
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Generation of ice states through deep reinforcement
learning

Kai-Wen Zhao, Wen-Han Kao, Kai-Hsin Wu, and Ying-Jer Kao
Phys. Rev. E 99, 062106 — Published 5 June 2019

DOI: 10.1103/PhysRevE.99.062106

http://dx.doi.org/10.1103/PhysRevE.99.062106

Generation of ice states through deep reinforcement learning

Kai-Wen Zhao,1 Wen-Han Kao,1 Kai-Hsin Wu,1 and Ying-Jer Kao1, 2, 3, 4, ∗

1Department of Physics and Center for Theoretical Physics, National Taiwan University, Taipei 10607, Taiwan
2National Center for Theoretical Sciences, National Tsing Hua University, Hsin-Chu 30013, Taiwan

3Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA
4Kvali Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106-4030, USA

(Dated: May 13, 2019)

We present a deep reinforcement learning framework where a machine agent is trained to search for a policy

to generate a ground state for the square ice model by exploring the physical environment. After training, the

agent is capable of proposing a sequence of local moves to achieve the goal. Analysis of the trained policy

and the state value function indicates that the ice rule and loop-closing condition are learned without prior

knowledge. We test the trained policy as a sampler in the Markov chain Monte Carlo and benchmark against the

baseline loop algorithm. This framework can be generalized to other models with topological constraints where

generation of constraint-preserving states is difficult.

I. INTRODUCTION

Ice models [1] are the simplest models that can describe the

statistical properties of proton arrangement in water ice [2],

and spin configurations of spin ices [3]. The ground states

in the ice model follow a local constraint, called the ice rule.

Due to this constraint, performing local changes in a given ice

configuration does not create a new ice state. The loop algo-

rithm, widely used in the Monte Carlo sampling of ice mod-

els, generates ice states by exploiting the fact that the differ-

ence between two ice configurations are in the form of closed

loops [4–6]. This is an example where an efficient algorithm

generating new constraint-satisfying states emergences from

clever inspection of sample states. We want to explore how to

automate this type of discovery with machine learning tech-

niques and provide a proof-of-principle implementation.

Efficient state generation is important, in particular, in

Markov chain Monte Carlo (MCMC) [7, 8]. To generate sta-

tistically sound samples in the simulation, we need to reduce

the autocorrelation between samples in the Markov chain.

This can be achieved by clever design of update proposals; for

example, in the case of two-dimensional ferromagnetic Ising

model, cluster updates such as Swendsen-Wang and Wolf al-

gorithms [9, 10] are powerful methods to reduce the effects of

critical slowing down near the critical point and allow for pre-

cise extraction of physics with larger systems. However, these

cluster algorithms are normally designed for specific models

and it is hard to generalize.

Recently, a new class of proposals termed self-learning

Monte Carlo, which uses configurations generated by a small

size simulation to train an effective model, and draws sam-

ples from the effective model to generate new configurations,

have demonstrated success in improving of the efficiency of

both classical and quantum Monte Carlo simulations [11–

14]. However, the amount of training data required for a suc-

cessful training normally scales with the complexity of the

effective model. Another class of proposals uses the gen-

erative models based on deep neural networks in order to

∗ yjkao@phys.ntu.edu.tw

generate new samples. The restrict Boltzmann machine, a

neural network architecture connected to the the real-space

renormalization group [15], has been used to generate Monte

Carlo samples to study thermodynamics [16] and to accelerate

Monte Carlo simulations [17]. The generative adversarial net-

work [18], where two neural networks contesting with each

other, is used to generate configurations for two-dimensional

Ising model [19] and for a complex scalar field in two dimen-

sions with a finite chemical potential [20]. The success behind

these methods relies on the fact that the underlying distribu-

tion of the configurations is continuous in the thermodynamic

limit; that is, all configurations generated by the neural net-

works are allowed. On the other hand, direct application of

these methods to generate configurations for the topologically

constrained model can be difficult. Here not all configurations

generated by the neural network can satisfy the constraint.

Therefore, a new scheme is highly coveted.

In this paper, we explore how to apply a reinforcement

learning framework [21] to generate new configurations that

satisfy the ice rule constraint. Reinforcement learning has

demonstrated remarkable abilities in achieving better than hu-

man performances on video games [22], and the game of

Go [23, 24]. Recently it has also been applied to quantum

physics research such as quantum control [25], quantum er-

ror correction [26–28], quantum experiment design [29]. In a

reinforcement learning setup, a machine agent interacts with

its environment. At each time step, the agent takes an ac-

tion on the current state of the environment, and then receives

a calculated reward from the observation of the consequence

of this action. A feasible reinforcement learning algorithm

seeks to maximize the total reward through a trial-and-error

learning procedure. We will utilize this feature to design an

algorithm to adaptively search for a move from an ice state

to another.Similar ideas have been explored recently by the

policy-guided Monte Carlo (PGMC) proposal [30] to improve

MCMC sampling. The policies in Ref. [30] are modeled with

simple functions and the best policy is obtained by optimizing

parameters in these models. Here we instead model the policy

as a deep neural network, and build the physical constraints

into the design of the reward function. Therefore, we can take

advantage of the recent progress in the reinforcement learn-

ing research to train an agent with a simple set of actions to

mailto:yjkao@phys.ntu.edu.tw

2

FIG. 1. (Color online) (a) Local spin configurations that satisfy the

2-in-2-out ice rule at each vertex. (b) Flipping a spin (unfilled arrow)

in an ice state creates a pair of defects, resulting in a high-energy

state. Propagation of a single defect (red circle) by flipping green

(bright) spins creates no additional defects. When the loop is closed,

the pair of defects (red circle and blue square) annihilates and a new

ice configuration is generated.

explore the physical environment. The best policy naturally

emerges out of the agent’s interaction with the environment,

subjected to the reward design. This scheme should serve as a

general framework to search for methods to generate topolog-

ically constrained states in other physical models.

