, and the details of the simulation are described in Ap-
pendix A. The mean limit cycle for the finite-temperature
system is computed by binning the phase space {−π, π}
into 200 bins and averaging over multiple trajectories.
For this simple model of a Hopf oscillator, the average
cycle is similar to the deterministic limit cycle, due to
the high symmetry of the system. When the potential
landscape of the system is more complex (i.e. exhibits
lower symmetry), this correspondence between the mean
and deterministic limit cycles no longer holds. We study
the lower-symmetry, generalized Hopf system in the next
section.

III. GENERALIZED HOPF OSCILLATOR

A. Model and dynamical phase diagram

To explore the effects of noise on the mean limit cycle,
we add symmetry-breaking terms to the Hopf oscillator
by changing the scalar potential φs.

φs = −µ(X2 + Y 2)

2
+

b(X2 + Y 2)2

4
+ αcos(nθ)e−(

√
X2+Y 2−

√
µ
b
)2 (7)

φv = −ω(X2 + Y 2)

2
ẑ (8)

The modulation introduces n local maxima (and an equal
number of local minima) to the scalar potential that re-
move the azimuthal symmetry present in Eq. 5. By tun-
ing the radial position of those extrema to the center of
the circular trough of the Hopf potential, we force tra-
jectories near the previous limit cycle to deform and can
control that deformation by the strength of the perturba-
tion α. Here, we consider the case of a four-fold potential
landscape, n = 4, but we believe that none of the results
shown below depend critically on that choice.

Fig. 4 shows the modified scalar potential for n = 4,
along with the deterministic limit cycle shown in yellow.
It should be noted that there are pairs of degenerate
paths about each of the local maxima. These minima
also introduce new fixed points that remain stable for
sufficiently small values of the vector potential. To find
stable limit cycles we require that strength of the vector

potential exceed

ω⋆ = nb
α

µ
. (9)

Beyond this point, stable limit cycles exist, but their
shape continues to change with increasing vector poten-
tial strength ω. We study these dynamics for various
values of ω/ω⋆.
Introduction of the local minima renders the dynam-

ical phase diagram more complex. In Fig. 5, we show
this phase diagram under varying noise amplitude T and
drive frequency ω. The top row of the phase diagram
shows the full limit cycle, while the lower rows zoom in
on one of the four equivalent local quadrants of the sys-
tem. The ω = 0 column shows the expected behavior
of an equilibrium system with increasing levels of noise.
For sufficiently small T , stochastic trajectories are con-
fined to one of the four local minima (we show one such
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case in the figure). The trajectories deviate further from
the minimum of the potential with increasing T , as one
expects in the vicinity of a fixed point. Over sufficiently
long times, one observes thermally activated hopping be-
tween these minima, so that the system diffuses around
the ring set by the underlying circularly symmetric po-
tential. Alternatively, the same behavior can be observed
by increasing T at fixed length of the trajectories. The
sequence (J, G, D, and A) in Fig. 5 demonstrates these
effects.
In the case of small but finite ω, the drive biases the

hops between local minima to favor those in the anti-
clockwise direction, along the force generated by the vec-
tor potential. However, if one chooses ω < ω⋆, the drive
is not sufficient alone to drive transitions between local
minima, and the deterministic system remains trapped
within one of these wells of the scalar potential. In this
study, we are primarily interested in the case where the
deterministic system has a stable limit cycle, so we be-
gin our studies where the vector potential is just strong
enough to destabilize the local minima. A sequence of
such minimally stable deterministic trajectories with in-
creasing noise amplitude can be see in (K, H, E, B) of
Fig. 5. We note that even small values of the noise am-
plitude are capable of allowing the dynamical system to
explore both trajectories about the local potential max-
ima.
Finally, with a sufficiently strong vector potential (here

ω = 200), the deterministic system (and the system
with sufficiently small noise amplitude) approaches the
circular limit cycle of the standard Hopf oscillator with
the circularly symmetric diving force overwhelming the
symmetry-breaking scalar potential. This is shown in
panel L of Fig. 5. Upon increasing the noise amplitude,
as shown in the sequence (L, I, F, C) of Fig. 5, we ob-
serve both paths around the local maximum appearing
once again. Since the limit of very large drive restores
the circular symmetry, and since we aim to study the
noise-induced loss of fine detail in more complex limit cy-
cles, the large ω limit will not be considered further. In
panels H and I, one observes a dispersion of trajectories
around the point where the inner path about the local
maximum reconnects with the outer path. This localized
broadening is an example of noise-activated corner cut-

ting in the generalized Hopf model that is the focus of
this manuscript.

