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Using a generally covariant Electro-Vortic (magnetofluid) formalism for relativistic plasmas, the
dynamical evolution of a generalized vorticity (a combination of the magnetic and kinematic parts) is
studied in a cosmological context. We derive macroscopic vorticity and magnetic field structures that
can emerge in spatial equilibrium configurations of the relativistic plasma. These fields, however,
evolve in time. These magnetic and velocity fields fields, self-consistently sustained in a plasma with
arbitrary thermodynamics, constitute a diamagnetic state in the expanding Universe. In particular,
we explore a special class of magnetic/velocity field structures supported by a plasma in which the
generalized vorticity vanishes. We derive a highly interesting characteristic of such “superconductor–
like” fields in a cosmological plasmas in the radiation–era in early Universe. In that case, the fields
grow proportional to the scale factor, establishing a deep connection between the expanding universe
and the primordial magnetic fields.
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I. INTRODUCTION

Exploring the interaction of gravitational fields and
inhomogeneous plasma thermodynamics as a possible
source of primordial magnetic fields has, recently, re-
ceived considerable attention [1–9]. Much of this work
has been carried out within the framework of what has
been called a unified magneto–fluid, recently generalized
to, Electro-Vortic (EV) formalism [10, 11]. The pri-
mary new construct of this formalism is the EV tensor
Mµν = Fµν + (m/q)Sµν , a weighted sum of the Elec-
tromagnetic Fµν and the Vortical Sµν field tensors; the
latter representing both the kinematic and thermal con-
tent of the relativistic hot fluid. In the EV formalism,
the fluid dynamics reduces to a simple Helmholtz vorti-
cal form in terms of new composite variables, the most
familiar being the so called generalized vorticity Ω (such
that Ωi = ǫijkMjk) that has both magnetic and thermal-
kinetic parts. The most important message is that in the
considerably complicated dynamics of a hot relativistic
fluid, Ω plays the same role as the magnetic field B does
in the much simpler magnetohydrodynamics (MHD).

The earlier special relativistic theory [10] was extended
to explore general relativistic effects in Refs. [1–6]. It was
shown that a combination of gravity modified Lorentz
factor of the fluid element and the spatial variation of
plasma thermodynamics, leads to an additional (to the
special relativistic mechanism [12, 13]) source that cre-
ates a vorticity seed out of a state with no initial vortic-
ity. This mechanism, true for arbitrary thermodynamics,
can be viewed as a grand generalization of the MHD or
Biermann battery mechanism which operates only for the
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special class of baroclinic thermodynamics.

As in the conventional scenario, this relativistic seed
vorticity (and therefore a magnetic field) can then, be
amplified, for example, by a dynamo mechanism. These
calculations have shown that that a plasma around a Kerr
black hole can produce a larger magnetic field seed than
a corresponding Schwarzschild system [4].

In the cosmological context, plasma dynamics have
been thoroughly studied [14]. Several authors have stud-
ied the problem of the generation and amplification of
magnetic fields through a Biermann battery or simi-
lar mechanism showing that large scale magnetic fields
can evolve in the early–Universe [15–20]. Also, models
for magnetic field generation in Friedmann-Robertson-
Walker (FRW) cosmology have been studied in pre-
combination era [21], in the inflationary epoch [22–25],
in f(R) gravity [26], in nonlinear electrodynamics [27],
or by gravitational waves [28].

In this work, we explore alternative mechanisms that
might pertain more generally than the very specific baro-
clinic Biermann battery; in fact, the Biermann battery
may be weak or absent in an ideal fluid plasma. In this
case, we investigate magnetic field states that can emerge
without invoking any Biermann-like mechanism, i.e, for
a general thermodynamical properties, in which the large
scale magnetic field be some sort of an equilibrium solu-
tion. It is now well established that a relativistic plasma
can sustain self–consistent equilibrium configurations,
states that represent self–consistent macroscopic struc-
tured magnetic and flow fields (see Refs. [11, 29, 30] and
references therein). Amongst this set of self–consistent
macroscopic fields, there does exist a class endowed with
features characteristic of a superconductor [6] where the
plasma displays perfect diamagnetism.

