
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Classical emulation of quantum-coherent thermal machines
J. Onam González, José P. Palao, Daniel Alonso, and Luis A. Correa

Phys. Rev. E 99, 062102 — Published  3 June 2019
DOI: 10.1103/PhysRevE.99.062102

http://dx.doi.org/10.1103/PhysRevE.99.062102


Classical emulation of quantum-coherent thermal machines
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The performance enhancements observed in various models of continuous quantum thermal machines have
been linked to the buildup of coherences in a preferred basis. But, is this connection always an evidence of
‘quantum-thermodynamic supremacy’? By force of example, we show that this is not the case. In particular, we
compare a power-driven three-level continuous quantum refrigerator with a four-level combined cycle, partly
driven by power and partly by heat. We focus on the weak driving regime and find the four-level model to
be superior since it can operate in parameter regimes in which the three-level model cannot, it may exhibit
a larger cooling rate, and, simultaneously, a better coefficient of performance. Furthermore, we find that the
improvement in the cooling rate matches the increase in the stationary quantum coherences exactly. Crucially,
though, we also show that the thermodynamic variables for both models follow from a classical representation
based on graph theory. This implies that we can build incoherent stochastic-thermodynamic models with the
same steady-state operation or, equivalently, that both coherent refrigerators can be emulated classically. More
generally, we prove this for any N-level weakly driven device with a ‘cyclic’ pattern of transitions. Therefore,
even if coherence is present in a specific quantum thermal machine, it is often not essential to replicate the
underlying energy conversion process.

PACS numbers: 05.70.–a, 03.65.–w, 03.65.Yz

I. INTRODUCTION

‘Quantum thermodynamics’ studies the emergence of ther-
modynamic behaviour in individual quantum systems [1].
Over the past few years, the field has developed very rapidly
[2–6] and yet, key recurring questions remain unanswered:

What is quantum in quantum thermodynamics?

Can quantum heat devices exploit quantumness
to outperform their classical counterparts?

Quantum thermal machines are the workhorse of quantum
thermodynamics. Very generally, these consist of an individ-
ual system S which can couple to various heat baths at dif-
ferent temperatures and, possibly, is also subject to dynamical
control by an external field. After a transient, S reaches a
non-equilibrium steady state characterized by certain rates of
energy exchange with the heat baths. The direction of these
energy fluxes can be chosen by engineering S , which may
result in, e.g., a heat engine [7] or a refrigerator [8]. Con-
siderable efforts have been devoted to optimize these devices
[9–22] and to understand whether genuinely quantum features
play an active role in their operation [23–42].

One might say that a thermal machine is quantum provided
that S has a discrete spectrum. In fact, the energy filter-
ing allowed by such discreteness can be said to be advanta-
geous, since it enables continuous energy conversion at the
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(reversible) Carnot limit of maximum efficiency [13, 16, 43].
Similarly, energy quantization in multi-stroke thermodynamic
cycles can give rise to experimentally testable non-classical
effects [42]. In most cases, however, it is attributes such as en-
tanglement or coherence which are regarded as the hallmark
of genuine quantumness.

In particular, quantum coherence [44, 45] has often been
seen as a potential resource, since it can influence the
thermodynamically-relevant quantities, such heat and work,
of open systems [46]. It has been argued, for instance, that
radiatively and noise-induced coherences [23–26] might en-
hance the operation of quantum heat engines [31, 34, 38]
and heat-driven quantum refrigerators [39–41]. However, it
is not clear whether they are truly instrumental [18, 19, 39,
41], since similar effects can be obtained from stochastic-
thermodynamic models [47–50], i.e., classical incoherent sys-
tems whose dynamics is governed by balance equations con-
cerning only the populations in some relevant basis (usually,
the energy basis).

A possible approach to elucidate the role of quantum coher-
ence in any given model is to add dephasing, thus making it
fully incoherent (or classical) [22, 30, 41]. An ensuing reduc-
tion in performance would be an evidence of the usefulness
of coherence in quantum thermodynamics. Furthermore, if
the ultimate limits on the performance of incoherent thermal
machines can be established, coherences would become ther-
modynamically detectable—one would simply need to search
for violations of such bounds [22, 51].

In this paper we adopt a much more stringent operational
definition for ‘quantumness’: No thermal machine should be
classified as quantum if its thermodynamically-relevant quan-

mailto:jgonzall@ull.es
mailto:jppalao@ull.edu.es
mailto:dalonso@ull.edu.es
mailto:luis.correa@nottingham.ac.uk


2

tities can be replicated exactly by an incoherent emulator1.
More precisely, the emulator should be a classical dissipa-
tive system operating between the same heat baths and with
the same frequency gaps and number of discrete states. In-
terestingly, we will show that the currents of many continu-
ous quantum-coherent devices are thermodynamically indis-
tinguishable from those of their ‘classical emulators’.

If it exists, such emulator needs not be related to the coher-
ent device of interest by the mere addition of dephasing—it
can be a different model so long as it remains incoherent at
all times and that, once in the stationary regime, it exchanges
energy with its surroundings at the same rates as the original
machine. In particular, the transient dynamics of the coherent
model can be very different from that of its emulator. In the
steady state, however, it must be impossible to tell one from
the other by only looking at heat fluxes and power.

For simplicity, we focus on periodically driven continuous
refrigerators with a ‘cyclic’ scheme of transitions (see Fig. 1),
although, as we shall point out, our results apply to devices
with more complex transition patterns. Specifically, ‘contin-
uous’ thermal machines [3] are models in which the working
substance S couples simultaneously to a cold bath at tempera-
ture Tc, a hot bath at Th > Tc, and a classical field 2. Since the
driving field is periodic, we must think of the steady state of
the machine as a ‘limit cycle’ where all thermodynamic vari-
ables are evaluated as time averages. Concretely, a quantum
refrigerator can drive heat transport against the temperature
gradient in a suitable parameter range, or ‘cooling window’.
We work in the limit of very weak driving, which allows us
to derive a ‘local’ master equation for S [52]. We show that
stationary quantum coherence is not only present in all these
models but, in fact, it is essential for the energy-conversion
process to take place. Strikingly, however, our main result is
that the steady-state operation of any such quantum-coherent
N-level machine admits a classical representation based on
graph theory [49, 53–56]. It follows that an incoherent device
can always be built such that its steady-state thermodynamic
variables coincide with those of the original model. Hence,
this entire family of quantum-coherent thermal machines can
be emulated classically. The design of such emulator is rem-
iniscent of the mapping of the limit cycle of a periodically
driven classical system to a nonequilibrium steady state [57].
We want to stress that, from now on, we focus exclusively
on the steady-state operation of continuous quantum heat de-
vices. In particular, this leaves out all ‘reciprocating’ ma-
chines. We note, however, that the latter reduce to the former
in the limit of ‘weak action’ [30].