The rest of the paper is organized as follows: In Sec. II,

we introduce the square ice model and the conventional loop

algorithm. In Sec. III, we introduce the deep reinforcement

learning framework we use. In Sec. V, the training process

and agent behavior will be discussed. We use the trained poli-

cies as samplers for Markov chain Monte Carlo in Sec. VI.

Finally, we conclude in Sec. VII.

II. SQUARE ICE MODEL

Here we consider a two-dimensional ice model on a square

lattice [1]. At each vertex, the arrangement of spins satisfies

the ice rule: two spins pointing into and two pointing out of

the vertex (Fig. 1(a)). There exist six types of vertices that

satisfy this constraint and all other types of vertices are con-

sidered defects with higher energy. This is the reason why ice

models are sometimes referred as six-vertex models [1, 31].

Ice states, therefore, correspond to spin configurations with

zero defects. All ice states have the same energy, and they

form an extensively degenerate ground state manifold with a

finite residual entropy at zero temperature of S/N = kB lnW

where W = (4/3)
3/2

[1]. They are, however, sparsely pop-

ulated in the configuration space of all possible spin config-

urations (Fig. 2). Consider, for example, flipping a random

spin from a given ice configuration, and the two neighboring

vertices connected by this spin violates the ice rule constraint,

creating a pair of topological defects of three-in-one-out and

one-in-three-out vertices (Fig. 1(b)) . The configurations that

satisfy the ice rules are thus separated by large energy bar-

riers and the conventional Metropolis single-spin flip update

scheme will fail. However, it is possible to flip a series of

neighboring spins to bring one ice configuration to another.

By examining the difference between two ice states, it is clear

FIG. 2. (Color online) Ice configurations are sparsely populated

in the full configuration space. Each red dot represents an ice con-

figuration. The distance between the red dots measures the differ-

ence between ice configurations. The black (dashed) circle indicates

the configurations reachable by a single-spin flip. The probability P

for each ice configuration is a δ-function; therefore a single-spin flip

alone can not reach another ice configuration. By constructing a path

(curved arrows) of single-spin flip moves, it is possible to reach a

new ice configuration.

that they differ only by spins forming closed-loops. This in-

dicates loop-like updates can bypass the energy barrier and

reach a new ice configuration.

The simplest algorithm to generate random closed loops is

the long loop algorithm [4, 5]. In each round of the algorithm,

one vertex is chosen as a starting point. One of the two out-

going spins from this vertex is chosen with equal probability.

Following this spin to the connecting vertex and choose one

of the two out-going spins with equal probability. Repeat the

process until the starting vertex is reached and the loop closes.

All the spins on the resulting loop are reversed to update the

configuration while preserving the ice rule. Since at each ver-

tex out-going spins are chosen with equal probability, there

are 2m possible paths for a given starting point, where m is

the size of the loop. This algorithm gives an example of how

one can generate a new ice configuration by going through a

series of highly unfavorable configurations in order to achieve

the final goal. This philosophy is indeed very similar to that

of the reinforcement learning that the best long-term strategy

may involve short-term sacrifices. It is natural to explore the

reinforcement learning scheme to generate new ice configura-

tions.

III. REINFORCEMENT LEARNING

Reinforcement learning (RL) is the branch of machine

learning concerned with making sequence of decisions for

long-term profit [21]. The central idea of RL is to consider a

machine agent situated in an environment. At each time step,

the agent takes an action on the current state of the environ-

ment, and then receives a calculated reward from the obser-

vation to the outcome of this action. A feasible RL algorithm

seeks to maximize the total reward for the agent from an un-

3

(a)

(b)

FIG. 3. (Color online) A global move in the Markov chain (a) from

state s0 to sT can be decomposed into a sequence of local moves.

By extending the Markov chain to a Markov decision process, the

policy π(a|s) serves as a transition operator, making local decisions,

to generate a global movement in state space.

known environment through a trial-and-error learning proce-

dure. We model the agent policy πθ with parameters θ using

deep and convolutional neural networks.

The core idea of our work is to parameterize the proposal

operator as the agent policy and search for efficient transitions

in the configuration space under given physical constraints.

In order to automate the search process, we extend the orig-

inal Markov chain to a Markov decision process (MDP), by

indicating how a state st transitions into a new state st+1 us-

ing the action at with the transition probability p(st+1|st, at).
The parametrized policy πθ(a|s) specifies the probability of

the action a the agent will take given the state s. A reward

function rt ≡ r(st, at) is associated with each state-action

pair {st, at}. A move in the Markov chain can, therefore,

be decomposed into a series of decision-makings in the MDP

(Fig. 3),

p(s0 → sT) = p(s0)

T−1
∏

t=0

∑

at

πθ(at|st)p(st+1|st, at) (1)

The policy πθ can be regarded as a proposal operator in the

conventional MCMC.

We briefly sketch the policy gradient scheme used in this

work and refer the interested readers to Refs. [21, 32] for de-

tails.