In previous generalizations to general relativity, [1–
6], the gravitational field was specified as a static back-
ground (the space time metric is independent of time).
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Such calculations are generally adequate, for instance, to
investigate plasmas in the accretion disks around com-
pact objects. However, a purely static approach, when
applied to the universe as a whole, misses out on a fun-
damental element of cosmology – the expansion of the
universe through a time dependent metric.

The aim of this paper, then, is to rework the EV for-
malism, investigating the primordial magnetic field prob-
lem in an expanding universe described by the FRWmet-
ric; we will seek self–consistent field solutions (in the
spirit of Ref. [11]) that evolve with the universe through
an explicit dependence on the scale factor. We are fo-
cused on magnetic field states that can develop in plas-
mas where the Biermann mechanism is not operative.
This new type of magnetic field structure emerges for
any thermodynamical evolution of the plasma. The par-
ticular structure we deal with is accessible if the plasma
system (expanding with the universe) behaves as a super-
conductor fluid. This occurs when the magnetic field is
proportional to the fluid plasma vorticity, implying that
the plasma dynamics enters in a diamagnetic phase. In
particular, in the cosmological context, this solution is
only possible when the total generalized vorticity of the
plasma system vanishes fulfilling (see below). It is im-
portant to be emphasized that these solutions are not
consequence of a dynamo mechanism, but they are sim-
ply the self–consistent set of fields that can be sustained
in a plasma in a diamagnetic state for a given thermody-
namics. These are equilibrium states in which the elec-
tromagnetic, kinematic and thermal forces have come to
a balance in a curved spacetime, which is defined by the
equilibrium state solution for the vanishing generalized
vorticity. As a result, these magnetic field (having a dia-
magnetic plasma behavior) are very dependent on the
cosmology in which it evolves. Hopefully this will provide
further insights on the issue of the origin of primordial
magnetic fields [15, 18].

Other formalims have been used to explore the genera-
tion of magnetic field in cosmology. For example, the gra-
dient expansion formalism has been used to study kine-
matic vorticity and magnetic fields in an electron-ion-
photon pre-decoupled plasma [8]. The two formalisms
are different in that the former uses a unified formu-
lation to construct a conserved (in the absence of the
drive) generalized vorticity (combining the magnetic and
the kinematic). The latter does not consider relativistic
translations of the classical Biermann battery.

With all this in consideration, our results show that the
magnetic field strength increases with the scale factor,
at least partially compensating the automatic dilution
caused by the expanding universe, and thus the magnetic
field will dilute at slower rates compared with what is
subject to the expansion of the Universe.

The paper is organized as follows. In Sec. II, we review
some of the essentials of the the EV formalism. In Sec.
III, we develop the 3+1 formalism used to describe the
cosmological plasma, and derive the dynamical equation
for the generalized vorticity. In Sec. IV, we study time

varying spatial self–sustained solutions with their spa-
tial structure resembling that of a perfect diamagnetic
plasma state. The results are discussed in Sec. V.

II. UNIFIED PLASMA DYNAMICS IN CURVED

SPACETIME

The dynamics of an ideal plasma (a charged fluid),
immersed in an electromagnetic field Fµν , is contained in
the conservation law

∇νT
µν
i = qiniF

µνUνi , (1)

where Uµ
i (such that Uµ

i Uµi = −1) is the four velocity of
each plasma fluid i, ∇ν is the covariant derivative for the
metric gµν describing a curved spacetimes (c = 1), and