As an illustration, we consider the paradigmatic power-
driven three-level refrigerator [8, 58, 59], which we use as
a benchmark for a novel four-level hybrid device, driven by

1 Note that throughout this paper, we only require the emulator to replicate
the averaged heat flows, but we make not mention to their fluctuations.
The emulability of higher-order moments of the fluxes is an interesting
point that certainly deserves separate analysis.

2 In an absorption refrigerator the driving is replaced by thermal coupling to
a ‘work bath’ at temperature Tw > Th, which drives the cooling process.

a mixture of heat and work. Concretely, we show that our
new model may have a wider cooling window, larger cool-
ing power, and larger coefficient of performance. We also
show that the energy-conversion rate in both models is pro-
portional to their steady state coherence. As a result, the ex-
cess coherence of the four-level model relative to the bench-
mark matches exactly the cooling enhancement. It would thus
seem that quantum coherence is necessary for continuous re-
frigeration in the weak driving limit and that the improved
cooling performance of the four-level model can be fully at-
tributed to its larger steady-state coherence. If so, observing
a non-vanishing ‘cooling rate’ in either device, or certifying
that the cooling rate of the four-level model is indeed larger
than that of the benchmark would be unmistakable signatures
of quantumness. Crucially, both coherent devices are cyclic
and weakly driven and, as such, they cannot be distinguished
from their classical analogues in a black-box scenario. There-
fore, quantum features might not only be present, but even be
intimately related to the thermodynamic variables of quantum
thermal machines under study and still, there may be nothing
necessarily quantum about their operation. We remark, how-
ever, that the thermodynamic equivalence between the con-
tinuous thermal machine and its emulator only holds in the
steady state. Importantly, we shall also see that the graph the-
ory analysis is a convenient and powerful tool [55, 56] to ob-
tain accurate approximations for the non-trivial steady-state
heat currents of these devices.

The paper is organized as follows: In Sec. II we introduce
our central model of weakly and periodically driven N-level
‘cyclic’ refrigerator. Its steady-state classical emulator is con-
structed in Sec. III. Some basic concepts of graph theory are
also introduced at this point. In particular, we show that the
emulator is a single-circuit graph whose heat currents, power,
and coefficient of performance may be obtained in a thermo-
dynamically consistent way. The generalization to more com-
plex transition schemes is also discussed at this point. Using
the graph-theoretical toolbox, we then analyze, in Sec. IV, our
novel four-level device and the three-level benchmark. We
thus arrive to analytical expressions indicating improvements
in the steady state functioning of the four-level model in a suit-
able regime. Finally, in Sec. V, we discuss the implications of
our results, summarize, and draw our conclusions.

II. CYCLIC THERMAL MACHINES

A. The system Hamiltonian

We start by introducing the general model for a coher-
ent cyclic thermal machine (see Fig. 1). The Hamiltonian
for the system or working substance S is comprised of two
terms: a bare (time-independent) Hamiltonian Ĥ0 and a time-
dependent contribution Ĥd(t) which describes the coupling to
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FIG. 1. (colour online) Energy level diagram for a generic N-level
cyclic thermal machine. The labelled red and blue arrows stands for
transitions mediated by dissipative interactions with the hot and cold
bath, respectively. Their distribution is arbitrary. The periodic field
coupling energy levels | jw〉 and | jw + 1〉 is indicated by the wobbly
green arrow.

a sinusoidal driving field. That is,

Ĥs(t) = Ĥ0 + Ĥd(t), (1a)

Ĥ0 =
∑N

i=1
Ei |i〉〈i|, (1b)

Ĥd(t) = 2h̄λ | jw〉 〈 jw + 1|cosω jw t + h.c., (1c)

where h̄ is the reduced Planck constant and λ controls the
strength of the interaction with the field. Ei and |i〉 are, respec-
tively, the energies and eigenstates of the bare Hamiltonian. In
particular, the driving connects the bare energy states | jw〉 and
| jw + 1〉. For simplicity, we assume a resonant coupling, i.e.,
ω jw B (E jw+1 − E jw )/h̄, which is optimal from a thermody-
namic viewpoint. The generalization to the non-resonant case
is, nevertheless, straightforward.

The hot and cold bath can be cast as infinite collections of
independent bosonic modes with a well-defined temperature.
Their Hamiltonians read

Ĥα = h̄
∑

µ
ωµ,α b̂†µ,αb̂µ,α, α ∈ {c,h}, (2)

with b̂†µ,α and b̂µ,α being the bosonic creation and annihilation
operators of the mode at frequency ωµ,α in bath α ∈ {c,h}. For
the system-baths couplings, we adopt the general form Ĥs–α =

X̂α⊗ B̂α, where

X̂α =
∑

i∈Rα
|i〉 〈i + 1|+ h.c., (3a)

B̂α = h̄
√
γα

∑
µ

gµ,α
(
b̂µ,α + b̂†µ,α

)
. (3b)

Here, gµ,α ∝
√
ωµ,α and γα is the dissipation rate for bath

α. Rα stands for the labels of the eigenstates |i〉 dissipa-
tively coupled to |i + 1〉 through the interaction with bath α.
For instance, in Fig. 1, Rc = {1,3, . . . , jw + 1, . . . ,N} and Rh =

{2,4, . . . , jw−1, . . .}. Notice that all levels |i〉 are thermally cou-
pled to |i + 1〉 (provided that i , jw) via either the hot or the
cold bath. In particular, the N-th level couples to i = 1, hence
closing the cycle. Without loss of generality, we consider that
all transitions related to the same bath have different energy

gaps, i.e., |ωk | , |ωl| for k, l ∈ Rα (k , l). This technical as-
sumption simplifies the master equation but does not restrict
the physics of the problem. The full Hamiltonian of the setup
is thus

Ĥ = Ĥs +
∑

α
Ĥs–α + Ĥα. (4)

Although we consider a cyclic scheme of transitions, our
formalism applies to more general quantum-coherent heat de-
vices. Namely, equivalent results can be easily found for non-
degenerate systems with various non-consecutive driven tran-
sitions. Likewise, one could include parasitic loops to the de-
sign. As an illustration, we analyze a model including an extra
hot transition between | jw〉 and | jw + 1〉 in the Appendix below.