Given a trajectory of the state-action pairs τ =
({s0, a0}, {s2, a2}, . . .) in the MDP, the goal of RL is to max-

imize the expected future return, i.e., the weighted sum of re-

wards. The objective function can be defined as a function of

the policy,

J(πθ) = Eπ [R(τ)] =
∑

τ

πθ(τ)R(τ), (2)

where Eπ denotes the expectation value is evaluated along a

trajectory τ following the policy π. The total expected return

along the trajectory τ is given as R(τ) =
∑T−1

t=0 γtrt, where

0 ≤ γ < 1 denotes a discounting factor. The general method

for estimating the gradients of an expectation function is using

the score function estimator [33], and the model-free policy

gradient can be obtained as

∇θJ(πθ) = Eπ [∇θ log πθ(τ)R(τ)]. (3)

The optimal parameter θ can be obtained by the gradient as-

cent θ ← θ + α∇J(πθ) with the learning rate α.

To estimate how good it is for the agent to be in state s,

following policy π, we define a state-value function,

V π(s) = Eπ

[

∑

k=0

γkrt+k+1

∣

∣

∣

∣

∣

st = s

]

, (4)

which estimates the expected future rewards starting from

state s. To estimate V π, one starts from a random initial state

and follow π(a|s) to generate a trajectory to accumulate aver-

age return achieved from each state. Given enough samples,

the average should converge to the optimal Vπ . The value

function allows us to compare the policies: a policy π is bet-

ter than or equal to a policy π′ if only if Vπ(s) ≥ Vπ′(s) for

all s [21].

We use the Asynchronous Advantage Actor-Critic (A3C)

algorithm [34] to perform the training. The value function

V π
φ (s) is also parametrized by a neural network with parame-

ter φ, and the policy gradient is given by

∇θJ(πθ) = Eθ

[

∑

t

∇θ log πθ(at|st)A
π
φ(st, at)

]

, (5)

where Aπ
φ(st, at) = rt + γV π

φ (st+1) − V π
φ (st) is an esti-

mate of the advantage function [34]. The parameterized value

function V π
φ (s) is trained to predict the expected future return

that reduces the variance of policy gradient and stabilizes the

training process. In practice, the training is done using the

loss function,

L(θ, φ) = −

[

∑

t

(

log πθ(at, st)A
π
φ(t)− ||V

π
φ (st)−Rt||

2
)

+ λπθ(at|st) log πθ(at|st)

]

. (6)

The first term describes the policy loss, the second term gives

the estimation of the value function, and the last term pro-

vides the entropy regularization. In our experience that the

policy entropy term not only promotes exploration but pro-

4

vides a sensible indicator in the training process. The asyn-

chronous algorithm launches several independent agents sam-

pling trajectories from distinct environments. A central net-

work holds shared parameters and is updated asynchronously

by many agents. In other words, each agent explores the state

space simultaneously from different initial states. This ap-

proach prevents the machine from overfitting to some specific

configuration and generalizes the policy search. Eight inde-

pendent agents are used in our program to update eight inde-

pendent ice states simultaneously.

IV. AGENT-ENVIRONMENT INTERFACE

We implement an interactive interface for the interaction

between the machine agent and the physical environment

compatible with OpenAI Gym [35]. Two kinds of obser-

vations of the environment are provided to the agent. The

global observationOglobal monitors the configuration changes

Ct = st − s0 between the initial ice state s0 and the cur-

rent state st. The local observation Olocal monitors local in-

formation such as the neighboring spins σi, the fraction of

configuration change ∆C defined as the ratio of the num-

ber of flipped spins and the total number of spins. A state

in the MDP is a composite of local and global observations,

s = [Olocal, Oglobal].
In deep reinforcement learning, the policy and value func-

tions are both approximated by neural networks. In practice,

the value function usually shares weights with the policy ap-

proximator [36]; therefore, the same network is used for mak-

ing action decision and predicting the future return. We model

the agent with two types of networks: (a) Local network,

where only local observation is used as input information; (b)

Multi-channel network, where local and global observations

are combined. Figure 4 shows the architecture of the multi-

channel neural networks for the agent [36]. The local infor-

mation is fed into two layers of feedforward networks while

the global observation is extracted through two layers of con-

volutional neural networks before they are concatenated. The

specification of the neural network architecture and hyperpa-

rameters for training can be found in App. B. In the following,

we call the policy obtained from the local network as NN pol-

icy, and multi-channel network as CNN policy.

The actions that the agent located at spin σ can execute on

the environment contains two types of operations: Select and

flip a neighboring spin σi, i ∈ {0, .., 5}, ai, and propose an

update, aupdate (Fig. 6). At each step, the agent is located

at a spin and execute one action from the action space ac-

cording to the policy πθ(a|s) = [p(a0), . . . , p(a5), p(aupdate)],
the probability distribution of taking an action a for a given

state s. We note that all six neighbors are available in our

RL framework, while in the conventional loop algorithm only

two are allowed. For example, the policy for the loop algo-

rithm corresponding to the local environment shown in Fig. 6

is πloop = [0, 0, 0, 0, 1/2, 1/2, 0] since only the two outward

pointing spins can be chosen with equal probability. There-

fore, we design the actions in a less restrictive way and al-

low the agent to learn the effective trajectory by exploring the

FIG. 4. (Color online) Architecture of the multi-channel neural net-

work for the agent. For the NN policy, global observation is turned

off.

FIG. 5. (Color online) Architecture of agent-environment interface.

From an initial ice state, the agent keeps executing actions on the

environment and receiving corresponding rewards until the agent de-

cides to make an update and finishes the episode. In the final config-

uration, only the spins altered by the agent are depicted.

physical model. In addition, the action aupdate provides flexi-

bility for the agent to terminate at any step. As we will show

in the following, after sufficient exploration of the physical

environment, the agent tends to perform aupdate only when a

loop is formed.

