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ABSTRACT 

 A rotating wheel experimental facility was developed to investigate incompressible 

Rayleigh Taylor instability in elastic-plastic materials. A soft-solid (mayonnaise) was chosen as 

the elastic-plastic material for experiments; material properties that include shear modulus and 

yield strength were fully characterized using a vane-spindle type rheometer. Initial perturbations 

of varying amplitudes and wavelengths were generated on the interface of the soft solid using 

sinusoidal cutting guides. A backlit imaging technique was used in conjunction with a high-

speed camera to track the motion of the interface at various phases of the instability. Results for 

both two- and three-dimensional perturbations were compared to study the acceleration required 

for instability and the growth after the interface yielded. Exponential growth rates were observed 

after instability was reached with trends of increasing growth rates for lower initial amplitudes. It 

was found that the acceleration required for instability increased when initial amplitude and 

wavelength decreased. Three-dimensional interfaces were found to be more stable. For both 

cases, a decrease in initial amplitude produced a more stable interface that increased the 

threshold acceleration required for the instability. Critical amplitude conditions for instability 

were calculated and compared with various analytical models and other experimental results. 

  



3 | P a g e  

I. INTRODUCTION  

 Rayleigh-Taylor instability (RT/RTI) [1, 2] occurs between materials of dissimilar 

densities when the density and pressure gradients are in opposite directions, creating an unstable 

stratification. The instability causes the light material ( 2ρ ) to accelerate the heavy material ( 1ρ ), 

and small perturbations of initial amplitude (ξo) and wavelength (λ) at the interface grow and 

interact eventually becoming turbulent in case of fluids [3].  The growth of an RT unstable 

interface can be classified into various stages based on the amplitude growth with time [3-6]. 

According to linear stability theory [4], at small amplitudes (0.1λ < ξ < 0.4λ) the growth over a 

time t ′  is exponential such that ( )expo tξ ξ γ ′=  , the growth rate (γ) is defined by: 

     kaAt=γ ,              (1) 

where k (= λπ2 ) is the wavenumber, a is the acceleration at the interface and 

( ) ( )2121 / ρρρρ +−=tA  is a non-dimensional density difference (Atwood number) between the two 

materials. RTI occurs in several natural and industrial processes - the atmospheric instability 

associated with cold air overlaying warm air in the atmosphere, or similar situations with cold 

and warm water in oceans, rivers or estuaries; in gas bubbles formed during an underwater 

nuclear explosion; in the ionosphere layer of the atmosphere due to solar radiation; buoyant jets; 

in finger-like ejecta of stellar materials present in the remnants of a young supernova; in the 

formation of salt domes under the Earth’s crust that occurs over millions of years; and, in the 

implosion phase of an inertial confinement fusion (ICF) capsule, where RT mixing is formed at 

high Atwood numbers [7, 8]. Large density gradients in these applications lead to large 

differential material (fluid or solid) accelerations that give rise to the RT instability. During the 

last 70 years, RTI has been the subject of numerous experimental [9-13], numerical [3, 14] and 

theoretical investigations [4, 15]. A comprehensive analysis of these studies can be found in a 
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recent two-part review by Zhou [16, 17]. However, the majority of these studies focused 

primarily on applications that involve two Newtonian fluids involving different thermo-physical 

properties (density and viscosity).  

 Much less effort has been dedicated to RTI in materials with significant resistance to 

yield even though they play a significant role in various problems in geophysics [18], 

astrophysics [19, 20], high-energy density physics (HEDP) [7, 8, 21-26] and in some industrial 

processes such as explosive welding. The understanding of RTI in accelerated solids or non-

Newtonian media has been very limited because instability evolution is governed by the 

nonlinear constitutive equations that describe the mechanical properties of the solids, namely, 

elastic-plastic (EP) properties that exhibit both viscous and elastic characteristics under 

deformation and exhibit time-dependent strain. Miles [27] performed the first theoretical study of 

Taylor instability in solids using an accelerated (flat) metal plate of finite thickness. The RT 

problem was solved analytically under the assumption of a single degree of freedom 

incompressible flow by solving the Prandtl-Reuss constitutive equations for the limiting cases of 

infinitesimal perturbations and rigid plastic flow (yield stress/shear modulus 0). This 

methodology was extended by Robinson and Swegle [28, 29] using numerical solutions. Drucker 

[30, 31] extended the theory to determine the critical amplitude above which large plastic 

deformation occurred in the solid; the critical amplitude was found to be independent of the 

wavelength for short wavelength perturbations on the interface. Parallel work on the analysis of 

linear stability problem for an inviscid fluid-metal interface was conducted by Bakhrakh and 

Kovalev [32, 33]; the work was originally published in Russian and later translated to English in 

1997. The Russian authors used normal modes analysis for two-dimensional (2-D) disturbances 

to derive an equation for the growth rate of the instability as a function of wavenumber k. A 
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detailed historical brief on the evolution of the analytical theory for RT in solids can be found in 

Terrones [34].  