T µν
i = minifiU

µ
i U

ν
i + pig

µν , (2)

is the energy-momentum tensor for an ideal plasma
[10, 31]; the charge qi and the mass mi of each fluid ele-
ment are scalar invariants. The definition of the energy-
momentum (2) involves three thermodynamic scalars:
the scalar number density n ( the rest frame density),
the scalar pressure p, and enthalpy density h = mnf ,
where f is a function of temperature T that in the spe-
cial case of a relativistic Maxwell distribution becomes
f = K3(m/T )/K2(m/T ) whereKj is the modified Bessel
functions of order j (the Boltzmann constant is chosen
kB = 1). The system is completed with the continuity
for each fluid

∇µ (niU
µ
i ) = 0 , (3)

and Maxwell equations

∇νF
µν = 4π

∑

i

qiniU
µ
i . (4)

The global dynamics given by Eqs. (1)-(4) is more conve-
niently studied in terms of a unified field tensor [1, 10, 31]
for each plasma fluid,

Mµν
i = Fµν +

mi

qi
Sµν
i , (5)

in which all kinematic and thermal (through f) aspects
of the fluid are now represented by the antisymmetric
tensor [1, 10, 31]

Sµν = ∇µ (fUν)−∇ν (fUµ) , (6)

for the each corresponding fluid. The resulting equation
of motion takes the form (∂µ is the four derivative)

qi UνiM
µν
i = −Ti∂

µσi . (7)

where σ is the scalar entropy density of the fluid, and it
is related to pressure through nT∂µσ = mn∂µf − ∂µp.
We can see that due to the antisymmetry of Mµν , the
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fluid description presented here is always isentropic for
each plasma component

Uµi∂
µσi = 0 . (8)

In general, the above covariant set of equations can
be put in an explicit and intuitive form by performing
a 3 + 1 decomposition on them [1–4, 32]. This can be
achieved when all physical quantities are measured by
fiducial observers (FIDOs) [32]. In this case, the space-
time separates into absolute 3–dimensional space and the
universal time t. This allows to describe every physical
process in 3–dimensional space evolving in time t, mea-
sured by the FIDOs. For an irrotational spacetime [32],
this is achieved by introducing a normalized timelike vec-
tor field nµ = (α, 0, 0, 0) and nµ = (−1/α, 0, 0, 0), obey-
ing nµnµ = −1, where α is known as the lapse function
(for generalizations see Ref. [3]). Then, the spacetime
metric can be written as

gµν = γµν − nµnν , (9)

where γµν is the 3–dimensional spatial metric, with
nµγµν = 0.
Appropriate equations in the 3 + 1 formalism can be

constructed by projecting into timelike and spacelike hy-
persurfaces; by contracting every tensor with nµ and γµν .

III. EXPLICIT PLASMA DYNAMICS IN

COSMOLOGY

For an explicit formulation of plasma dynamics in the
the cosmological background, we introduce the FRW
metric. We model a two-fluid quasi-neutral cosmological
plasma formed by electrons (e) and positrons (p). Both
fluids are considered to have the same density. Since
the focus of this calculation is to figure out how the
plasma dynamics is affected by the expansion of the Uni-
verse, we will restrict ourselves to a spatially flat universe;
the corresponding FRW metric is given by the element
ds2 = −dt2 + a2ηjkdx

jdxk (j, k = 1, 2, 3) [33, 34], where
a = a(t) is the time-dependent scale factor of the Uni-
verse, and ηjk = (1, 1, 1) is the 3-metric of the spacelike
hypersurfaces of the flat spacetime. To perform the 3+1
decomposition of the covariant fluid plasma equations
(Eq. (7) with the FRWmetric) we identify the lapse func-
tion α = 1 and γµν = a2ηµν , such that nµ = (1, 0, 0, 0)
and nµ = (−1, 0, 0, 0).
In general, for each fluid, we may write the four-

velocity measured for the FIDO as (we drop the specie
indexes for simplicity)