B. The local master equation for weak driving

When deriving an effective equation of motion for the sys-
tem, it is important to consider the various time scales in-
volved [60]. Namely, the bath correlation time τB, the intrin-
sic time scale of the bare system τ0, the relaxation time scale
τR, and the typical time associated with the interaction of the
bare system with the external field τs–d. These are

τB 'max
{
h̄/(kBTc), h̄/(kBTh)

}
= h̄/(kBTc). (5a)

τ0 'max
{
| ±ωk ∓ωl|

−1, |2ωk |
−1}, (k , l). (5b)

τR ' γ
−1
α , α ∈ {c,h}. (5c)

τs–d ' λ
−1. (5d)

For a moment, let us switch off the time-dependent term
Ĥd(t) and discuss the usual weak-coupling Markovian master
equation, i.e., the Gorini–Kossakowski–Lindblad–Sudarshan
(GKLS) equation [61, 62]. Its microscopic derivation relies
on the Born-Markov and secular approximations, which hold
whenever τB� τR and τ0� τR. It can be written as

dρ̂s

dt
= −

i
h̄

[Ĥ0, ρ̂s] + (Lc +Lh) ρ̂s, (6)

where ρ̂s is the reduced state of the N-level system. Crucially,
due to the underlying Born approximation of weak dissipa-
tion, Eq. (6) is correct only to O(

max{γc,γh}
)
.

The action of the super-operator Lα is given by

Lα ρ̂s =
∑

i∈Rα
Γαωi

(
Âi ρ̂sÂ†i −

1
2

{
Â†i Âi, ρ̂s

}
+

)
+Γα−ωi

(
Â†i ρ̂S Âi−

1
2

{
Âi Â†i , ρ̂s

}
+

)
. (7)

Here, Âi = |i〉 〈i + 1| and the notation {·, ·}+ stands for anti-
commutator. The ‘jump’ operators Âi are such that X̂α =∑

i∈Rα

(
Âi + Â†i

)
and [Ĥ0, Âi] = −ωiÂi. As a result, the oper-

ators X̂α in the interaction picture with respect to Ĥ0 read

ei Ĥ0 t/h̄ X̂α e−i Ĥ0 t/h̄ =
∑

i∈Rα
e−iωi tÂi. (8)
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This identity is a key step in the derivation of Eq. (6) [60].
If we now switch Ĥd(t) back on, we will need to change the

propagator in Eq. (8) over to the time-ordered exponential

Ûs(t) = T exp
(
−i h̄−1

∫ t

0
dt′ [ Ĥ0 + Ĥd(t′) ]

)
. (9)

When deriving a GKLS master equation for such a periodi-
cally driven system one also looks for a different decomposi-
tion on the right-hand side of Eq. (8) [16, 63, 64]. Namely,

Û†s (t) X̂α Ûs(t) =
∑

q∈Z

∑
{ω̄}

e−i (ω̄+qω jw ) tÂ(q)
i . (10)

We will skip all the technical details and limit ourselves to
note that if, in addition to τB� τR and τ0� τR, we make the
weak driving assumption of τR� τs–d, Eq. (10) can be cast as

Û†s (t) X̂α Ûs(t) = ei Ĥ0 t/h̄ X̂α e−i Ĥ0 t/h̄ +O(λ)

=
∑

i∈Rα
e−iωi tÂi +O(λ). (11)

This is due to the fact that Ĥd is O(λ) while Ĥ0 is O(1). Ex-
ploiting Eq. (11) and following the exact same standard steps
that lead to Eq. (6), one can easily see that the master equation

dρ̂s

dt
= −

i
h̄

[Ĥ0 + Ĥd(t), ρ̂s] + (Lc +Lh) ρ̂s (12)

would hold up to O(λmax{γc,γh}).
Effectively, Eq. (12) assumes that the dissipation is entirely

decoupled from the intrinsic dynamics of S , which includes
the driving. This is reminiscent of the ‘local’ master equa-
tions which are customarily used when dealing with weakly
interacting multipartite open quantum systems [52, 65, 66].
We want to emphasize that, just like we have done here, it is
very important to establish precisely the range of validity of
such local equations [67] since using them inconsistently can
lead to violations of the laws of thermodynamics [68, 69].

It is convenient to move into the rotating frame ρ̂s 7→

ei Ĥ0 t/h̄ρ̂se−i Ĥ0 t/h̄B σ̂s in order to remove the explicit time de-
pendence on the right-hand side of Eq. (12) and simplify the
calculations. This gives

dσ̂s

dt
= −

i
h̄

[ĥd, σ̂s] + (Lc +Lh) σ̂s, (13)

where the Hamiltonian Ĥd(t) in the rotating frame is given by

ĥd ' h̄λ (| jw〉 〈 jw + 1|+ h.c.) . (14)

Here, we have neglected two fast-rotating terms, with fre-
quencies ±2ω jw . This is consistent with our weak driving ap-
proximation τs–d � τR, as all quantities here have been time-
averaged over one period of the driving field.

The ‘decay rates’ Γαω from Eq. (7) are the only missing
pieces to proceed to calculate the thermodynamic variables
in the non-equilibrium steady state of S . These are

Γαω = 2Re
∫ ∞

0
dr eiω t Tr{B̂α(t)B̂α(t− r)ρ̂α}, (15)

where the operator ρ̂α represents the thermal state of bath α.
Assuming dα-dimensional baths with an infinite cutoff fre-
quency, the decay rates become [60]

Γαω = γα (ω/ω0)dα [
1− exp(−h̄ω/kBTα)

]−1 , (16a)
Γα−ω = exp(−h̄ω/kBTα)Γαω, (16b)

with ω > 0. In our model, ω0 depends on the physical realiza-
tion of the system-bath coupling. dα = 1 would correspond to
Ohmic dissipation and dα = {2,3}, to the super-Ohmic case.

C. Heat currents, power, and performance

As it is standard in quantum thermodynamics, we will use
the master equation (13) to break down the average energy
change of the bare system d

dt 〈E〉(t) = tr {Ĥ0
d
dt σ̂s(t)} into ‘heat’

and ‘power’ contributions [i.e., d
dt 〈E〉(t) =

∑
α Q̇α(t) + P(t)].

These can be defined as [30]

Q̇α(t)B tr {Ĥ0Lα σ̂s(t)}, (17a)

P(t)B −i h̄−1tr {Ĥ0 [ĥd, σ̂s(t)]}. (17b)

In the long-time limit, d
dt 〈E〉

t→∞
−−−−→ 0, and we will denote the

corresponding steady-state heat currents and stationary power
input by Q̇α and P , respectively. In particular, from Eqs. (7)
and (17) it can be shown that [70, 71]

Q̇c + Q̇h +P = 0, (18a)

Q̇c

Tc
+

Q̇h

Th
≤ 0, (18b)

which amount to the First and Second Law of thermodynam-
ics. It is important to note that the strict negativity of Eq. (18b)
follows directly from the geometric properties of the dynam-
ics generated by the local dissipators Lα [71]. Working with
any other reference frame to quantify energy exchanges in
Eqs. (17), such as, e.g., Ĥ0 + ĥd, would lead to undesirable vi-
olations of the Second Law [68]. We thus see that the choice
of the eigenstates of the bare Hamiltonian as preferred basis
has a sound thermodynamic justification.