 There has been a handful of reported experiments [35-41] to characterize RTI in EP 

materials.  The first experiment to study RT-strength was performed by Barnes et al. [35] at Los 

Alamos National Laboratory using aluminum and stainless steel plates with an initial sinusoidal 

perturbation machined on them. Due to the high yield strength of metals (~ 108 Pa), high 

explosives were used to create a large pressure gradient. The plates were accelerated by 

generating a driving pressure ~10 GPa with ξo ranging from 0.051 mm - 0.1015 mm and with 

initial λ of 5.08 mm for all but one experiment. The experimental results were compared with a 

two-dimensional Lagrangian EP code and matched well with a yield strength equivalent to the 

dynamic yield strength (Y°). However, varying the shear modulus (G) had little effect on the 

numerical results. Barnes et al. [35] proposed that Y°, instead of G, was the dominant property in 

determining RT-strength and the classical inviscid growth rate was modified to incorporate 

effects of material strength as: 

           
1
2, )o

F t tkA a F(Y , Aγ λ⎡ ⎤= −⎣ ⎦ ,           (2) 

where F is a linear function of Yo with a slope dependent upon λ and At. They also observed that 

the growth of the instability was inhibited by material strength when a shorter wavelength (2.54 

mm) was used and this was considered to be analogous to the case of RTI in fluids where 

viscosity dampens out the growth of small wavelength perturbations. Drucker [30, 31] used a 

two-dimensional perfectly plastic model to provide an alternative theoretical analysis of the 

experimental results of Barnes et al. [35]. The main conclusion was the presence of a threshold 

value (depending on the dynamic yield strength) which is a function of the plate density, 

acceleration, and initial amplitude. To test the consistency of their conclusions and to validate 



6 | P a g e  

Drucker’s findings, Barnes et al. ran additional tests [36] with the same reduced amplitude but a 

larger initial interface perturbation wavelength than previously used. The experiments found the 

interface to be stable, confirming the theory that initial amplitude was also a vital parameter 

along with wavelength in determining the instability threshold as proposed by Drucker. Viscous 

RTI experiments at high pressure and strain rates have been investigated in the last decade on the 

Omega Laser facility at the University of Rochester [38]. Using a ramped drive created by the 

Omega Laser (peak intensity of 2.5×1013 W/cm2 at λ = 351 nm), Vanadium target samples were 

compressed and accelerated quasi-isentropically at ~ 1Mbar peak pressures while maintaining 

the sample in the solid state. It was observed that high pressure (~ 1Mbar), high strain rate 

(~107/s)  conditions resulted in a high lattice viscosity which led to a strong stabilization of RTI 

[38]. A phonon drag mechanism was identified as the primary reason for RT stabilization 

mechanism at these elevated pressures and strain rates. Park et al. [38] used an effective viscosity 

due to the phonon drag to interpret the RT stabilization mechanism generating some 

commentaries amongst researchers if the stabilization mechanism comes from elastic-plastic 

properties [38, 42].  

 Due to ambiguity in measurement methods of mechanical properties at these extreme 

pressures and strain rates, an alternate approach is to use carefully characterized soft-solids 

(mostly food colloids) as the EP material. Dimonte et al. [37] pioneered this approach by using 

yogurt as the EP material because of its low yield strength and the flexibility of usage. The linear 

electric motor (LEM) experiment, which has been used for Newtonian fluids [12] was used to 

accelerate (vertically) a test section of yogurt and pressurized Nitrogen. The effects of constant 

and impulsive accelerations were studied in addition to varying amplitude and wavelength 

requirements for instability. Experiments were performed with both 2D and 3D interfaces with 
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3D perturbations having a larger range of stability for the same initial conditions. In addition,  

both elastic and plastic behaviors were observed for impulsive acceleration experiments where 

the test section was impulsively accelerated to ~ 100g’s over 20 ms followed by a phase where 

the acceleration was completely retracted, and the test section coasted with a constant velocity 

for an additional 60 ms [37]. Over the range of initial amplitude perturbations that were tested, 

the instability was observed to grow continuously during the acceleration phase (first 20 ms). 