Uµ = −Γnµ + Γηµνv
ν , (10)

where vj = dxj/dt corresponds to the spatial j-
component of the fluid velocity v, and Γ is the Lorentz
factor, which is given by

nµU
µ = Γ =

(

1− v2
)−1/2

, (11)

by the normalization of the fluid four velocity, where
v2 = γjkv

jvk = v · v. Similarly, using the 3+1 decompo-
sition (10) of the FRW metric, the continuity equation
(3) becomes

1

a3
∂

∂t

(

a3nΓ
)

+∇ · (nΓv) = 0 , (12)

for each fluid. Here, ∇ is the flat spatial gradient opera-
tor.
Now, neglecting the plasma back-reaction on space-

time, one may write down the decomposition of the
Maxwell and plasma field equations. The 3 + 1 decom-
posed [35–45] electric and magnetic fields are obtained
as

Eµ = nνF
νµ , Bµ =

1

2
nρǫ

ρµστFστ , (13)

where ǫαβγδ is the totally antisymmetric tensor. Notice
that the electric Eµ and the magnetic Bµ fields are space-
like tensors (nµE

µ = 0 and nµB
µ = 0), implying that

E0 = 0 = B0 for a cosmological background. With the
previous definitions we decompose the electromagnetic
field tensor as

Fµν = Eµnν − Eνnµ − ǫµνρσBρnσ . (14)

This allow us to explicitly write the Maxwell equations
(4) in terms of electric and magnetic fields for a cosmo-
logical background by projecting them into timelike and
spacelike hypersurfaces. Substituting (14) into (4), and
projecting it onto nµ we find [32, 35, 36]

∇ ·E = 4π
∑

i

qiniΓi = 0 , (15)

as quasineutrality is assumed. As the two plasma fluids
are oppositely charged with qp = e = −qe (with positron
charge e), we find that Γe = Γp = Γ implying that both
fluids have equal magnitude of velocity.
Also, projecting Eq. (4) onto spacelike hypersurfaces

yields

1

a
∇×B = 4πenΓ(vp − ve) +

1

a3
∂
(

a3E
)

∂t
. (16)

Similarly, one can define the dual electromagnetic tensor

F ∗µν =
1

2
ǫµνρτFρτ = Bµnν −Bνnµ − ǫµνρτEρnτ , (17)

that satisfies F ∗µν
;ν = 0 by its antisymmetry. When

projected onto nµ, we find the timelike component [32,
35, 36]

∇ ·B = 0 , (18)

whereas the spacelike projection has the vectorial equiv-
alent [32, 35, 36]

1

a3
∂
(

a3B
)

∂t
= −1

a
∇×E . (19)
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Eqs. (15), (16), (18) and (19) correspond to the Maxwell
equations for a cosmological plasma in an expanding uni-
verse. Furthermore, Eqs. (16) and (19) reflect the expan-
sion of the Universe, through the extrinsic–curvature ten-
sor 3∂ta/a, proportional to the Hubble parameter. Also
notice that Weyl invariance is explicit in Maxwell equa-
tions when the conformal time

∫

dt/a is introduced, and
Eqs. (15)–(19) are written in terms of comoving electric
a3E and magnetic a3B fields.
Following with our description for plasma dynamics, a

similar decomposition can be performed on the antisym-
metric unified tensor (5) yielding the generalized electric
ξµ and magnetic Ωµ fields for each fluid

ξµ = nνM
νµ , Ωµ =

1

2
nρǫ

ρµστMστ , (20)

that are both spacelike (nµξ
µ = 0 and nµΩ

µ = 0). Equiv-
alently, Mµν may be written as

Mµν = ξµnν − ξνnµ − ǫµνρσΩρnσ . (21)

The nµ projection will give the (three-vector) general-
ized electric ξ and magnetic fields Ω for each fluid (where
we have droped the specie indexes)

ξ = E +
m

qa2

[

∇ (fΓ) +
∂

∂t

(

fa2Γv
)

]