Using Eqs. (1b), (7), (14), and (17), we find for our cyclic
N-level model

Q̇α =
∑

i∈Rα
(Ei+1−Ei) Ji , (19a)

P = 2h̄λω jw Im 〈 jw| σ̂s(∞) | jw + 1〉 , (19b)

where Ji = Γ
αi
−ωi

p(∞)
i −Γ

αi
ωi p(∞)

i+1 is the net stationary transition
rate from |i〉 to |i + 1〉 and p(∞)

i B 〈i | σ̂s(∞) | i〉. The super-index
αi stands for the bath associated with the dissipative transi-
tion |i〉 ↔ |i + 1〉. Crucially, Eq. (19b) implies that vanishing
stationary quantum coherence results in vanishing power con-
sumption (P = 0) and hence, no refrigeration (see also, e.g.,
Ref. [3]). In fact, as we shall see below, Q̇α = 0 in absence of
coherence. Therefore, our cyclic model in Fig. 1 is inherently
quantum since it requires non-zero coherences to operate.
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D. Steady-state populations and coherence

The key to understand why our weakly driven cyclic de-
vices can be emulated classically resides in the interplay be-
tween populations and coherence in the eigenbasis {|i〉}Ni=1 of
the bare Hamiltonian Ĥ0. In this representation, Eq. (13)
reads:

dpi

dt
= Γ

αi−1
−ωi−1

pi−1−
(
Γ
αi−1
ωi−1 +Γ

αi
−ωi

)
pi +Γ

αi
ωi pi+1, (20a)

dp jw

dt
= Γ

α jw−1
−ω jw−1

p jw−1−Γ
α jw−1
ω jw−1 p jw −2λ Im 〈 jw| σ̂s | jw + 1〉 ,

(20b)
dp jw+1

dt
= Γ

α jw+1
ω jw+1 p jw+2−Γ

α jw+1
−ω jw+1

p jw+1 + 2λ Im 〈 jw| σ̂s | jw + 1〉 ,

(20c)

for i , { jw, jw + 1}. Note that we have omitted the time labels
in pk = 〈k| σ̂s(t) |k〉 for brevity. Importantly, the populations of
the pair of levels coupled to the driving field do depend on the
coherence between them. In turn, this coherence evolves as

d
dt
〈 jw| σ̂s | jw + 1〉

= −
1
2

(
Γ
α jw−1
ω jw−1 +Γ

α jw+1
−ω jw+1

)
〈 jw| σ̂s | jw + 1〉− iλ

(
p jw+1− p jw

)
.

(21)

Hence, the steady-state coherence (i.e., d
dt 〈 jw| σ̂d | jw + 1〉∞ B

0) in the subspace spanned by | jw〉 and | jw + 1〉 is given in
terms of the steady-state populations only. Namely, as

〈 jw| σ̂s | jw + 1〉∞ = i
2λ

(
p(∞)

jw
− p(∞)

jw+1

)
Γ
α jw−1
ω jw−1 +Γ

α jw+1
−ω jw+1

. (22)

Inserting Eq. (22) in (20) and imposing d
dt p(∞)

k = 0 yields
a linear system of equations for the N stationary populations
p∞ B

(
p(∞)

1 , p(∞)
2 , . . . , p(∞)

N
)T. This can be cast as Wp∞ = 0,

where the non-zero elements of the ‘matrix of rates’ W are

Wi, i+1 = Γ
αi
ωi , Wi+1, i = Γ

αi
−ωi

,

Wi, i−1 = Γ
αi−1
−ωi−1

, Wi−1, i = Γ
αi−1
ωi−1 ,

Wi, i = −
(
Γ
αi−1
ωi−1 +Γ

αi
−ωi

)
,

(23)

for i , { jw, jw + 1}, and

W jw, jw+1 = W jw+1, jw = 4λ2
[
Γ
α jw−1
ω jw−1 +Γ

α jw+1
−ω jw+1

]−1
,

W jw, jw = −
(
Γ
α jw−1
ω jw−1 + W jw, jw+1

)
,

W jw+1, jw+1 = −
(
Γ
α jw+1
−ω jw+1

+ W jw, jw+1
)
.

(24)

Note that, even if Wp∞ = 0 (together with the normaliza-
tion condition) determines the stationary populations of our
model, Eqs. (20) certainly differ from

dq(t)
dt

= Wq(t). (25)

That is, the q(t) defined by Eq. (25) converges to p∞ asymp-
totically but it does not coincide with

(
p1(t), · · · pN(t)

)T at any
finite time. Nonetheless, as we shall argue below, a classi-
cal system S ′ made up of N discrete states evolving as per
Eq. (25) can emulate the steady-state energy conversion pro-
cess of the quantum-coherent system S . Note that a simi-
lar trick has been used in [39], for an absorption refrigerator
model where coherences appear accidentally, due to degener-
acy. In contrast, as argued in Sec. II C, the quantum coherence
in our model is instrumental for its operation.

Remarkably, an equation similar to (25) can be found for
an arbitrary choice of basis. Crucially, however, the physically
motivated choice of the eigenbasis of Ĥ0 ensures the positivity
of all non-diagonal rates in W, that they obey detailed balance
relations [cf. Eqs. (26) below], and the structure of Eq. (19a).
All these are necessary conditions for building a classical em-
ulator for the energy-conversion process, as we show below.

III. CLASSICAL EMULATORS

A. General properties

Let us now discuss in detail the properties of the emulator
S ′ as defined by Eq. (25). First of all, note that (25) is a proper
balance equation since: (i) the non-diagonal elements of W
are positive, (ii) the pairs {Wi, i+1, Wi+1, i} satisfy the detailed
balance relations [cf. Eqs. (16b), (23), and (24)]

Wi+1, i

Wi, i+1
= exp

(
−

h̄ωi

kBTαi

)
, (i , jw) (26a)

W jw+1, jw

W jw, jw+1
= 1, (26b)

and (iii) the sum over columns in W is zero (i.e., Wk,k =

−
∑

l,k Wl,k), reflecting the conservation of probability. This
also implies that W is singular and that p∞ is given by its
non-vanishing off-diagonal elements.

Notice as well that rates like {Wi, i+1, Wi+1, i}i, jw in Eq. (26)
can always be attributed to excitation/relaxation processes
(across a gap h̄ωi) mediated by a heat bath at temperature
Tαi . On the contrary, {W jw, jw+1, W jw+1, jw } indicate saturation.
Therefore, one possible physical implementation of S ′ would
be an N-state quantum system connected via suitably chosen
coupling strengths to a hot and a cold bath as well as to a work
repository, such as an infinite-temperature heat bath. Indeed,
looking back at Eqs. (23), we see that the rates for the dissi-
pative interactions in S ′ are identical to those in S . However,
according to Eq. (24), the coupling to the driving is much
smaller in the emulator than in the original quantum-coherent
model. Hence, S ′ is not the result of dephasing the N-level
cyclic machine, but a different device.