The growth ceased once acceleration was removed in the coasting phase (after 20 ms); the 

behavior in this late phase was strongly dependent on the amplitude of the initial perturbation. 

For small initial amplitudes, the flow evolved and then elastically recovered; however, at larger 

amplitudes, the retraction was only partial indicating a plastic transition in response to yield 

stress. In this work, we describe a novel rotating wheel RTI experiment facility that allows us to 

expand upon the previous experiments with soft-solids by Dimonte et al. [37]. Our scaled 

experiments are designed to complement those at high pressures (see Table I for a comparison) 

because a higher experimental precision is possible in the current experiment since the 

constitutive properties of the soft-solids are measured independent of the experiment, and the 

critical parameters can be more easily varied. The current experimental facility allows us to 

expand our understanding of RT-strength in the linear phase and will complement high-energy-

density experiments that have been conducted more recently on laser platforms, providing a 

useful database for development, validation & verification of RT-strength based models.  The 

remainder of the paper outlines the work completed with the rotating wheel experiment including 

an overview of the apparatus and material characterization of mayonnaise. Experimental results 

were compared with previous results and models [27, 30, 31, 37, 43, 44]. 

II. METHOD 
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A. Experimental apparatus and diagnostics 

 A rotating wheel experiment was developed which consists of an aluminum disk, 15.24 

cm in diameter, horizontally mounted to a rotating shaft powered by a servo motor (QuickSilver 

Controls, Inc.); see figure 1 for a schematic of the facility. The test section was constructed from 

plexiglass (1.3cm thick) with inner dimensions of 60 mm × 60 mm × 90 mm (L×W×H). 

Mayonnaise was chosen as the EP material; for all our experiments, we used Hellman’s Real 

Mayonnaise which contains 80% vegetable oil, 8% water (both by weight) with other standard 

ingredients[45]. Mayonnaise in combination with air (used as the light fluid) was put to use in 

creating non-dimensional density gradient of At ≈ 0.997. The test section was oriented such that 

the air side was positioned radially outwards, making the initial interface unstable as the 

resulting acceleration drove the heavy material outwards. The experiment was accelerated using 

a linear ramp profile and is capable of reaching 60 m/s2 in 60 seconds. A high-speed camera 

(Photron Fastcam Model 1024 PCI) was mounted above the center of the disk and was operated 

at 500 frames/second (shutter speed= 1/2000s, f/7 aperture setting, and 512 × 512 image 

resolution) to capture the instability growth. The camera was operated in end trigger mode, 

where images were stacked internally in the memory buffer ensuring the most recent snapshots 

from the time recording stopped were preserved. NI-LabVIEW® was used to control both the 

motor and the camera while acquiring data for the experiment. To continuously capture images 

during acceleration, the optical setup consisted of the high-speed camera, light source, and a 

mirror assembly. The mirror assembly used two mirrors angled at 45°, positioned at the center of 

rotation and over the container, to project the image of the rotating test section upwards at the 

center of the disk. The light source consisted of an array of high power LEDs, housed in a 

container below the harnessed test section to provide backlight imaging for the experiment. 
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Figure 2 (a) shows a sample experimental image taken at the start of the experiment; the bright 

portion in the image is air; while mayonnaise, which does not allow light to pass through, 

appears dark. The first step in defining the initial conditions at the solid-air interface is to fill the 

lower half of the test section to about ~10 mm above the container height. An initial interfacial 

perturbation in the shape of a sinusoid was applied to mayonnaise by using cutting guides that 

were precisely machined with curvature ⎟
⎠
⎞

⎜
⎝
⎛= yx i λ

πξ 2cos  using a three-axis CNC machine. Fig. 

2(b) shows a 3D interface with λ = 60 mm and ξi = 4 mm; a corresponding 2D interface of the 

same wavelength and amplitude is shown in fig.2 (c). The 2D interface is created by holding a 

pair of cutting guides against the parallel test section walls while removing the excess material. 