,

Ω = B +
m

q a
∇× (fΓv) , (22)

where now m is electron mass. Those vectors are the
curved spacetime generalization of the corresponding vec-
tor fields defined in Refs. [12, 13]. We emphasize that the
generalized magnetic field Ω allows an interpretation as
a generalized vorticity because it is, indeed, the curl of a
potential (Ω = ∇×A), where

A = A+
mfΓ

q a
v , (23)

for each fluid, where A is the vector potential of the
electromagnetic field. From now, the names “generalized
magnetic fields” and “generalized vorticity” are used in-
terchangeably.
The generalized electric field (22) and the generalized

magnetic field (22) are the key to writing the equation of
motion (7) in an insightful form. With previous defini-
tions, Eq. (7) becomes

ξµ − a2γijξ
ivjnµ + nλǫ

λµνρvνΩρ = − T

qΓ
∂µσ . (24)

This is the covariant form of the equation of motion from
where the 3 + 1 equations can be obtained by appropri-
ated projections on the timelike and spacelike hypersur-
faces. The nµ projection gives arise to the equation for
energy conservation for each plasma component

a2v · ξ =
T

qΓ

∂σ

∂t
, (25)

while the spacelike γβ
µ projection yields the vectorial

momentum evolution equation

ξ + a v ×Ω = − T

q a2 Γ
∇σ . (26)

Eqs. (25) and (26) are equivalent to the usual 3+1 plasma
equations [35, 36] invoked in plasma literature. Notice
that there exist effects of the interaction of the fluid with
the spacetime expansion hidden in the definition of the
unified fields.
This unified magnetofluid approach leads us directly to

the general vortical form of depicting the plasma dynam-
ics. In this formalism the sources of general vorticity
(where the magnetic field is just a component) are ex-
plicitly revealed. The vortical plasma dynamics can be
completly described by using the antisymmetric proper-
ties of the unified tensor Mµν . Its dual tensor follows the
conservation equation

∇νM
∗µν = 0 , (27)

where M∗µν = (1/2)ǫµναβMαβ (in analogy with the elec-
tromagnetic tensor). A 3+1 decomposition of this equa-
tion provides physical insights on vortical dynamics. The
dual tensor,

M∗µν = Ωµnν − Ωνnµ + ǫµναβξαnβ , (28)

on 3 + 1 decomposition, leads to the equation for the
timelike hypersurface

∇ ·Ω = 0 . (29)

This equation represent the generalization of the
divergence-free nature of the magnetic field. On the other
hand, the spacelike projection of Eq. (27),

1

a3
∂

∂t

(

a3Ω
)

= −1

a
∇× ξ , (30)

represents the constraint linking the generalized electric
and magnetic fields (Generalized Faraday law) for each
fluid.
Notice that the plasma dynamics is contained in

Eqs. (26) and (30), whereas Eqs. (25) and (29) are con-
straints that establishes the conservation of entropy den-
sity (8) along each fluid motion

(

∂

∂t
+ v · ∇

)

σ = 0 . (31)

We can combine Eqs. (26) and (30) to obtain the com-
plete cosmlogical plasma dynamics in terms of the gen-
eralized vorticity

1

a3
∂

∂t

(

a3Ω
)

= ∇× (v ×Ω) +
1

qa3
∇
(

T

Γ

)

×∇σ . (32)

The last term is known as the Biermann battery, and
it depends on the thermodynamical and kinetic proper-
ties of the plasma. This battery is usually invoked as
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the seed for cosmological magnetic fields [15, 16, 18].
However, if the velocity magnitude and plasma temper-
ature have variations along the entropy gradients, then
the Biermann battery vanishes, and the only posibility
to have a magnetic field is a self–produced structure, as
the one studied in this work.
The above system show how the unified plasma dynam-

ics and Maxwell equations appear explicitly in the 3+1
decomposition in the FIDO frame for each plasma com-
ponent. In order to keep the generality of the covariant
equations, it is important to remark that other definitions
for the fields can be constructed. For example, electric
and magnetic fields can be defined in the comoving frame
of the fluid as Eµ = UνF

νµ and Bµ = Uρǫ
ρµστFστ/2,

such that UµE
µ = 0 = UµB

µ [38–42]. Although these
definitions are very useful in magnetohydrodinamics for
example, they introduce terms in the Maxwell equations
due to the general rotational nature of the fluid four–
velocity. On the other hand, the 3 + 1 decomposition
keeps Maxwell equations in curved spacetime closer to
its form in flat–spacetime. Besides, the 3+1 formalism in
terms of FIDOs quantities has been shown to be a proper
way to study connection and reconnection of high–energy
plasmas in General Relativity [46].