B. Noise-induced corner cutting

We now explore in detail the noise-induced corner cut-
ting at intermediate values of both noise amplitude and
drive, consistent with panel H in the phase diagram. As
expected, the deterministic oscillator occupies the low
potential regions at nearly all phases of the oscillation
(see Figs. 6(A),(B)). However, upon increasing the noise
amplitude in the system, as shown in panels (C) and (D)
of Fig. 6, the trajectories deviate from the T = 0 curve

by cutting across the sharper (higher curvature) features
of the deterministic path.

The net effect of these devations is that the mean shape
of the limit cycle increasingly deforms with noise am-
plitude. In particular, the higher curvature features of
the deterministic limit cycle, apparent where the inner
path (smaller radius) around the local maximum con-
verges with the outer path, are lost with increasing noise
amplitude. We refer to this phenomenon as corner cut-

ting, since the sharper corners of the deterministic limit
cycle are smoothed out.

The corner cutting observed in the generalized Hopf
model resembles that observed in the hair cell oscillator
model. One observes in Fig. 1 the noise-induced round-
ing of the high curvature corner in the upper right quad-
rant of the deterministic limit cycle. Comparing panels
C and D of Fig. 1, we see that increasing noise ampli-
tude increases both the frequency at which paths deviate
from one that follows the local potential minimum and
the degree of their deviations, indicating that this effect
is indeed driven by stochastic processes.

The degree of corner cutting at different points along
the deterministic trajectory, which exhibit the same
scalar potential, are not equivalent. For example, we do
not observe as much corner cutting at the point where the
limit cycle diverges when approaching the local maxima
as where these paths converge on the other side. This
shows that phenomenon is not simply a feature of the
local scalar potential, which is the same at both of these
points.

In Fig. 7, we plot the drive force associated with the
vector potential fV along the mean limit cycle. The mean
limit cycle is calculated in a similar manner as the regular
Hopf oscillator, with an additional calculation at each
phase to check for the presence of one or two maxima in
the trajectory density. The peaks are considered distinct
if they are radially separated from R0=

√

µ/b =
√
80 by

a distance of 0.2 or more. We identify the corner-cutting
paths as events that lie at a potential energy greater than
3T compared to the potential energy of the mean curve.

One immediately observes the distinction between the
entry and exit points of the loop around the local poten-
tial maximum. Near the entry point, the vector poten-
tial force is tangent to the path of the limit cycle. Near
the point where the inner path merges with the outer
one, however, the drive force has a significant compo-
nent normal to the mean path. The drive force plays a
role in enhancing the thermally excited deviations from
the mean limit cycle. Moreover, asymmetric deviations
from the deterministic limit cycle resulting in deforma-
tion of the mean limit cycle from the deterministic one
are strongest in regions where two conditions are met.
First, there must be a significant component of the drive
force normal to the deterministic limit cycle, and second,
the confining potential about that limit cycle must be
weak.

In the lower panel of Fig. 8, we plot the potential en-
ergy versus distance, measured along the local normal to
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the mean limit cycle. Plots are obtained at various points
(labeled A, B, C, D) along that limit cycle, indicated in
the upper panel of the same figure. The potential in the
normal cross section at A shows two minima, consistent
with the two paths of the deterministic limit cycle at that
point. Upon approaching the junction of those two paths
at B and C, one sees these two local minima merge into
a single broader minimum. This minimum then deepens,
and the confining potential sharpens, as one moves al-
way from the local maximum (shown at D). It is clear
that the combination of the weak (small curvature) con-
fining potential and large normal component of the drive
force at points near B make this area most susceptible to
noise-induced trajectories escaping from the mean path.
The asymmetry of those escapes, i.e., their preference for
moving to smaller radii, leads to an enhancement of the
noise-induced distortion of the mean limit cycle near B.
Based on the above analysis we expect that the effect