At this point, we still need to show that the steady-state
energy fluxes of our emulator actually coincide with Eqs. (19).
To do so, we now build a classical representation of S ′ based
on graph theory. Importantly, this also serves as the generic
physical embodiment for the emulator.
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FIG. 2. (colour online) (a) The circuit graph CN is a classical emu-
lator for the steady state of the N-level quantum-coherent device of
Fig. 1. The blue edges are associated with dissipative transitions me-
diated by the cold bath. Similarly, the red edges and the green edge
relate to the hot bath and the external driving. (b) When orienting the
edges of CN clockwise, the cycle ~CN is obtained. (c) Removing the
edge ( jw, jw + 1) from CN yields the maximal tree T jw . (d) Orienting
T jw towards, e.g., vertex l = 3 gives the oriented maximal tree ~T l

jw
.

B. Graph representation and thermodynamic variables

Using graph theory for the thermodynamic analysis of a
system described by a set of rate equations has two major ad-
vantages: First, it provides a clear interpretation of the un-
derlying energy conversion mechanisms [55] and, secondly, it
allows for the calculation of the thermodynamic variables di-
rectly from the matrix of rates [53]. In fact, the graph itself
also follows from W —each state k = {1,2, . . . ,N} becomes
a ‘vertex’ and each pair of non-vanishing rates {Wk, l, Wl,k}k,l
becomes an ‘undirected edge’ (k, l) connecting k and l. Specif-
ically, this mapping would take Eq. (25) into the ‘circuit
graph’ CN depicted in Fig. 2(a). We can thus think of S ′ as
a classical device transitioning cyclically between N states.

Now that we have a physical picture in mind, we show that
such classical emulator is thermodynamically equivalent to
the coherent N-level machine, once in its steady state. Specif-
ically, we focus on rewriting the thermodynamic variables of
S [cf. Eqs. (19)] in terms of elements of S ′. To that end, some
graph objects need to be introduced. For instance, the undi-
rected graph CN may be oriented (or directed) either clockwise
or anticlockwise, leading to the ‘cycles’ ~CN and − ~CN , respec-
tively [see Fig. 2(b)]. We may want to eliminate an edge from
CN , e.g., (k,k + 1); the resulting undirected graph would be
the ‘maximal tree’ Tk [see Fig. 2(c)]. Maximal trees can also
be oriented towards a vertex, e.g., l; the corresponding graph
would then be denoted by ~T l

k [see Fig. 2(d)]. Finally, if the

edge (k, l) is directed, e.g., from vertex k to vertex l, we may
pair it with the transition rate Wl,k. Similarly, any directed
subgraph ~G, for example the cycle ~CN or the oriented max-
imal tree ~T l

k , can be assigned a numeric value A( ~G) given
by the product of the transition rates of its directed edges. In
particular, A( ~CN) = ΠN

n=1Wn+1,n, A(− ~CN) = ΠN
n=1Wn,n+1 and

A( ~T l
k ) =



Πl−1
n=1Wn+1,n Πk

n=l+1Wn−1,n ΠN
n=k+1Wn+1,n l < k

Πk−1
n=1Wn,n+1 Πl−1

n=k+1Wn+1,n ΠN
n=lWn,n+1 l > k + 1

Πk−1
n=1Wn+1,n ΠN

n=k+1Wn+1,n l = k

Πk−1
n=1Wn,n+1 ΠN

n=k+1Wn,n+1 l = k + 1
(27)

where WN,N+1 ≡WN,1 and WN+1,N ≡W1,N .
Our aim is to cast Q̇α and P solely as functions of graph

objects referring to CN . Let us start by noting that, the steady
state populations p(∞)

i of S can be written as [54]

p(∞)
i = D(CN)−1

∑N

k=1
A( ~T i

k ), (28)

since, by definition, they coincide with those of S ′. Here,
D(CN) =

∑N
k=1

∑N
l=1A( ~T l

k ). Introducing Eq. (28) in the defini-
tion of Ji [see text below Eqs. (19)], we get

Ji = D(CN)−1
∑N

k=1

[
Wi+1, iA( ~T i

k )−Wi, i+1A( ~T i+1
k )

]
. (29)

The bracketed term in Eq. (29) turns out to be
[A( ~CN) −

A(− ~CN)
]
δki [56], where δki stands for the Kronecker delta.

Therefore Ji does not depend on i

Ji = D(CN)−1
[
A( ~CN)−A(− ~CN)

]
B J. (30)

That is, in the steady state, the system exchanges energy
with both baths and the driving field, with the same flux
[54]. This ‘tight-coupling’ condition between thermodynamic
fluxes [13] implies that our N-level device is ‘endoreversible’
[16] and hence, that it can operate in the reversible limit of
maximum energy-efficiency [28].

As a result, Eq. (19a) becomes Q̇α = J
∑

i∈Rα
(Ei+1 − Ei).

Using (23) and (26a), we can see that

∑
i∈Rα

(Ei+1−Ei) = −TαkB ln
Aα( ~CN)

Aα(− ~CN)
B −TαX α( ~CN),

(31)
where Aα(± ~CN) is the product of the rates of the directed
edges in ± ~CN associated with bath α only. Combining
Eqs. (30) and (31), we can finally express the steady-state heat
currents Q̇α of the quantum-coherent N-level device S as:

Q̇α =
−TαX α( ~CN)

D(CN)

[
A( ~CN)−A(− ~CN)

]
≡ Q̇α(CN). (32)

On the other hand, the power is easily calculated from energy
conservation [cf. Eq. (18a)]. Remarkably, the right-hand side
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of Eq. (32) coincides with the steady-state heat currents of the
circuit graph in Fig. 2(a), i.e., Q̇α ≡ Q̇α(CN) [53]. Note that
this is far from trivial, since (32) refers to S , even if written
in terms of graph objects related to S ′. Therefore, we have
shown that the N-level refrigerator and its classical emulator
exhibit the same stationary heat currents and power consump-
tion and are thus, thermodynamically indistinguishable. This
is our main result. Note that the significance of Eq. (32) is
not just that our model is classically emulable, but that it is
classically emulable in spite of requiring quantum coherence
to operate (cf. Sec. II C).

C. Performance optimization of the thermal machine

The graph-theoretic expression (32) for the circuit currents
of the classical emulator can also prove useful in the per-
formance optimization of our quantum-coherent thermal ma-
chines S [56]. For instance, from the bracketed factor we
see that the asymmetry in the stationary rates associated with
opposite cycles is crucial in increasing the energy-conversion
rate. On the other hand, the number of positive terms in the
denominator scales as D(CN) ∼ N2, leading to vanishing cur-
rents. Therefore, larger energy-conversion rates are generally
obtained in small few-level devices [17] featuring the largest
possible asymmetry between opposite cycles.