To create a 3D interface, the cutting guides were used to remove material in two mutually 

perpendicular directions (see fig. 2d).  Different sets of cutting guides were precisely machined 

using a three-axis CNC machining center; in total, five pairs of cutting guides were created with 

a combination of ten unique interfaces consisting of both 2D and 3D perturbations.  To avoid 

wall effects for 2D perturbations, the interface was shortened ~ 3 mm from the walls on both 

sides by removing extra material in the y-direction of the test section. For all experiments 

reported in the manuscript, the time span between defining the initial conditions and running the 

experiment was less than 5 minutes to avoid any plastic deformation of the specimen. 

B. Image processing 

 The image processing toolbox in MATLAB was used to post-process images of the test 

section acquired by the high-speed camera. Each raw image was corrected for rotation; the edge 

function and standard Hough Transform [46] were used to determine straight lines from the most 

distinct edges of the image. The edge function transforms a grayscale image into a binary image 
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where ones represent a pixel location of an edge and zeros are placed everywhere else. A Canny 

method was used to search for the edges of the image, and determine the local maxima of the 

gradient from the derivative of a Gaussian filter. After the edges were detected, the standard 

Hough Transform was used to detect the lines located in the binary image. The peaks of the 

Hough transform matrix were located and limited by a threshold at which values of the matrix 

were considered peaks and by a maximum number of peaks. From these peaks, the endpoints for 

the lines were determined. The corresponding angle between lines determined the amount of 

rotation required for each image. Figures 3(a) & (b) show an original image of the test section 

and the resulting edges detected to use for rotation correction. Additionally, the image was 

cropped to include only the inside of the container to aid in tracking the growth of the amplitude 

peak with respect to time. After cropping, the image size was reduced from 160 mm × 160 mm 

to 56 mm × 85 mm due to the rectangular shape of the test section; the peak amplitude was 

measured from this image based on pixel intensity. A deviation angle was estimated between the 

centerline in an axial direction (OA) and the line joining (OA’) the peak and center as shown in 

Fig.3c-d. The deviation angle was measured at each time instant for different initial conditions, 

and the amplitude OA’ was used for estimating the growth of the material. The magnitude of the 

asymmetry is reported in Table II where the maximum deviation angle is reported. It is observed 

that the deviation increases by a factor of two upon reduction of the initial amplitude for both 2D 

and 3D perturbations. The deviation is slightly higher in 2D perturbations compared to 3D as the 

mass of soft solid at the interface is higher in case of 2D perturbations.  

III. RESULTS  

A. Material characterization 
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 Mayonnaise, an oil-in-water emulsion, was selected as the EP material because it 

possesses elastic properties that can exhibit growth under accelerations while still maintaining a 

finite yield strength [47]. The material density (ρ), tensile yield strength (Y), and shear modulus 

(G) were measured to aid comparison with previous experimental results[35-37] and various 

analytical models [15, 48]. The density of mayonnaise, determined experimentally by the amount 

of oil displaced, was found to be 858 ± 86 kg/m3 at ~ 25° C based on an average of eight 

independent measurements [49]. Since mayonnaise behaves as a solid as well as non-Newtonian 

shear-thinning fluid based on the applied stress [47, 50], a Kinexus pro+ rheometer  was used to 

determine Y and G. A vane spindle geometry (Model # 4V14) with 4 blades (diameter = 0.014 m 

& height = 0.061m) was used in the controlled rate mode to measure torque (T). The shear stress 

(τ ) was calculated from the measured torque for a stress-strain curve using: 

1

3

2 1 
3

LT
D D

τ
π

−
⎡ ⎤= +⎢ ⎥⎣ ⎦

,                                (3) 

where L and D were the vane spindle length and diameter respectively [50, 51]. The wall 

slippage phenomenon observed in the vane-cylinder assembly result in large uncertainties of 

torque readings in the controlled shear rate mode and leads to early disruption of molecular 

structure in a colloidal dispersion like mayonnaise. To curtail wall slippage effects, it is a 

common practice to use a cup diameter that is roughly twice as large or greater than the vane 

diameter [51]. All measurements reported in our studies use a vane spindle of diameter 0.014m 

in a smooth-walled cup of diameter 0.0275 m to ensure that the effects of wall slippage are 

minimal. In addition, a fresh sample of mayonnaise was used for each test; a batch was rejected 

and not used in the instability experiments if the properties deviated more than 5%. The yield 

stress (Y) of mayonnaise was estimated by using the shear rate ramp method, in which the shear 
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rate (γ& ) is increased linearly to a desired magnitude over a specified time interval. Two test 

cases, one at γ& = 25 s-1 (where tΔ =60 s), and other at γ& = 50 s-1 (where tΔ =120 s) were chosen 

since these magnitudes replicate the shear rates typically observed in our rotating wheel 

experiment. The shear yield stress (τo) can be determined either by extrapolation of shear stress 

for zero shear rate [52] or by considering maximum stress observed in a shear rate ramp method 