of noise on the mean limit cycle of the oscillator depends
strongly on the arclength. In other words, different re-
gions along the deterministic limit cycle deform differ-
ently with increasing noise amplitude so that the shape of
the limit cycle itself changes with noise amplitude. To in-
vestigate this effect, we measure the normal distance be-
tween the deterministic limit cycle and the one measured
at “high temperature”, where 〈η2〉 = 2000. In Fig. 9, we
color the deterministic limit cycle using a heat map to
represent this noise-induced deformation. In that figure,
the cooler (yellower) colors depict smaller noise-induced
distortions. The deformation is clearly nonuniform along
the limit cycle (although still symmetric under rotations
of the figure by π/4 due to the underlying symmetry of
the n = 4 perturbation). The greatest deviations occurs
at the region corresponding to (A-D) of Fig. 8, showing
that the principal cause of these distortion “hot spots”
are the corner-cutting trajectories where the two limit
cycle arcs converge at the end of the local potential max-
ima.

C. Predicting regions of noise-induced limit cycle

distortion

To better understand the extent of distortion hotspots
(i.e., their length along the mean limit cycle), we analyt-
ically estimate the typical time interval for a stochastic
trajectory to return to the mean limit cycle, assuming
that it has already significantly deviated from it. Assum-
ing a relatively constant angular velocity about the limit
cycle, one can then estimate the limit cycle arclength
required for the particle to return to the mean limit cy-
cle after such a noise-induced deviation. In this way, we
obtain a rough measure of the size of the regions of the
limit cycle where one can expect significant noise-induced
distortions. Identifying points on the limit cycle where
trajectories are likely to diverge from the mean limit cycle
and estimating the typical extent of distortion hotspots
allows one to predict from the underlying deterministic

equations which parts of the limit cycle are inherently
more susceptible to noise.
To address this question, we consider a trajectory that

starts at some fixed distance from the mean limit cycle.
We choose this distance using the criterion that the sys-
tem’s deviation has increased its potential energy to 3T
above the minimum (which occurs at or near the mean
limit cycle in the limit of a weak drive). We treat the
stochastic dynamics of the system in the plane perpen-
dicular to the limit cycle, which we assume here to be one
dimensional (higher dimensional generalizations are pos-
sible). For the analytic estimate, we consider the confin-
ing potential to be locally quadratic, an approximation
warranted by the measured confining potential plotted
along the local normal to the limit cycle in Fig. 8. We
do not include a local nonzero normal component of the
drive force, but the calculation can be readily generalized
to include a roughly constant force term.
Using these simplifications, we compute the mean first

passage time distribution for the system to return to the
potential minimum. The details of the calculation are
presented in Appendix B. κ denotes the curvature of the
confining potential, and its variation around the limit cy-
cle is illustrated in Fig. 10. As explained in Appendix B,
we compute the integrated survival probability N(t) of
trajectories starting at a fixed normal distance from the
mean limit cycle and vanishing upon their return to it.
The negative time derivative of this quantity is the prob-
ability distribution of the first return time. We plot the
integral N(t) as it is less susceptible to noise in the nu-
merical data. Given a starting position x0 in a harmonic
potential with curvature κ, we find the integrated sur-
vival probability to be

N(t) = erf

[

(

κ

2kBT (1− e−2tκB)

)1/2

x0e
−tκB

]

. (10)