Let us now focus on the refrigerator operation mode (i.e.,
Q̇c > 0, Q̇h < 0, and P > 0). Besides maximizing the cooling
rate Q̇c, it is of practical interest to operate at large ‘coefficient
of performance’ (COP) E , i.e., at large cooling per unit of
supplied power. In particular, the COP writes as

E B E (CN) =
Q̇c(CN)
P(CN)

=
−TcX c( ~CN)

TcX c( ~CN) + ThX h( ~CN)
. (33)

As a consequence of the second law [cf. Eq. (18b)], E (CN) is
upper bounded by the Carnot COP (EC)

E (CN) ≤ EC =
Tc

Th−Tc
. (34)

This limit would be saturated when X h(CN) = −X c(CN) 3.
Since the coupling to the driving field sets the smallest en-

ergy scale in our problem, the corresponding transition rate
normally satisfies W jw, jw+1 � Wi, i+1, ∀i , jw; unless some
ωi becomes very small. In turn, recalling the definition of
an oriented maximal tree ~T l

k [see Fig. 2(d)], this implies{A( ~T l
k )

}
k, jw �

{A( ~T l
jw

)
}N
l=1, since the latter do not contain the

3 In Sec. III B we noted that a quantum thermal machine obeying Eqs. (20)
and (21) is endoreversible and, therefore, capable of operating at the re-
versible limit of Eq. (34). Recall, however, that the underlying quantum
master equation (12) is based on a local approximation. A more accurate
master equation—non-perturbative in the driving strength—can, neverthe-
less, be obtained using Floquet theory [16, 63, 64]. Importantly, this would
introduce internal dissipation [20] neglected in Eq. (12), thus keeping the
refrigerator from ever becoming Carnot-efficient [16, 28].

small factors W jw, jw+1 = W jw+1, jw , and allows for a convenient
simplification of D(CN) that we shall use below. Namely,

D(CN) =


∑N

k, jw

∑N
l=1A( ~T l

k )∑N
l=1A( ~T l

jw
)

+ 1

 ∑N

l=1
A( ~T l

jw )

'
∑N

l=1
A( ~T l

jw ). (35)

IV. EXAMPLE: POWER ENHANCEMENT IN A
COHERENT FOUR-LEVEL HYBRID REFRIGERATOR

In this section we apply the above to a concrete example.
Namely, we solve for the steady state of two models of quan-
tum refrigerator and find that one of them is more energy-
efficient and cools at a larger rate than the other provided its
steady-state coherence is also larger. Moreover, the quan-
titative improvement in the cooling rate matches exactly the
increase in steady-state coherence. As suggestive as this ob-
servation may seem, we then move on to show that quantum
coherence is not indispensable to achieve such performance
enhancement. We do so precisely by building classical emu-
lators for both quantum-coherent models and observing that
the exact same performance enhancement is possible within a
fully classical stochastic-thermodynamic picture.

A. Performance advantage

Let us start by considering the three-level model depicted
in Fig. 3(a). As we can see, this simple design consists
of three states {|1〉 , |2〉 , |3〉}, with energies {0, h̄ωc, h̄ωh} con-
nected through dissipative interactions with a cold and a hot
bath (transitions |1〉 ↔ |2〉 and |1〉 ↔ |3〉, respectively), and the
action of a weak driving field (transition |2〉 ↔ |3〉).

It is then straightforward to find the steady-state σ̂s(∞) for
the corresponding master equation (13), and use Eqs. (17)
to compute the stationary heat currents Q̇ (3)

α and power con-
sumption P (3). It can be seen that the tight-coupling condi-
tion introduced in Sec. III B also applies to this case so that
the coefficient of performance writes as

E3 B
Q̇ (3)

c

P (3) =
ωc

ωw
, (36)

where ωw B ωh−ωc.
We note that, when operating as a refrigerator, the three-

level device uses the hot bath as a mere entropy sink; i.e.,
any excess heat is simply dumped into the hot bath and never
reused. Interestingly, in order to improve the COP of actual
(absorption) refrigerators it is commonplace to harness regen-
erative heat exchange in double-stage configurations. These
recover waste heat from condensation to increase the evapo-
ration rate of refrigerant [72]. Taking inspiration from ther-
mal engineering, we thus add a fourth level |4〉 with energy
h̄(ωh + ε) as a stepping stone between |2〉 and |3〉. As shown
in Fig. 3(b), we propose to use the external field only to drive
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FIG. 3. (colour online) (a) Three-level model. The system S consists of three levels with energies {0, h̄ωc, h̄ωh}, such that 0 ≤ ωc ≤ ωh. The
dissipative transitions tagged c and h are mediated by a cold (blue arrow) and a hot bath (red arrow), respectively. The transition w is driven by
an external sinusoidal field (curly green arrow). (b) Four-level model. An extra level with energy h̄(ωh + ε) is added to the three-level scheme.
Note that ε can be positive or negative. The driving is now applied to the transition |2〉 ↔ |4〉 and the new dissipative transition |4〉 ↔ |3〉, due
to the hot bath, is added to close the thermodynamic cooling cycle. The circuit graphs associated with the three and four-level models are
depicted in panels (c) and (d), respectively. The thick blue (red) lines stand for dissipative transitions via the cold (hot) baths and the thin green
lines, for the coupling to the driving.

the transition |2〉 ↔ |4〉, with gap h̄(ωw + ε). In order to close
the thermodynamic cooling cycle, we put the hot bath to good
use and connect dissipatively levels |4〉 and |3〉. This results in
another tightly-coupled quantum refrigerator, with COP

E4 B
Q̇ (4)

c

P (4) =
ωc

ωw + ε
. (37)

This is larger than E3 whenever ε < 0, as intended. For com-
parison, recall that quantum absorption refrigerators [59] en-
tirely replace the driving by a dissipative coupling to a third
bath at temperature Tw > Th. Our combined-cycle four-level
model is therefore a novel hybrid design of independent in-
terest, as it is partly driven by power and partly, by recovered
waste heat.

B. Power enhancement and quantum coherence

Even if the combined-cycle four-level refrigerator is more
energy-efficient than its power-driven three-level counterpart,
we do not know yet whether it can also cool at a faster rate.
To see this, let us define the figure of merit R B Q̇ (4)

c /Q̇ (3)
c .