IV. PLASMAS IN CLASSICAL PERFECT

DIAMAGNETISM STATE – MAGNETIC FIELD

STRUCTURES

In formulating plasma dynamics beyond MHD, we no-
ticed that if the generalized vorticity were to replace the
magnetic field, the MHD like vortical structure of the
dynamics is fully retained. Since the velocity and mag-
netic fields are the measurables of interest, we will seek
self–consistent solutions for v and B for a specified ther-
modynamics. A variety of such solutions for the special
relativistic dynamics were worked out in Ref. [11]. In
this section, we will explore the appropriate translations
of some of these solutions in the context of cosmological
plasmas in an expanding universe.
An interesting (and exact) class of solutions, accessible

to cosmological plasmas, belong to the general category
of states that display Classical Perfect Diamagnetism
(CPD) [29]. In CPD states, the generalized vorticity is
fully expelled from the plasma interior. It is worthwhile
to remark here that it is the vanishing of the canon-
ical vorticity that leads to the London equation (im-
plying Meissner Ochsenfeld effect) describing a standard
superconductor, when the plasma does not evolve ther-
modynamics. Let us now derive the equations that de-
fine the CPD state pertinent to the cosmological plasma.
In its simplest manifestation in a homentropic plasma
(∂µσ = 0), Eq. (7) allows the solution

Mµν = 0 , Fµν = −m

q
Sµν , (33)

that has a vanishing generalized vorticty, Ω = 0. More
explicitly, this condition relates the magnetic and velocity

fields [see Eq. (22)] for each fluid,

B = − m

ea
∇× (fΓvp) ,

B =
m

ea
∇× (fΓve) . (34)

Notice that in this CPD state, the Biermann battery
vanishes. Also, note that Eq. (34), Maxwell equations
(16)–(19), and Eq. (32) form a self–consistent system for
the magnetic and velocity fields. Using (34) in Maxwell
equations (16) and (19), we get

∇2B =
8πq2n

mf
a2B +

1

a2
∂

∂t

(

a
∂

∂t

(

a3B
)

)

, (35)

that can be solved for the magnetic field as long as the
thermodynamic functions and the scale parameter a are
specified. There are no explicit external drives, relativis-
tic or otherwise.
Unlike the standard equations associated with super-

conducting states, Eq. (35) is time dependent. An ex-
actly solvable set emerges if we assume that the thermo-
dynamic quantities (n and f) can be function of time
(through the scale factor a). In such a case, the ansatz,
B(x, t) = b(x)T (t)/a(t)3 splits (35) into two ordinary
differential equations

∇2b = λ2
p b , (36)

∂2T
∂τ2

+ ω2
p

(

nf0
n0f

a2 − 1

)

T = 0 , (37)

for the spatial b and the temporal T parts of the magnetic
field, written in terms of the conformal time

τ =

∫

dt

a
. (38)

Here, density n0 and f0 are the values of those functions
at some known time t0. Therefore, the complete tempo-
ral variation of density and temperature are given in n
and f . The spatial part (36) is, precisely, the London
equation predicting the spatial decay of b on a collision-
less thermally corrected skin depth λp = 1/ωp, where

ωp =

√

8πq2n0

mf0
, (39)

is the thermally corrected plasma frequency for an
electron-positron plasma.
To explicitly evaluate the temporal behavior of the

magnetic field, let us study the solution in the radiation–
dominated era when the scale factor increases as a =
(t/t0)