Here B is the mobility of the overdamped system (which
is set to 1 in our simulations, without loss of generality)
and kBT is a measure of the amplitude of the Gaussian
white noise. In our simulations, kB is normalized to 1.
We plot κ, the curvature of the confining potential in

the direction normal to the limit cycle, of our generalized
Hopf model as a color map superposed on the limit cy-
cle in Fig 10. As expected, corner-cutting occurs where
that potential is smaller than average. More significantly,
we plot the decay of N(t) predicted solely from that lo-
cal curvature, for two representative parts of the limit
cycle: (1) a region of small κ (upper left), where the
distribution of the return times is broad, indicating that
many trajectories deviate from the mean path over signif-
icant portions of the limit cycle, and (2) a region of high
curvature (lower left), where trajectories that do deviate
rapidly return to the mean path.
To test this analytic prediction for the return time

distribution, we use stochastic numerical simulations to
compute the distribution of return times for trajectories
that start off the mean path, using the criterion discussed
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above. The histogram of those return times is plotted
(yellow bars) in Fig. 11. The numerical data are taken
from a region where the confining potential is weak so
that such large excursions from the mean are relatively
common, allowing us to obtain a larger data set of deviant
trajectories. Superimposed on this plot is the integrated
survival probability N(t) computed from Eq. 10. There
are no free fitting parameters.
We observe reasonably good agreement between the

simple model and the numerical data. The largest dis-
crepancies appear to be that the simple model overes-
timates the rapid return times and underestimates the
return times that are of the order of ∼ 1/ω. We believe
that this error results from our neglect of the vector po-
tential force, which changes rather rapidly in this portion
of the limit cycle. As shown in Fig 7, trajectories leav-
ing the limit cycle at this point experience initially the
normal component of the driving force, and this normal
component of the force decays rapidly as the system tra-
verses the limit cycle. The result is that rapid returns are
suppressed by the vector potential force, but this suppres-
sion of returns vanishes quickly as the particle continues
on its trajectory. While the details are not captured by
this simple quantitative estimate provided by Eq. 10, it
has qualitative value in predicting regions of the limit cy-
cle where large noise-induced deformations are likely to
occur. We note (data not shown) that in regions of large
κ, we observe few large excursions from the limit cycle
and rapid returns when such excursions do occur.

IV. SUMMARY

We have shown that the fluctuations of a stochastic
nonlinear oscillator can affect the size and distort the
shape of its average limit cycle, as a function of noise
amplitude. This effect appears to be dominated by par-
ticular parts of the limit cycle that combine two special
features. First, the confining potential that stabilizes the
deterministic limit cycle is broad, and second, the non-
conservative driving force has a significant component
normal to the local tangent of the limit cycle. These
two criteria provide a way to determine quantitatively
how susceptible the deterministic limit cycle is to noise-
induced distortions. Since the criteria for large deforma-
tion occur near high curvature parts of the deterministic
limit cycle, we refer to these distortions as corner-cutting
events. We also provide a simple estimate of the dura-
tion of large, noise-induced excursions from the typical
path of the nonlinear system and thereby provide a mea-
sure for the size of the noise-deformed regions of the limit
cycle.
Using that estimate, one is able to predict which fea-

tures of the limit cycle of a periodic, nonlinear, dynam-
ical system are susceptible to noise and which are not.
This leads to two observations. First, we believe that, in
using noisy experimental data to fit parameters of com-
plex nonlinear models, one must first determine which

parts of the limit cycle of the dynamical system are least
susceptible to that noise and weight the fits of the var-
ious model parameters accordingly. This is particularly
true in systems where the details of the noise sources are
poorly understood and, as a consequence, the expected
noise amplitude is unknown. Secondly, we predict that
more noisy dynamical systems will generically have fewer
high curvature features in their limit cycles due to cor-
ner cutting. This trend has not yet been confirmed to
our knowledge.

Applying these findings to models of biological sys-
tems in general, and hair cells in particular, we sug-
gest that increasing the complexity of dynamical models
provides diminishing returns: more sophisticated models
typically introduce new and finer features to their limit
cycles, which we show will be smoothed by averaging over
stochastic trajectories. For active systems exhibiting a
limit cycle, increasing amount of averaging brings one
arbitrarily closer to the mean limit cycle, not to the de-
terministic one. As mentioned earlier, Fig. 1 illustrates
this averaging and the resulting disparity between the
mean and noiseless limit cycles of a three-dimensional
hair bundle model. The effect is analogous to that of
the thermal expansion of crystals where a combination
of thermal noise and a nonsymmetric potential lead to
temperature-induced changes to the mean atomic spac-
ing. Hence, if the presence of realistic noise amplitudes
in the model leads to a significant distortion of the mean
limit cycle, any finer features of the deterministic model
will be inherently inaccessible to experiment.