From Eqs. (18a) and (19), it follows that

R =
Cl1

[
σ̂(4)

s (∞)
]

Cl1

[
σ̂(3)

s (∞)
] , (38)

where Cl1
[
σ̂(N)

s (∞)
]

= Im 〈 jw| σ̂
(N)
s (∞) | jw + 1〉 stands for the

l1-norm of coherence [44, 45] in the stationary state σ̂(N)
s (∞)

of the N-level thermal machine. This is a bona fide quanti-
fier of the amount of coherence involved in the steady-state
operation of the device. An enhancement in the cooling rate

translates into R > 1 and hence, is only possible if the steady
state σ̂(4)

s (∞) of the four level device contains more quantum
coherence than σ̂(3)

s (∞). As it turns out, it is rather easy to
find parameter ranges in which R > 1, as shown in Figs. 4(a)
and (b). Importantly, it is even possible to find parameters for
which E4 > E3 and Q̇ (4)

c > Q̇ (3)
c simultaneously.

C. Power enhancement without quantum coherence

Both the three and four-level refrigerators are cyclic non-
degenerate heat devices and hence, classically emulable. In
particular, the emulator for the three-level model is the tri-
angle C3 depicted in Fig. 3(c) while the steady state of the
hybrid four-level refrigerator is emulated by the square graph
C4 of Fig. 3(d). In spite of the fact that there exist quantum
coherent implementations of these energy-conversion cycles
for which R > 1 ⇔ Cl1

[
σ̂(4)

s (∞)
]
> Cl1

[
σ̂(3)

s (∞)
]
, it would

be wrong to claim that quantumness is necessary for such
performance boost—the corresponding emulators also satisfy
Q̇c(C4) = Q̇ (4)

c > Q̇c(C3) = Q̇ (3)
c , and yet have no coherence.
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D. Analytical insights from graph theory

1. Cooling rate

Using Eqs. (26a), (31)–(33), we readily find that

Q̇c(C3) = h̄ωc
A( ~C3)
D(C3)

[
1− exp(Xc−Xh)

]
. (39a)

Q̇c(C4) = h̄ωc
A( ~C4)
D(C4)

[
1− exp(Xc−Xh−Xε)

]
. (39b)

The quantities Xc B h̄ωc/kBTc, Xh B h̄ωh/kBTh, and Xε B
h̄ε/kBTh are ‘thermodynamic forces’ associated with the cold
and hot baths. Note that their difference encodes the asymme-
try between the two possible orientations of the graphs.

2. Performance enhancement

A manageable analytical approximation for the figure of
merit R = Q̇c(C4)/Q̇c(C3) can be obtained by combining
Eqs. (23), (24), (39a), and (39b) with the assumption that the
smallest transition rate is the one related to the driving field
[i.e., Eq. (35)]. This gives

R ' AD, (40a)

AB
1 + exp(Xc) + exp(Xc−Xh)

1 + exp(Xc) + exp(Xc−Xh) + exp(Xc−Xh−Xε)

×
1− exp(Xc−Xh−Xε)

1− exp(Xc−Xh)
, (40b)

DB
Γc
ωc +Γh

ωh

Γc
ωc +Γh

ε

. (40c)

As we can see, the factor A depends exclusively on the ther-
modynamic forces Xc, Xh and Xε . Its second term describes
the ratio between the cycles asymmetries. The new thermo-
dynamic force allows for an additional control on the asym-
metry of the four-level refrigerator, thus favouring the cooling
cycle for Xε > 0. In contrast, the quantity D is purely dissipa-
tive; it encodes the ratio between the rates associated with the
driving fields Eq. (24). Importantly, small ε in the four-level
model can increase D. The choice of spectral density for the
system-bath interactions (i.e., the dimensionality or ‘Ohmic-
ity’ of the baths) can lead to a sufficiently large D so that the
product R = AD > 1 for ε < 0. Thus, factorizing R as in
Eqs. (40) provides insights into the competing physical mech-
anisms responsible for the cooling power enhancements in the
four-level device.

Fig. 4(a) illustrates how the approximation (40a) may hold
almost exactly; namely, we work with one-dimensional baths
(dc = dh = 1) at moderate to large temperatures (kBTα/h̄ωα &
1). In this range of parameters, A is the main contribution
to the enhancement of Q̇c, so that R is nearly insensitive to
changes in the dissipation strengths.

On the contrary, when taking three-dimensional baths (dc =

dh = 3), the frequency-dependence of the transition rates is
largely accentuated. At small ε the rate W2,4 ceases to be the

smallest in C4, which invalidates Eqs. (40) [see Fig. 4(b)] 4. In
this case, the behaviour of R is dominated by D, and grows
almost linearly with γh. Similar disagreements between R
and the approximate formula Eq. (40) can be observed in the
low-temperature regime.

As shown in Fig. 4(b), the hybrid four-level design can op-
erate at much larger energy-conversion rates than the power-
driven benchmark. Indeed, for the arbitrarily chosen parame-
ters in the figure, Q̇c(C4) can outperform Q̇c(C3) by an order
of magnitude at appropriate values of ε. Such enhancement
may be classically interpreted solely in terms of the asymme-
try A and the dissipation factor D, without resorting to the
buildup of quantum coherence. Importantly, such qualitative
understanding follows directly from the classical emulability
of the model, which allows us to study the emulator in place
of the original quantum-coherent device.

3. Coefficient of performance and cooling window

The COPs of C3 and C4 are related through

E (C4)/E (C3) = (1 + ε/ωw)−1. (41)

As already mentioned, ε < 0 results in an increase of the ener-
getic performance of the four-level machine due to the lower
power consumption [see Fig. 4(c)]. Interestingly, the ratio R
can be larger than one for ε < 0, which entails a simultaneous
power and efficiency enhancement. For instance, comparing
Figs. 4(b) and 4(c), we observe increased power by a factor of
10 together with a 10% improvement in energy-efficiency.

On the other hand, the operation mode—heat engine or
refrigerator—depends on the specific parameters of the mod-
els. In particular, to achieve cooling action in the three-level
benchmark we must have Q̇c(C3)> 0. According to Eq. (39a),
this implies Xc−Xh < 0 or, equivalently,

ωc < ωc,rev B ωh Tc/Th. (42)

Taking a fixed ωh, the range of values ωc < ωc,rev is thus
referred-to as cooling window. On the other hand, from
Eq. (39b) we can see that cooling is possible on C4 if

ωc < (ωh + ε)Tc/Th. (43)

Hence, whenever ε > 0 the cooling window of the four-level
model is wider than that of the benchmark for the same param-
eters ωh, Tα, λ, γα, and dα. Conversely, if we were interested
in building a quantum heat engine, a negative ε [as depicted
in Fig. 3(b)] would broaden the operation range.