1/2 [33], where t0 is the age in a spatially flat
radiation–dominated Universe. In this model, a hot
plasma has a temperature that increases as T ≈ T0/a,
where T0 is the temperature at t = t0. Similarly, the
number density of plasma particles decreases with the
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volume of the Universe, n = n0/a
3 [14], with n0 as the

number density at time t = t0. In the early Universe, for
very high temperatures, the function f can be approxi-
mated by f ≈ 4T/m+m/(2T ). Hence Eq. (37) for hot
plasmas in the radiation–dominated era becomes

∂2T
∂τ2

+ ω2
p

(

βf0
4

− β3f0
128 t20

τ2 − 1

)

T = 0 , (40)

where β = m/T0, f0 = K3(β)/K2(β), and τ =
√
t0t/2 =

t0a/
√
2. An exact solution can be found in terms of the

convergent series

T =

∞
∑

n=1

ζ2n−1 τ
2n−1 ,

ζ1 = ωp

√

βf0
4

− 1 ,

ζ3 = −
ω3
p

6

(

βf0
4

− 1

)3/2

,

(2n+ 3)(2n+ 2)ζ2n+3 = −ω2
p

(

βf0
4

− 1

)

ζ2n+1

+

(

ω2
pβ

3f0

128 t20

)

ζ2n−1 . (41)

as βf0 > 4. Since the era of interest for the current
enquiry belongs to relatively smaller times (τ ≪ 1), the
approximate solution T ≈ 2

√
t0t (ζ1 + 4ζ3t0t) is more

instructive. Notice that the temporal evolution of the
magnetic field is dependent on the plasma frequency (39),
and thus, this solution cannot be obtained in vacuum.
The magnetic field, described by Eqs. (36), (40), and

the solution (41), though characterizing a CPD state,
does not describe a strictly equilibrium state; it evolves
with the expansion of the universe. However, the spa-
tial configuration is, as usual, described by the London
equation. Physically, the solution

B(x, t) ≈ b(x)t20ωp

t

√

βf0
4

− 1 , (42)

for the radiation-dominated era in the early–Universe,
describes a perfect diamagnetic state of the primordial
plasma that expells the magnetic field from its inner spa-
tial region.

V. DISCUSSION ON THE MAGNETIC FIELD

The magnetic field (42) in the CPD state is the cos-
mological version (in an expanding universe) of the self–
consistent magnetic plus velocity fields that can exist
even in plasmas with vanishing generalized vorticities.
Such “superconducting” macroscopic states do not de-
pend on an external input like a broclinic Biermann bat-
tery [7, 8, 15, 47] or its generalizations.

Let us compare the solution (42) with a standard
temporal decay of a cosmological magnetic field in the
radiation–dominated era [35]

B0(t) =
B0

a3
= B0

(

t0
t

)3/2

, (43)

for a given constant magnitude of the magnetic field at
t = t0. In contrast to this decay ∼ (t0/t)

3/2, the CPD
solution in the early–Universe shows a temporal behavior
of the form ∼ t20ωp/t that depends on the plasma char-
acteristics. As the Universe expands with time, we see
that it is possible for the CPD magnetic field state to
decay faster in certain plasma region for times less than
the characteristic time

t∗ =
1

t0ω2
p

(

βf0
4

− 1

)−1

. (44)

For times larger than t∗, however, the decay is slower
than the one expected (without plasma effects) from cos-
mological expansion.
Thus, the temporal growth of the magnetic field in the