[49]. Here, we report the final value of shear yield stress (τo) by calculating the mean of shear 

stress at zero shear rate obtained by extrapolation and maximum stress observed in the shear 

stress-shear rate plot. Figure 4a depicts a shear stress-shear rate plot for a linear shear rate ramp 

test at γ& = 25 s-1. The tensile yield strength was determined from shear yield strength as 3oY τ≈ ; 

an assumption similar to those made in prior studies involving soft materials like yogurt[37]. The 

average tensile yield strength for a shear rate of 25 s-1 was estimated as 354±38 Pa. The tensile 

yield strength increased slightly to a value of 358±32 Pa upon doubling the shear rate to 50 s-1. 

The apparent viscosity (plotted as an inset to fig.4a) demonstrates a shear thinning behavior at 

shear rates beyond 1s-1. The shear modulus was determined using an amplitude sweep test at a 

fixed frequency[53]. This test is usually used to estimate the linear viscoelastic region in which 

the modulus remains constant. Vane spindle (4V14) geometry is used in this test for two 

different frequencies (1 Hz and 5 Hz). The value of shear modulus, which is equivalent to 

storage modulus resulted from the tests is G = 985 ± 24 Pa. The plots of storage (G ′ ) and 

viscous ( G ′′ ) moduli against complex shear strain for different frequencies were shown in fig. 

4b. The presence of surface tension in the material reduces the RTI-growth rate[43, 54]. The 

surface tension effects can be neglected if the Bond number (Gravitational forces/surface tension 

forces = σρ 2gLΔ ) is greater than 1. Here, Δρ is the density difference at the interface, g is the 

acceleration at the interface which typically ranges between, L is the characteristic length 



13 | P a g e  

equivalent to the width of the test section and σ is surface tension of the material-air interface. In 

the current experimental study, the gravitational force per unit length ( 2gL ρΔ ) is ≈ 102 N/m. The 

coefficient of the surface tension of emulsions typically in the order of 10-1 N/m [55]. The 

surface tension coefficient (σ) of mayonnaise was measured with a tensiometer using a Du Noüy 

ring method [56] and was found to be 0.56 x 10-1 N/m.  Surface tension effects were thus 

neglected in the present study as the corresponding Bond number is ≈ 103.  

  Given the experimental conditions, the fluidity of the material is characterized by 

performing a frequency sweep test and to estimate G ′ and G ′′ .  In these tests, the time-dependent 

viscoelastic properties of the material are evaluated by varying the oscillation frequency at a 

constant strain amplitude. The frequency is increased logarithmically over a range of 0.001 - 10 

Hz as the shear rates observed in the experiments lies within this range. For the current vane and 

cup geometry, a frequency of 1 Hz is equivalent to the shear rate of 18 s-1. As shown in fig. 4c,  

G ′ > G ′′ throughout the range of frequency tested; this justifies the solid-like behavior of 

material [57]. Hence, the validity of an approximate equation, 3oY τ≈  close to von Mises yield 

criterion in the existing range of shear rates observed in current experiments is reasonable. The 

results for shear yield stress ( oτ ) ranges between 180 - 220 Pa. The shear modulus was 

dependent on the frequency with G ranging from 955 Pa to 1010 Pa. The results were compared 

with the storage (elastic) modulus estimations from the oscillatory shear tests for mayonnaise 

with 80% oil concentration reported by Liu et al. [58], and they are observed to be consistent and 

within the specified range. The material properties considered in the analysis with the current 

experiment results are:  ρ = 858± 86 kg/m3, Y = 356 ±35 Pa, and G = 985±24 Pa. 

B. Instability acceleration threshold 
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 The experimental results obtained from instability tests using the rotating wheel 

experiment are discussed. The interfacial perturbations studied (shown in fig. 2e) were either 

two-dimensional (2D) or three-dimensional (3D), and initial amplitudes (ξi) ranged from w/60 to 

w/10 while the perturbation wavelengths (λ) ranged from w/4 to w, where w is the width of the 

test section (60 mm). For each perturbation tested, at least four cases were run and the data 

presented is the average of four experiments.  