The objective of RL is maximizing the cumulative rewards.

In playing Atari games, the game score is an obvious choice

for reward. In our application, however, searching for update

patterns hidden in the environment does not translate directly

into an optimization problem. Therefore, the reward function

serves as the guiding principal to inform the agent whether a

new ice state is generated. The restricted environment itself

would be the main reason that versatile policies emerge dur-

ing the training process [37]. We design the sparse reward

function as a step function given at the end of each episode,

rT (s, a) =

{

rg = 1, if the final state is an ice state

rf = 0, otherwise

Once the action aupdate is executed, the episode will be termi-

nated and the agent will receive the reward rT . This encour-

5

σ0

σ1

σ2 σ3

σ4

σ5

σ

(a) (b)

a0,…,a5

aupdate

flip spin  

move to the next vertex

perform update on  

spin configuration

FIG. 6. (Color online) (a) Local environment for an agent located

at spin σ. There are six neighboring spins that the agent can choose

to flip next. The blue spins σ4 and σ5 correspond to the possible

choices in the loop algorithm. (b) Two types of actions that the agent

can take: Flipping a neighboring spin or applying an update to the

spin configuration.

FIG. 7. (Color online) Agent training process for L = 16. The

shaded area presents the loop length distribution, bounded by max-

imum and minimum lengths. The dashed line represents the accep-

tance ratio of the agent’s proposed move. At the early stage of learn-

ing, the agent only creates 2 × 2 smallest loops to obtain the goal

rewards. In this phase, agent learns appropriate timing to execute

aupdate. Based on the learned small-loop strategy, the agent realizes

that ice rule allows for larger loops to occur if there are no more de-

fects are generated in the process. After 7 × 105 training steps, the

acceptance ratio of the agent-proposed moves reaches close to 100%.

ages the agent to perform aupdate only when the environment

is in a defect-vacuum state and thus generate a closed loop

in each episode. Since the closed-loop condition is relatively

rare, at most of the steps the agent receives no reward signals.

This kind of approximately silent environment usually causes

inefficient sampling and vanishing gradient in the training pro-

cess. To avoid this problem, we also define a stepwise reward

rs(s, a) to encourage the agent to explore the environment and

attempt to generate larger loops. The stepwise rewards are as-

signed at each step regardless of the action taken by the agent

and chosen to be relative small such that the agent recognizes

rg as the ultimate goal [38]. In practice, we keep the ratio of

the stepwise reward to the goal reward as rs/rg ∼ O(N
−1),

where N is the number of sites of the system.

V. TRAINING PROCESS AND AGENT BEHAVIOR

At the beginning of the training process, the agent lacks

any prior knowledge about the physical environment and per-

forms random moves to collect data. After a few trials, the

agent quickly gains the ability to generate a 2×2 square loop,

the smallest closed loop providing a non-zero goal reward. In

the absence of stepwise reward, the agent would exploit this

policy by proposing square loops frequently. However, the

stepwise reward encourages the agent to explore the possibil-

ities beyond the square loop. The distribution of loop length

as a function of training time is shown in Fig. 7. After about

3×105 training episodes, the agent becomes proficient at per-

forming larger random loops and executes the update action

correctly. While the maximum loop length shows a clear jump

at this point, the average loop size grows steadily. The accep-

tance ratio of the proposed moves also grows steadily during

training, and approaches 100% at later stage of the training.

In order to generate a new ice configuration, the agent needs

to learn to annihilate the pair of defects by closing the loop.

The well-trained agent can be regarded as a policy-guided ma-

chine in which the policy π(a|s) does the decision-making of

local spin flipping and the state-value function V (s) serves as

the loop-closing detector. In Fig. 8, we present the decision-

making process by the agent near the end of one episode. In

most of the steps, the policy distribution shows two possible

candidate spins with almost equal probability. This behavior

is similar to that of the conventional loop algorithm where one

of the two out-going spins are selected with equal probabili-

ties [39]. However, there exist time steps that the agent takes

deterministic action to move in certain direction. This indi-

cates the agent is exploiting knowledge acquired during the

training. Once the loop is closed, the agent decides to perform

an update action (aupdate) and terminate the episode with cer-

tainty. This behavior is consistent with the loop closing con-

dition in the loop algorithm. We can also use the state-value

function V (s) as an indicator of the agent behavior since it

implies the cumulative future reward. In Fig. 9 we show the

evolution of V (s) in the process of a single loop formation.

When the episode starts, the system is close to an ice state and

the value function gives high expectation value. After a few

steps of executing the local policy, the value function drops to

a local minimum as ends of the segment move apart and going

toward the opposite directions (inset A in Fig. 9). During the

exploration stage, it is possible that two ends move closer, and

the value function reaches a local maximum (inset B in Fig. 9).

At the final step, the value function jumps suddenly, anticipat-

ing the goal reward to be obtained by performing the update

action (inset C in Fig. 9). This indicates that the state-value

function plays the role of loop-closing detector and recognizes

the global pattern of the environment.

VI. SAMPLING USING TRAINED POLICIES

As mention in Sec. IV, two types of policies are trained by

supplying different sets of observations to the agent. The NN

policy is trained with only the local observationOlocal, and the

6

FIG. 8. (Color online) Decision-making process of the agent il-

lustrated by the policy π(a|s). Most of the time, the agent behaves

in a similar way to conventional long-loop algorithm which makes

stochastic selection from two outgoing spins (with probability 0.5,

denoted by red dashed lines). When the trajectory forms a closed

loop, the agent executes the update operation with full confidence

(orange striped bar).