Since we expect noisy limit cycle oscillators to not typi-
cally exhibit sharp features in their limit cycles regardless
of the complexity of their underlying dynamical models,
one may wish to investigate them more closely in noisy
biological systems. Their presence should be atypical at
least, and such features imply tight dynamical control
through very large curvatures of the effective confining
potential. That tight control may point to selection pres-
sure on the relevant dynamical features of the biological
limit cycle, although other interpretations would remain
possible.

There are a number of extensions to this analysis that
can be considered. First, one may examine the role of
colored (frequency-dependent) noise in the system. Here,
we expect that increasing the noise amplitude at low fre-
quencies will produce larger scale distortions than those
at high frequencies. The quantitative details of this effect
have not been pursued yet. Further, one may consider
more complex issues, such as stochastic variations in the
model parameters themselves. These will generally intro-
duce multiplicative noise in the system and render the
problem significantly more complex. We expect, how-
ever, that basic features explored here will still provide a
rough set of guidelines for determining what parts of the
limit cycle are susceptible to internal stochastic forces.
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Appendix A: Simulation details

The stochastic simulations of Eq. 1 were carried out
using the 4th-order Runge-Kutta method for a duration
of 60 s, which corresponds to approximately 6500 limit
cycles. The time steps used in the simulation were in
the range of 10−4 ↔ 2 × 10−3 s. The time steps for the
simulations of Eqs. 7,8 were 6 × 10−7 ↔ 3 × 10−6. We
did not observe any numerical instabilities of the solution
during these runs.
We explored a large range in the amplitude of the noise

variance 〈η2Z〉, covering the range of 10−7 ↔ 0.4 where
the amplitude of the limit cycle oscillator oscillation am-
plitude was held to be O(1). The stochastic terms driv-
ing the dynamical variables {X(t), Y (t)} were always as-
sumed to be uncorrelated.

Appendix B: First passage time distribution for a

quadratic confining potential

To estimate the distribution of return times over which
corner cutting trajectories come back to the mean limit
cycle, we consider a simple Smoluchowski equation giv-
ing the time evolution of the probability distribution of
the normal distance of a trajectory from the mean limit
cycle. We make a number of simplifying assumptions.
First, we assume that the effective potential for this one
dimensional problem is fixed in time. In the actual sys-
tem, this potential is time varying as the particle tra-
verses it trajectory, but as long as the excursions from
the mean limit cycle are sufficiently brief, this approxi-
mation should provide a reasonable estimate of the return
probabilities. Secondly, we assume that the force associ-
ated with the vector potential may be ignored. We find
that this non-potential force is typically subdominant;
in principle, a time-independent approximation to this
force could be included in the analysis explored below by
adding a constant force, corresponding to a simple tilt of
the potential landscape. Finally, the landscape of that
confining potential is assumed to be locally quadratic, as
illustrated by panels (C) and (D) in Fig. 8.
Given these approximations, we may write the Smolu-

chowski equation as

∂P (x, t)

∂t
= D

∂2P (x, t)

∂x2
+ κB

∂xP (x, t)

∂x
(B1)

where, D = BkBT is the effective diffusion constant and
B the mobility. κ is curvature of the confining poten-
tial, which may be computed directly from the equations
of motion and the curve associated with the mean limit
cycle. Using this equation we will compute the proba-
bility that a trajectory, starting at a particular normal
distance from the mean limit cycle, returns to that mean
limit cycle for the first time after a time interval t. This
is the well-known first passage time distribution.
We note that Eq. B1 has a simple time-independent

solution corresponding to the equilibrium position dis-

tribution of a harmonic oscillator with spring constant
κ:

Pst(x, t) =

√

κ

2πkBT
e
− κx2

2kBT (B2)

Writing the time-dependent probability distribution that
evolves towards Pst(x) according to Eq. B1 as a product:
P (x, t) = Pst(x, t)

1/2g(x, t), we obtain a new evolution
equation for g(x, t):

∂g(x, t)

∂t
−BkBT

∂2g(x, t)

∂x2
+

Bκ

2
(

κ

2kBT
− 1)g(x, t) = 0.