 In the instability tests, the test section is accelerated to determine the instability threshold 

acceleration (ao) at which the sample yields. The dimensionless interfacial amplitude [log10 

(ξ/ξi)] is plotted as a function of time for an experimental run with initial conditions, ξi = 4 mm 

& λ = 60 mm is shown in fig. 5. The data is observed to be continuous over the EP phase; upon 

transition to instability, the perturbation grows rapidly as the driving acceleration exceeds the 

yield strength of mayonnaise. Two different timescales are defined to allow comparison; an 

experiment time (t) was the timing of the motor such that t = 0 indicated the beginning of an 

experiment and instability time (t’) was the time after the sample yielded. During the 

acceleration, the observed interface growth can be broken up into two representative regimes: (a) 

Elastic-Plastic growth characterized by very slow increase in the amplitude; if the acceleration is 

withdrawn, the sample retracts to an amplitude > ξi  showing elastic-plastic deformation; and, (b) 

Instability growth where the sample undergoes rapid growth beyond a critical amplitude of ξo. 

The general distinction between elastic-plastic growth and instability growth can be made in 

terms of strain rate. The strain rates in the elastic-plastic growth phase are typically ≈ 10-1 s-1 

whereas the strain rates in the instability regime are always higher than 10 s-1. A 100-fold 

difference in the strain rates is generally observed between these two growth phases. However, 

the exact location of the transition point is required to determine the threshold parameters, ao & 
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ξo. Attempts to non-dimensionalize the perturbation amplitude using the initial amplitude (ξi)  

and the time by a/λ did not result in any global scaling for these experiments; we choose to 

report dimensional values for all our experiments in the instability regime. 

  A single linear or non-linear regression model may not be adequate to analyze the 

complex relationship between an independent variable (e.g., driving pressure rise time, t) and a 

dependent variable (e.g., perturbation amplitude, ξ). The piecewise (segmented) regression is a 

special case of switching regression, which is generally used in statistical analysis of continuous 

data [59-61]. The implementation of the piecewise linear regression method to our experimental 

data using two linear curves was particularly motivated from a rheological study to determine 

yield stress of soft solids by Dapčević et al.[62]. Two linear fits were used in their study to 

distinguish the solid and viscous behavior of soft-solid in a stress ramp test which is analogous to 

driving pressure (acceleration) increase with time in our experimental study. Likewise, the rapid 

growth in instability regime is differentiated from the significantly lower growth rate of 

perturbation in the EP phase. In the initial iteration, the experimental data is divided into two 

subsets, and a linear curve is fitted to each subset. The number of iterations is entirely dependent 

on the number of experimental data points in the amplitude vs. time plot in the instability growth 

phase. Consequently, in each iteration, we find the distinct coefficients of determination (R2
EP & 

R2
IN) of the two linear fits for the corresponding subsets. The best linear fits effectively 

differentiate the amplitude trend for which the sum of coefficients of determination 

(R2
EP,max+R2

IN,max) would be maximum. The amplitude and time at the transition point in the 

iteration with best linear fit are considered as the instability amplitude (ξo) and the instability 

time, t’ = 0 as shown in the inset of fig.5. The peak amplitude at the start of instability (ξo) was 

used to curve fit an exponential growth rate γ defined by eq.1.  
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  Table II shows a detailed list of experiments performed for the instability test. To study 

the effect of amplitude on the instability acceleration, the perturbation amplitude was varied from 

~ 1 mm to 6 mm while the wavelength remained constant at 60 mm; both 3D and 2D  

perturbations were studied. Similarly, to study the effect of wavelength, the initial amplitude was 

held constant at ~ 4 mm while the wavelength ranged from 15 mm to 60 mm for 3D and 2D. The 

ratio of perturbation wavelength to the width of the test section in our study ranges between 0.25 

– 1.0 and is similar to values used in other experiments[37, 40, 41]; for example, the LEM 

experiments [37] have a wavelength/width ratio of 0.5-1.0. Previous research by Swegle and 

Robinson [28] to study the effects of initial conditions on RT-strength, numerically, used a 