FIG. 9. (Color online) State-value function V π(s) shows the ex-

pected future reward in the process of a loop formation. Shaded area

shows the distribution of the value, bounded by the maximum and

minimum value. A local minimum occurs when endpoints (circle and

square) are far apart (A), and a local maximum occurs when two end-

points move closer to each other (B). When a closed loop emerges,

the value function shows a jump and large reward is expected (C).

CNN policy is trained with both the local and global obser-

vations Olocal and Oglobal. We will use these trained policies

as samplers in the MCMC for the square ice model. With the

capacity of deep learning models, it is possible the network

simply memorizes the configurations it generated in the learn-

ing process. In order to check this, we start the trained agents

from the same ice configuration at the same initial position

FIG. 10. (Color online) Probability that a site is visited starting from

the same initial site and ice configuration for (a) loop algorithm, (b)

NN policy, and (c) CNN policy. The NN policy shows significant

memory effects while the CNN policy shows similar behavior as the

loop algorithm.

FIG. 11. (Color online) Equivalence mapping between the (a) vertex

spins on a square lattice and (b) Ising variables on a checkerboard

lattice by a 45◦ rotation. This specific configuration corresponds to

the ice state with a Néel order, where a regular vortex pattern (black

circular arrows) is shown.

to perform one update. We expect that the agent’s behavior

should become independent of the initial starting position and

explore the space without special preferences. The baseline

loop algorithm shows the probability of each site being visited

rapidly smears out (Fig. 10(a)) with the number of steps. We

observe, on the other hand, strong memory effects in the NN

policy (Fig. 10(b)) such that the agent tends to linger around

the initial site; while the CNN policy behaves similar to the

baseline loop algorithm (Fig. 10(c)).

7

We now use the trained policies to propose samples in the

Markov chain Monte Carlo to compute physical observables.

In particular, we are interested in correlation functions such as

the magnetic structure factor defined as

S(q) =
1

L2
〈sqs−q〉 ,where sq =

∑

r

sre
−iq·r, (7)

where the Ising variables sr on a checkerboard lattice are ob-

tained by an equivalence mapping from the vertex spins on

a square lattice (Fig. 11), and q is the momentum. In order

to reproduce the correct correlation, the configurations should

be sampled according to the underlying distribution. All ice

configurations in the square ice model are equally probable;

that is, all ice configurations should be sampled equally for

the sampling to be ergodic. Again, we use the structure fac-

tor generated by the loop algorithm as our baseline. Fig. 12

shows the spin structure factors using samples generated by

different algorithms. Both the NN (Fig. 12(b)) and CNN poli-

cies (Fig. 12(c)) can capture the diffuse scattering present in

the model; however, it is clear that correlation is biased for

the trained policies. We plot in Fig. 12(d) the structure factor

S(q) along the high symmetry direction in the first Brillouin

zone. We find that some weight of the diffusing scattering is

missing in the trained policies, and spectral weight is shifted

toward the Q = (π/2, π/2) point, indicating bias toward the

Néel ordered states for the trained policies. Surprisingly the

CNN policy is biased more toward the Néel states than the

NN policy, although the former has less memory effects due

to the global view. In the Néel order, spins arrange in a regular

vortex pattern (Fig. 11). This pattern requires a global view to

establish; thus, the CNN policy tends to bias more toward the

Néel states.

Clearly, the trained policies are not sampling all the ice

states equally, and the ergodicity is broken. This is related

to the fact that the machine policy contains actions that makes

deterministic moves. These actions indicate that agent some-

how memorizes special spin configurations during the training

process. Therefore, directly using the policies as samplers in-

troduces bias in the sampling. This is the consequence of not

enforcing the detailed balance condition during the training,

but may be corrected if one obtains an estimate of the density

of the bias in the transition probability. We note this should

not be considered a failure of the current framework since the

probability distribution of ice states is multimodal with equal

weights, which posts a significant challenge to properly sam-

ple. On the other hand, by adjusting the stepwise reward, it

is possible to bias the agent to create larger loops. Therefore,

this can be used to as an overrelaxation step to decorrelate

samples in the Markov chain, when combined with the con-

ventional loop algorithm.

VII. CONCLUSION

In this work, we develop a framework using deep reinforce-

ment learning to generate topologically constrained ice states.

We successfully train an agent to propose stepwise actions that

when combined together can transit from one ice state to an-

other. By rewarding the agent when a correct ice state is gen-

erated, several physical insights emerge out of the training.

Although the ice rule is not given explicitly, the agent learns

to move in a path without creating additional defects. The

agent also learns to distinguish open and closed loops, and

perform the update action when the loop closes. The physical

constraints are built into the reward function, not the policy it-

self. By using deep reinforcement learning, we show that the

machine can actually learn the global loop pattern and pro-

pose updates without prior knowledge of the ice rule. There-

fore, it is possible to extend this framework to other physi-

cal models. For example, quantum Monte Carlo simulations

of quantum spin ice models [40–42], toric code and related

gauge models [43–45] have been difficult due to the physical

constraints present in the model. The generality of the RL

framework presented here can explore an enlarged state space

and potentially discover new sampling schemes through the

automatic exploration of the machine agent on a constrained

model. These update proposals can be used as candidate poli-

cies in the PGMC [30] where detailed balance can be satisfied.

It would also be interesting to model the policy using neural

networks with normalizing flows [46–50]. Combining the ex-

ploration capability of RL with the unbiased control of the

training and inference of the reversible policy model can po-

tentially lead to the discovery of efficient MCMC algorithms

without detailed balance [51] for constrained models. Finally,

we note that the training of the model takes roughly three days

on a Xeon workstation, and each inference step of the CNN

policy takes about 0.75 ms. Both the conventional loop algo-

rithm and the CNN policy take about five minutes to generate

1000 loops on a L = 32 system.