(B3)
We note that the g −→ 1 at long times in order to be
consistent with Eq. B2.
Using separation of variables, g(x, t) = f(t)h(x) and

simple redefinition of the curvature κ
2kBT = β, we find

that f and h obey the ordinary differential equations:

df

dt
+

f

τ
= 0 (B4)

d2h

dx2
− β2x2h+ (β +

1

τD
)h = 0. (B5)

From Eq. B4 we see that g(x, t) decays exponentially
in time with decay rates τ−1 set by solutions of the
Eq. B5. That equation may be reduced Hermite’s differ-
ential equation via a rescaling of both the independent

y =
√
βx and dependent h(y) = u(y)e−

y2

2 variables:

d2u

dy2
− 2y

du

dy
+

u

βτD
= 0 (B6)

The eigenfunctions Hn(y) of this differential operator

Hn(y) = (−)ney
2 ∂ne−y2

∂yn
(B7)

allow us to determine the discrete set of decay rates

τ−1
n = 2nβD. (B8)

Combining Eqs. B2,B4,B5 and,B7, we write the solu-
tion to Eq. B1 (in terms of the scaled spatial variable y)
as

P (y, t) = e−y2 ∑

n

cnHn(y)e
− t

τ , (B9)

where the undetermined coefficients cn are given by the
initial condition: P (y, t = 0). We take that initial condi-
tion to be a delta function δ(x−x0), where xmeasures the
normal displacement from the the mean limit cycle and
x0 is set by choosing the point where the potential energy
of the system is 3kBT above that of the mean limit cycle.
From the orthonormality of the Hermite polynomials,

∫ ∞

−∞

dye−y2

Hn(y)Hm(y) = δmn2
mm!

√
π, (B10)
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we obtain the undetermined constants in terms of
y0
√
βx0:

cn =
Hn(y0)

2nn!
√
π

(B11)

From these we have the conditional probability

P (y, t|y0, t0) =
√

κ

2πkBT
e−y2 ∑

n

Hn(y)Hn(y0)

n!

(

e−tκB

2

)n

(B12)
that a trajectory starting at y0 at time zero reaches y at
time t. Returning to the unscaled independent variable
and using Mehler’s approximation we write

P (x, t|x0, t0) =

(

κ

2πkBT (1− e−2κBt)

)1/2

e
−

κ(x−x0e−tκB )2

2kBT (1−e−2κBt) .

(B13)
In order to ensure we compute the first passage time

to the origin, we must eliminate trajectories that pass
through x = 0 on their way to (x, t). We do so in the
usual way by introducing an absorbing boundary condi-
tion at the origin. This is simply accomplished by sub-
tracting the above result from an imagined solution:

P̃ (x, t) = P (x, t)− P (−x, t). (B14)

Using this result, we compute the total probability re-
maining at time t:

N(t) =

∫ ∞

0

P̃ (x, t)dx. (B15)

The resulting integral can be written as

N(t) = (
κ

2πkBT (1− e−2κBt)
)1/2×

∫ ∞

0

dx

{

e
−

κ(x−x0e−tκB )2

2kBT(1−e−2κBt) − e
−

κ(x+x0e−tκB)2

2kBT (1−e−2κBt)

}

(B16)

The remaining integral is easily performed to yield a so-
lution written in terms of the error function:

N(t) =
2√
π

∫ y0

0

e−(y−y0)
2

dy (B17)

= erf

[

(

κ

2kBT (1− e−2κBt)

)1/2

x0e
−tκB

]

.(B18)

This result appears in the main text – see Eq. 10.