4 Recall that, for Eq. (12) to be valid, we must have 2ε � γh, as required by
the underlying secular approximation τ0� τR [cf. Eq. (5)]. The solid lines
in Figs. 4 are mere guides to the eye, which smoothly interpolate between
points well within the range of validity of the master equation.
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FIG. 4. (colour online) (a) Performance ratio R = Q̇c(C4)/Q̇c(C3) (solid line) as a function of the thermodynamic force Xε . We also plot the
approximation AD from Eq. (40a) (dashed line), and the factors A (dotted line) and D (dot-dashed line). In this case, the solid and dashed lines
are indistinguishable at the scale of the figure. We have chosen one-dimensional baths dc = dh = 1, ωh = 1, ωc = 0.3, λ = 10−8, γc = γh = 10−6,
Tc = 1.5, and Th = 3 (h̄ = kB = 1). Importantly, as discussed in Sec. IV B, R coincides with the ratio of stationary coherence of the four-level
model and the benchmark, measured by the l1-norm. (b) Same as in (a) for three-dimensional baths (dc = dh = 3). The rest of parameters
remain unchanged. (c) Ratio between the COPs of C3 and C4 versus ε. Note that, for ε < 0, the four-level device can simultaneously achieve
larger cooling power and COP. All parameters are the same as in (b).

V. CONCLUSIONS

We have analyzed periodically driven thermal machines
weakly coupled to an external field and characterized by a
cyclic sequence of transitions. We have proposed a new ap-
proach to build fully incoherent classical emulators for this
family of quantum-coherent heat devices, which exhibit the
exact same thermodynamic operation in the long-time limit.
In particular, we exploit the fact that the steady state of this
type of coherent thermal machines coincides with that of
some stochastic-thermodynamic model with the same num-
ber of states dissipatively connected via thermal coupling to
the same heat baths, and obeying consistent rate equations.

We have then shown how the performance of a three-level
quantum-coherent refrigerator may be significantly improved
by driving it with a combination of waste heat and external
power—both the energy-efficiency and the cooling rate can
be boosted in this way. In particular, we have shown that the
cooling enhancement is identical to the increase in station-
ary quantum coherence, when comparing our hybrid model
with an equivalent benchmark solely driven by power. In
spite of the close connection between the observed effects and
the buildup of additional quantum coherence, we remark that
these cannot be seen as unmistakable signatures of quantum-
ness since our model belongs to the aforementioned family of
“classically emulable” thermal machines.

In fact, the possibility to emulate clasically a quantum heat
device goes far beyond the cyclic and weakly driven models
discussed here. For instance, in the opposite limit of strong
periodic driving (i.e., τd � τR) one can always resort to Flo-
quet theory to map the steady state operation of the machine
into a fully incoherent stochastic-thermodynamic process in
some relevant rotating frame [16, 63, 64]. Graph theory can be
then directly applied for a complete thermodynamic analysis
[55]. Note that this holds for any periodically-driven model
and not just for those with a cyclic transition pattern. Simi-
larly, all heat-driven (or ‘absorption’) thermal machines with
non-degenerate energy spectra are incoherent in their energy
basis and thus, classically emulable in the weak coupling limit

[56]. Furthermore, the equivalence between multi-stroke and
continuous heat devices in the small action limit [30] provides
a means to generalize our “classical simulability” argument to
reciprocating quantum thermodynamic cycles.

In this paper, we have thus extended the applicability of Hill
theory [53, 54] to enable the graph-based analysis of a whole
class of quantum-coherent thermal devices. We have also put
forward a novel hybrid energy conversion model of indepen-
dent interest, which exploits heat recovery for improved op-
eration. More importantly, we have neatly illustrated why
extra care must be taken when linking quantum effects and
enhanced thermodynamic performance. This becomes espe-
cially delicate in, e.g., biological systems [73], in which the
details of the underlying physical model are not fully known.

It is conceivable that the steady state of some contin-
uous quantum thermal machines might not be classically
emulable—for our arguments to hold, the resulting equations
of motion [analogous to our Eq. (25)] must also be proper bal-
ance equations with positive transition rates and a clear inter-
pretation in terms of probability currents. Since the positivity
of the rates is model-dependent, the search for classical em-
ulators of more complicated devices, including consecutive
driven transitions and degenerate states, might pave the way
towards genuinely quantum energy-conversion processes with
no classical analogue. This interesting open question will be
the subject of future work.
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Appendix: A model with heat leaks

We consider here the model depicted in Fig. 1 when adding
an extra hot transition between the levels | jw〉 and | jw +1〉. The
populations of such device fulfill Eq. (20a) and

dp jw

dt
= Γ

α jw−1
−ω jw−1

p jw−1−Γ
α jw−1
ω jw−1 p jw

−2λ Im 〈 jw| σ̂s | jw + 1〉+ J jw, jw+1 ,

dp jw+1

dt
= Γ

α jw+1
ω jw+1 p jw+2−Γ

α jw+1
−ω jw+1

p jw+1

+2λ Im 〈 jw| σ̂s | jw + 1〉− J jw, jw+1 , (A.1)

where

J jw, jw+1 = Γh
ω jw

p jw+1−Γh
−ω jw

p jw (A.2)

is the flux from the state | jw〉 to | jw + 1〉. This new flux is the
responsible for the emergence of an additional term in the non
diagonal rates

W jw, jw+1 = 4λ2
[
Γ
α jw−1
ω jw−1 +Γ

α jw+1
−ω jw+1

]−1
+Γh

ω jw
(A.3)

W jw+1, jw = 4λ2
[
Γ
α jw−1
ω jw−1 +Γ

α jw+1
−ω jw+1

]−1
+Γh
−ω jw

. (A.4)

The functions Γh
ω jw

and Γh
−ω jw

are always positive and fulfil
a detailed balance relation at temperature Th and frequency
ω jw . The other non diagonal rates remain the same following
Eq. (23). The resulting matrix of rates allows for the definition
of a graph representation; therefore, a classical emulator can
be assigned also to this model.

Such emulator is defined by a graph G with three circuits:
the original circuit CN , a two-edge circuit C2—with vertices
jw and jw +1—corresponding to power dissipation into the hot
bath, and a N-edge circuit C′N , where the work edge is replaced
by the new hot edge, related to a heat leak from the hot to the
cold bath. The heat currents and power of these circuits can
be obtained by following the techniques explained in [55] and
[56]. The total heat currents are then the sum of the following
three thermodynamically consistent contributions

Q̇α(CN) =
−TαX α( ~CN)

D(G)

[
A( ~CN)−A(− ~CN)

]
,

Q̇α(C2) =
−TαX α( ~C2) det(−W|C2)

D(G)

[
A( ~C2)−A(− ~C2)

]
,

Q̇α(C′N) =
−TαX α( ~C′N)

D(G)

[
A( ~C′N)−A(− ~C′N)

]
, (A.5)

where D(G) is calculated by considering all the maximal trees
of the graph containing the three circuits. Besides the matrix
W|C2 is obtained from the matrix of rates by removing the
rows and columns corresponding to the vertices of C2.
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