VIII. ACKNOWLEDGMENTS

Y.-J.K. thanks T. Bojesen for useful discussion and critical

reading of the manuscript. This work was supported in part by

the Ministry of Science and Technology (MOST) of Taiwan

under Grants No. 105-2112-M-002-023-MY3, and 107-2112-

M-002 -016 -MY3 , 108-2918-I-002 -032, and by the National

Science Foundation under Grant No. NSF PHY-1748958. We

are also grateful to the National Center for High-performance

Computing for computer time and facilities.

Appendix A: Sliding horizon scheme

We train the agent policy in a Lt×Lt square lattice with the

periodic boundary condition. In general, the trained network

can only process fixed input dimension assigned before train-

ing. In order to use the agent in a larger system, we exploit

the translational invariance of the policy and use the sliding

horizon embedding that dynamically crops the input image

and moves the horizon together with the agent. The observa-

tion information within the Lt × Lt window is provided to

the agent. When the agent reaches the boundary of the win-

dow, the window is recentered around the agent as the agent

8

FIG. 12. (Color online) The structure factor for L = 64 computed using the configurations generated from (a) the conventional loop

algorithm, (b) the NN policy, and (c) the CNN policy. Only the intensity in the first quadrant is shown. The grey square indicates the magnetic

first Brillouin zone. The NN and CNN policies are trained in a L = 32 setting and a moving horizon embedding described in the appendix is

used to generate states for L = 64. (d) Line cuts of S(q) along high symmetry directions in the first Brillouin zone as indicated in the orange

(dashed) lines in (a). Both the trained policies show bias toward the Néel order.

Lt

L

FIG. 13. (Color online) The sliding horizon embedding scheme.

The trained agent (blue circle) takes input from an Lt × Lt window

(dark inner square) embedded in a L × L lattice. Dashed square

corresponds to the initial position of the observation window.

traversing the L × L lattice. This scheme provides the agent

the view similar to the training stage. It also allows us to ac-

cess system sizes larger than the training size as presented in

the main text.

Appendix B: Network architecture and hyperparameters

Here we present details of the specifications of the neu-

ral network architecture and the hyperparameters used in this

paper. Table I lists the specification of the local and multi-

channel networks for the agent. Table II lists all of hyperpa-

rameters, system settings and environment configurations for

future experiment reproductions.

TABLE I. Neural network architectures for the agent.

Name Layer Size

Local Network, NN Policy

linear (relu) 32
linear (relu) 64
linear (relu) 128
parallel (relu) 7, 1

Multi-channel Network, CNN Policy

linear (relu) 32
linear (relu) 64
conv (relu) 32, 3× 3, stride 2
conv (relu) 16, 3× 3, stride 2
concat 1088
linear (relu) 128
parallel (relu) 7, 1

TABLE II. Hyperparameters used in training.

Type Hyperparameter Value

Training

Solver type ADAM

Learning rate 10−4

β1, β2 (hparam for ADAM) 0.9, 0.999 (default)

Total steps 109

Update steps 120
Entropy regularization, λ 0.0001
Exploration ǫ−greedy, 1%
Gradient clip 40.0
Discount factor γ 0.99

System

Number of parameter server 1 (host)

Number of workers 8

Number of policy monitor 1

TensorBoard process 1

Evaluation duration 60 seconds

Environment

Lattice size L = 16
Observation shape Og : 32× 32× 1, Ol : 10
Action shape 7
Stepwise reward +0.001
Target reward +1.0
Timeout steps 1024

9

[1] Elliott H. Lieb, “Residual entropy of square ice,”

Phys. Rev. 162, 162–172 (1967).

[2] Linus Pauling, “The structure and entropy of ice and of

other crystals with some randomness of atomic arrangement,”

Journal of the American Chemical Society 57, 2680–2684 (1935),

https://doi.org/10.1021/ja01315a102.

[3] Steven T. Bramwell and Michel J. P. Gingras, “Spin ice state in

frustrated magnetic pyrochlore materials,” Science 294, 1495–

1501 (2001).

[4] Aneesur Rahman and Frank H. Stillinger, “Proton Dis-

tribution in Ice and the Kirkwood Correlation Factor,”

The Journal of Chemical Physics 57, 4009–4017 (1972).

[5] A. Yanagawa and J.F. Nagle, “Calculations of cor-

relation functions for two-dimensional square ice,”

Chemical Physics 43, 329 – 339 (1979).

[6] G T Barkema and M E J Newman, “Monte Carlo simulation of

ice models,” Phys. Rev. E 57, 1155–1166 (1998).

[7] David P. Landau and Kurt Binder, A guide to Monte Carlo

simulations in statistical physics (Cambridge university press,

2014).

[8] M. E. J. Newman and G. T. Barkema, Monte Carlo Methods in

Statistical Physics (Oxford University Press: New York, USA,

1999).

[9] Robert H Swendsen and Jian-Sheng Wang, “Nonuniversal crit-

ical dynamics in monte carlo simulations,” Phys. Rev. Lett. Re-

view Letters 58, 86 (1987).

[10] Ulli Wolff, “Collective Monte Carlo updating for spin systems,”

Physical Review Letters 62, 361 (1989).

[11] Junwei Liu, Yang Qi, Zi Yang Meng, and Liang Fu, “Self-

learning Monte Carlo method,” Physical Review B 95, 041101

(2017).