FIGURES

FIG. 1 (color online). Stochastic trajectories of the

hair bundle model: A representative stochastic trajectory
(green) superimposed upon the deterministic (red) and mean
(dashed black) limit cycles. The noise amplitude is by room
temperature and the fluctuation-dissipation theorem 2kBTλ,
with viscosity λ. This figure exemplifies the effect of noise that
we study in this manuscript. For more details see Ref. [20].

FIG. 2 (color online). Numerical simulation of the

stochastic Hopf oscillator: Calculations were performed
using Eq. 1. (A) The finite-temperature (light blue) trajecto-
ries and the mean (red) limit cycle. (B) A typical time series
(black) of the stochastic dynamics of X(t) and Y (t).

FIG. 3 (color online). Hopf Scalar Potential: The deter-
ministic limit cycle (red curve) lies in the minimum potential
region of the Mexican hat potential described by Eq. 5. The
color map runs from dark blue (low potential) to light yel-
low (high potential). The vector potential (not shown) is a
constant azimuthal vector field which drives the limit cycle
dynamics in a counterclockwise circular limit cycle of radius
R0. See text for details.

FIG. 4 (color online). Scalar Potential map for general-

ized Hopf: 3d plot of the scalar potential in Eq. 7, for n = 4
with the valleys seen in dark blue and hills in between them.
The color map spans across dark blue (low potential) to light
green (high potential). The deterministic limit cycle (yellow)
for small vector potential skirts around the hills and pinches
at the valleys.

FIG. 5 (color online). Stochastic trajectories with varia-

tion in temperature and ω: Quarter lobes of the trajecto-
ries obtained by solving Eq. 7 using ω values of {0, 101, 200}
and 〈η2

z〉 values of {0, 80, 320, 600}.

FIG. 6 (color online). Examples of corner cutting: (A)
The deterministic oscillator tracks the local minimum poten-
tial regions. (B) One lobe of the potential landscape. (C)
Oscillator at 〈η2〉 = 10. (D) Oscillator at 〈η2〉 = 30. A
(black) arrow points to an example of a corner cutting tra-
jectory. These have been simulated using parameter values
µ = 80, b = 1, α = 2000, n = 4, resulting in ω⋆ = 100 – see
Eq. 9 – and ω = 101.

FIG. 7 (color online). Direction of fv: One of the lobes
of the mean limit cycle (grey) of the 〈η2〉 = 30 stochastic
system, with the (blue) regions (A,B) corresponding to arc
lengths amidst which the corner cutting trajectories deviate
from the particle’s average behavior. The direction of fV is
illustrated by (orange) arrows. This lobe corresponds to the
marked lobe in the (upper right) inset.



10

FIG. 8 (color online). Confining potential: (A-D) Energy
landscapes in the n̂ direction to the zero-temperature limit
cycle, corresponding to the A-B arclength in Fig. 7. The
(red) cross is indicative of the noiseless particle position, with
negative values pointing towards (0, 0). These positions corre-
spond to the (black) cuts along the (yellow) limit cycle atop.

FIG. 9 (color online). Nonuniform distortion of the limit

cycle: The distance of the mean limit cycle at 〈η2〉 = 2000
from the underlying noiseless curve shown as a color map.
These values are normalized to the average value of the zero-
temperature cycle,

√

µ/b.

FIG. 10 (color online). Curvature of the confining po-

tential: The plot depicts κ values along the zero-temperature
limit cycle. We depict the inner curve, since the asymmetry
of the problem, renders it more susceptible to corner-cutting.
Additional plots exhibiting Eq. B18, illustrate the time of de-
cay for the total number of trajectories that have escaped the
mean path of a system with noise variance 〈η2〉 = 30. This
points to a theoretical method of determining regions in the
oscillatory system that are prone to distortion in the pres-
ence of noise, and hence less reliable when fitting parameters
to experimental data.

FIG. 11 (color online). Return time distribution: The
histogram represents the distribution of the stochastic trajec-
tories that lie 3T above the minimum potential. We consider
trajectories that leave the mean limit cycle in a region of
small potential curvature (κ = 0.6) as shown in Fig. 8B. The
overlaying plot is the theoretical prediction of Eq. 10.
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