CPD state (∝ τ ∼
√
t ∼ a) tends to compete with the

dilution (∝ a−3) caused by the cosmological expansion.
These new states with initially growing fields (whose de-
tailed nature is yet to be explored) add a brand new
element towards advancing our understanding of the cos-
mological magnetic fields and flows.
In order to evaluate explicitly the impact of the above

classical perfect diamagnetic state, let us consider an
early–Universe stage of the radiation–dominated era. At
t0 = 1 sec., n0 ∼ 4 × 1031cm−3, T0 ∼ 106eV, and
B0 ∼ 1013G [35]. For these values, β ≈ 0.511, f0 ≈ 8.05,
leading to: plasma frequency ωp ≈ 1.26× 1020seg−1, the
collisionless skin depth λp ≈ 2.39×10−12m, and the char-
acteristic time t∗ ≈ 3.74× 10−40sec.
The spatial diamagnetic behavior (36) of the magnetic

field allow us to estimate that |b(x)| ∼ B0 exp(−x/λp),
where x represent the scale length of variation of the
magnetic field. Then, we can compare the CPD solu-
tion (42) with the usual one (43) due to the cosmological
expansion as

∣

∣

∣

∣

B

B0

∣

∣

∣

∣

∼ exp

(

− x

λp

)

√

t

t∗
. (45)

The CPD magnetic field is larger than its usual counter-
part when

exp

(

−2x

λp

)

t > t∗ . (46)

For example, consider the time t = 10−2sec., with the
redshift z = 1/a − 1 = 9, where |B0| = 1016G [35]. For
times t > t∗, it is expected that the temporal decaying
will be slower than the one for B0. Also, from (46) we
obtain that for regions as large as x < 43λp, the CPD
magnetic field B is always larger in magnitude than B0.
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For t = 10−2sec., we find from (42), that the magnetic
field is about 1030G in a region around x ∼ 10λp. Simi-
larly, for smaller times, as t ≈ 10−20sec. (z = 1010), we
have magnetic fields of the order B/B0 ≈ 105.
To sum up, the solution (42) represents a class of self–

consistent (growing) magnetic and vorticity fields acces-
sible to a “perfectly diamagnetic” relativistic plasma in
an expanding universe.
The generation and amplification of large scale mag-

netic fields is an open issue; there are several conventional
approaches. For example, dynamo mechanisms (like α–
Ω dynamo or turbulence) are invoked to explain galactic
magnetic fields [15, 18, 48–52]. On the other hand, it
is not clear how cluster magnetic fields can grow [18].
For a dynamo mechanism to work, there has to be an
initial nonzero magnetic field -often created by an ex-
ternal mechanism driven by a specific thermodynamics.
For cosmological magnetic fields, this kind of seed can be
formed in the early–Universe, in the inflation era [18, 53];
there is, though, no satisfactory solution to this problem
[15]. Often, Biermann battery is the model used to give
the initial seed [15], that can be used as the mechanism
to generate magnetic field of very small scales [15, 54].
Our approach, on the other hand, is based on the

demonstration that the ideal plasma dynamics is per-
fectly capable of sustaining a self–consistent field struc-
ture (where electromagnetic, kinematic and thermal
forces come to a balance) for arbitrary thermodynam-
ics, clearly obviating the need for mechanisms like (and
similar to) the Biermann battery. So even if the Bier-

mann term were to vanish for the initial thermodynam-
ics, a magnetic field can arise as a necessary consequence
of the dynamics which connects thermal and kinematic,
and electromagnetic energies. The electromagnetic, and
fluid–thermal vorticities are always interacting, as it is
the generalized vorticity that remains null along the evo-
lution of the system. Such solutions are possible for any
general thermodynamics. It is important to remark that
the above model could be readily extended to study the
fate of generalized vorticity in response to dissipative pro-
cesses [55, 56].

The main contribution of the current paper is to ob-
tain particular solutions of the self–consistent magnetic
field that are pertinent to a plasma embedded in an ex-
panding universe. One finds that, in an expanding uni-
verse, plasma effects slow down (as compared to the ex-
pected rates) the decay of the field intensities with time.
Thus the overall dilution of the magnetic field is par-
tially stemmed. We believe that this newly established
characteristic can and does bring additional insights into
the story of the origin and evolution of the primordial
magnetic fields.
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