[12] Yuki Nagai, Huitao Shen, Yang Qi, Junwei Liu, and Liang

Fu, “Self-learning Monte Carlo method: Continuous-time al-

gorithm,” Physical Review B 96, 161102 (2017).

[13] Junwei Liu, Huitao Shen, Yang Qi, Zi Yang Meng, and Liang

Fu, “Self-learning Monte Carlo method and cumulative update

in fermion systems,” Physical Review B 95, 241104 (2017).

[14] Xiao Yan Xu, Yang Qi, Junwei Liu, and Liang Fu, “Self-

learning quantum Monte Carlo method in interacting fermion

systems,” Phys. Rev. B 96, 041119 (2017).

[15] P. Mehta and D. J. Schwab, “An exact mapping between the

Variational Renormalization Group and Deep Learning,” ArXiv

e-prints (2014), arXiv:1410.3831 [stat.ML].

[16] Giacomo Torlai and Roger G. Melko, “Learn-

ing thermodynamics with Boltzmann machines,”

Phys. Rev. B 94, 165134 (2016).

[17] Li Huang and Lei Wang, “Accelerated Monte Carlo

simulations with restricted Boltzmann machines,”

Phys. Rev. B 95, 035105 (2017).

[18] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,

D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio,

“Generative Adversarial Networks,” ArXiv e-prints (2014),

arXiv:1406.2661 [stat.ML].

[19] Zhaocheng Liu, Sean P. Rodrigues, and Wenshan Cai, “Sim-

ulating the Ising Model with a Deep Convolutional Genera-

tive Adversarial Network,” arXiv e-prints , arXiv:1710.04987

(2017), arXiv:1710.04987 [cond-mat.dis-nn].

[20] Kai Zhou, Gergely Endródi, and Long-Gang Pang, “Regressive

and generative neural networks for scalar field theory,” arXiv e-

prints , arXiv:1810.12879 (2018), arXiv:1810.12879 [hep-lat].

[21] R.S. Sutton and A.G. Barto,

Reinforcement Learning: An Introduction, Adaptive Com-

putation and Machine Learning series (MIT Press, 2018).

[22] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A

Rusu, Joel Veness, Marc G Bellemare, Alex Graves, Mar-

tin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.,

“Human-level control through deep reinforcement learning,”

Nature 518, 529 (2015).

[23] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Lau-

rent Sifre, George Van Den Driessche, Julian Schrittwieser,

Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot,

et al., “Mastering the game of Go with deep neural networks

and tree search,” Nature 529, 484–489 (2016).

[24] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis

Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert, Lucas

Baker, Matthew Lai, Adrian Bolton, et al., “Mastering the game

of Go without human knowledge,” Nature 550, 354 (2017).

[25] Thomas Fösel, Petru Tighineanu, Talitha Weiss, and Florian

Marquardt, “Reinforcement learning with neural networks for

quantum feedback,” Phys. Rev. X 8, 031084 (2018).

[26] Ryan Sweke, Markus S. Kesselring, Evert P. L. van Nieuwen-

burg, and Jens Eisert, “Reinforcement Learning Decoders

for Fault-Tolerant Quantum Computation,” arXiv e-prints ,

arXiv:1810.07207 (2018), arXiv:1810.07207 [quant-ph].

[27] Ye-Hua Liu and David Poulin, “Neural Belief-Propagation De-

coders for Quantum Error-Correcting Codes,” arXiv e-prints ,

arXiv:1811.07835 (2018), arXiv:1811.07835 [quant-ph].

[28] Hendrik Poulsen Nautrup, Nicolas Delfosse, Vedran Dunjko,

Hans J. Briegel, and Nicolai Friis, “Optimizing Quantum Error

Correction Codes with Reinforcement Learning,” arXiv e-prints

, arXiv:1812.08451 (2018), arXiv:1812.08451 [quant-ph].

[29] Alexey A. Melnikov, Hendrik Poulsen Nautrup,

Mario Krenn, Vedran Dunjko, Markus Tiersch, An-

ton Zeilinger, and Hans J. Briegel, “Active learning

machine learns to create new quantum experiments,”

Proceedings of the National Academy of Sciences 115, 1221–1226 (2018),

https://www.pnas.org/content/115/6/1221.full.pdf.

[30] Troels Arnfred Bojesen, “Policy-guided Monte Carlo:

Reinforcement-learning Markov chain dynamics,”

Phys. Rev. E 98, 063303 (2018).

[31] Rodney J Baxter, Exactly solved models in statistical mechanics

(Elsevier, 2016).

[32] Emre O. Neftci and Bruno B. Averbeck, “Reinforce-

ment learning in artificial and biological systems,”

Nature Machine Intelligence 1, 133–143 (2019).

[33] Alexander Shapiro, “Monte carlo sampling methods,” in

Stochastic Programming, Handbooks in Operations Research

and Management Science, Vol. 10 (Elsevier, 2003) pp. 353 –

425.

[34] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza,

Alex Graves, Timothy Lillicrap, Tim Harley, David Silver, and

Koray Kavukcuoglu, “Asynchronous methods for deep rein-

forcement learning,” in International Conference on Machine

Learning (2016) pp. 1928–1937.

[35] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas

Schneider, John Schulman, Jie Tang, and Wojciech Zaremba,

“OpenAi Gym,” arXiv preprint arXiv:1606.01540 (2016).

[36] Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev,

Alexander Sasha Vezhnevets, Michelle Yeo, Alireza Makhzani,

Heinrich Küttler, John Agapiou, Julian Schrittwieser, et al.,

“StarCraft II: a new challenge for reinforcement learning,”

http://dx.doi.org/10.1103/PhysRev.162.162
http://dx.doi.org/10.1021/ja01315a102
http://arxiv.org/abs/https://doi.org/10.1021/ja01315a102
http://dx.doi.org/ 10.1063/1.1678874
http://dx.doi.org/ https://doi.org/10.1016/0301-0104(79)85201-5
http://arxiv.org/abs/1410.3831
http://dx.doi.org/ 10.1103/PhysRevB.94.165134
http://dx.doi.org/ 10.1103/PhysRevB.95.035105
http://arxiv.org/abs/1406.2661
http://arxiv.org/abs/1710.04987
http://arxiv.org/abs/1810.12879
https://books.google.com/books?id=6DKPtQEACAAJ
http://dx.doi.org/ 10.1103/PhysRevX.8.031084
http://arxiv.org/abs/1810.07207
http://arxiv.org/abs/1811.07835
http://arxiv.org/abs/1812.08451
http://dx.doi.org/10.1073/pnas.1714936115
http://arxiv.org/abs/https://www.pnas.org/content/115/6/1221.full.pdf
http://dx.doi.org/10.1103/PhysRevE.98.063303
http://dx.doi.org/ 10.1038/s42256-019-0025-4
http://dx.doi.org/ https://doi.org/10.1016/S0927-0507(03)10006-0

10

arXiv preprint arXiv:1708.04782 (2017).

[37] Nicolas Heess, Srinivasan Sriram, Jay Lemmon, Josh Merel,

Greg Wayne, Yuval Tassa, Tom Erez, Ziyu Wang, Ali

Eslami, Martin Riedmiller, et al., “Emergence of loco-

motion behaviours in rich environments,” arXiv preprint

arXiv:1707.02286 (2017).

[38] Andrew Y Ng, Daishi Harada, and Stuart Russell, “Policy in-

variance under reward transformations: Theory and application

to reward shaping,” in ICML, Vol. 99 (1999) pp. 278–287.

[39] G. T. Barkema and M. E. J. Newman, “Monte Carlo simulation

of ice models,” Physical Review E 57, 1155 (1998).

[40] Louis-Paul Henry and Tommaso Roscilde, “Order-by-Disorder

and Quantum Coulomb Phase in Quantum Square Ice,”

Phys. Rev. Lett. 113, 027204 (2014).

[41] Kai-Hsin Wu, Yi-Ping Huang, and Ying-Jer Kao, “Tunneling-

induced restoration of classical degeneracy in quantum kagome

ice,” Phys. Rev. B 99, 134440 (2019).

[42] Yan-Cheng Wang, Xue-Feng Zhang, Frank Pollmann, Meng

Cheng, and Zi Yang Meng, “Quantum spin liquid

with even ising gauge field structure on kagome lattice,”

Phys. Rev. Lett. 121, 057202 (2018).

[43] Simon Trebst, Philipp Werner, Matthias Troyer, Kirill Shten-

gel, and Chetan Nayak, “Breakdown of a topological phase:

Quantum phase transition in a loop gas model with tension,”

Phys. Rev. Lett. 98, 070602 (2007).

[44] I. S. Tupitsyn, A. Kitaev, N. V. Prokof’ev, and P. C. E. Stamp,

“Topological multicritical point in the phase diagram of the

toric code model and three-dimensional lattice gauge Higgs

model,” Phys. Rev. B 82, 085114 (2010).

[45] Yoshitomo Kamiya, Yasuyuki Kato, Joji Nasu, and Yukitoshi

Motome, “Magnetic three states of matter: A quantum Monte

Carlo study of spin liquids,” Phys. Rev. B 92, 100403 (2015).

[46] Laurent Dinh, David Krueger, and Yoshua Bengio, “NICE:

Non-linear Independent Components Estimation,” arXiv e-

prints , arXiv:1410.8516 (2014), arXiv:1410.8516 [cs.LG].

[47] Danilo Jimenez Rezende and Shakir Mohamed, “Varia-

tional Inference with Normalizing Flows,” arXiv e-prints ,

arXiv:1505.05770 (2015), arXiv:1505.05770 [stat.ML].

[48] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Ben-

gio, “Density estimation using Real NVP,” arXiv e-prints ,

arXiv:1605.08803 (2016), arXiv:1605.08803 [cs.LG].

[49] George Papamakarios, Theo Pavlakou, and Iain Mur-

ray, “Masked Autoregressive Flow for Density Es-

timation,” arXiv e-prints , arXiv:1705.07057 (2017),

arXiv:1705.07057 [stat.ML].

[50] Shuo-Hui Li and Lei Wang, “Neural network renormalization

group,” Phys. Rev. Lett. 121, 260601 (2018).

[51] Hidemaro Suwa and Synge Todo, “Markov Chain

Monte Carlo method without detailed balance,”

Phys. Rev. Lett. 105, 120603 (2010).

http://dx.doi.org/10.1103/PhysRevLett.113.027204
http://dx.doi.org/10.1103/PhysRevB.99.134440
http://dx.doi.org/ 10.1103/PhysRevLett.121.057202
http://dx.doi.org/10.1103/PhysRevLett.98.070602
http://dx.doi.org/10.1103/PhysRevB.82.085114
http://dx.doi.org/10.1103/PhysRevB.92.100403
http://arxiv.org/abs/1410.8516
http://arxiv.org/abs/1505.05770
http://arxiv.org/abs/1605.08803
http://arxiv.org/abs/1705.07057
http://dx.doi.org/10.1103/PhysRevLett.121.260601
http://dx.doi.org/10.1103/PhysRevLett.105.120603