Lagrangian finite difference wave code to indicate that both initial amplitude and wavelength 

determined a stability boundary. Piriz et al. [48] used an analytical model and finite element 

analysis software ABAQUS to determine a relationship between the initial perturbation and 

material properties with the stability boundary described by Swegle and Robinson. Simulation 

results agreed with the model and showed that lower initial amplitudes and wavelengths were 

more stable for equivalent material properties and accelerations. The following instability tests 

were used to validate these initial condition trends further. 

i. Effect of amplitude and estimating the critical amplitude 

 For 3D perturbations, Figure 6 (a)-(d) show the experimental images for the different 

initial amplitudes that were tested with different initial amplitudes. For each interface, the first 

image is the initial amplitude (ξi ) at t = 0, and the remaining images highlight the perturbation 

growth from the start of instability (t’ = 0) until the peak reached the top of the test section. 

Qualitatively, the shape of the perturbation growth after the start of instability is similar and 

independent of initial amplitude. The initial peak grew and, once instability occurred, began to 
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elongate. Due to the tensile deformation of the mayonnaise, the perturbation began to neck 

approximately half-way between the top of the peak and center of the test section. For 2D 

perturbations, the effect of amplitude was investigated using similar initial perturbations (same 

peak) as 3D. Figure 7(a)-(d) display the experimental images for 2D perturbations with the 

largest wavelength on top followed by the intermediate and smallest amplitudes. Unlike the 

amplitude variation experiments (see images in fig. 6), the interface shape for ξi = 2 mm and 1 

mm did not follow the same profile as other perturbations. Instead of a distinct peak growing, the 

interface grew as if the whole sample was yielding. Volume was conserved under these 

conditions although it is not possible to quantify this as mayonnaise is opaque and the images 

and depth-integrated 2D realization of the instability occurring in the 3D enclosure. For each 

instability test, starting at t’ = 0, the peak amplitude was plotted with respect to time until the 

peak reached the top of the test section. Figure 8 shows sample peak amplitude growth 

corresponding to an approximate ξi of 6 mm, 4 mm, 2 mm, and 1 mm, respectively, for 3D 

interfaces. The interface amplitude data in the instability regime was used to calculate an 

exponential growth rate constant (γ). For each perturbation, at least four cases were tested, and 

the results were averaged to account for random error. Table III displays the instability 

acceleration (ao) and experimental growth rate (γ) calculated for each perturbation. For both 3D 

and 2D perturbations, lower initial amplitudes required a larger acceleration to reach instability, 

agreeing with previous research [28, 37, 48]. When comparing the 2D and 3D instability 

accelerations for the same initial perturbation, results indicated 3D interfaces were more stable 

than 2D. Dimonte et al. [37] found the same trend with experimental results using yogurt. For 3D 

perturbations, the calculated growth rate is observed to increase from ~ 10 s-1 to 25 s-1 as the 

initial amplitudes decrease from 6mm to 1mm. Similarly, exponential growth rates for 2D 
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perturbations increased from ~12 s-1 to 31 s-1 with decreasing initial amplitude. However, the 

large growth rates for ξi   = 2 mm & 1 mm should be viewed with caution due to the unique 

profile of the perturbation growth in the experimental images (see fig. 8). When estimating the 

growth rates for these experiments, care was taken to ensure that the data used was in the linear 

phase. Linearization is justified if the surface displacement and slope are small in dimensionless 

terms; a condition that is enforced mathematically as 1d dzξ <<  and 2 1g Uξ << [63] where z is 

length scale in the direction of interface growth and U is the perturbation velocity. These 

constraints hold in throughout the instability regime from the onset for all reported experiments 

in this paper.  

 Previous research [27, 30, 31, 37] has determined a critical amplitude (ξcrit) based on 

acceleration and material properties where perturbation growth is unstable for ξo > ξcrit. Miles 

[27] first derived a critical amplitude for RT-strength by modifying the classic RT growth 

equation ( )tkaAto  expξξ =  to account for the effects of material strength using a rigid-plastic 

model with Prandtl-Reuss constitutive equations and 2ρ = 0, where the critical amplitude for the 

model was given by 

     
a

Y
crit ρ

ξ
3
4= .             (4) 

Drucker [30, 31] also proposed an RT growth equation for strength where the effects of yield 

strength were emphasized. The model was based on the theory of significant growth occurring if 

the elastic limit of the material property was exceeded making the yield strength a more 

dominant factor than the shear modulus, and the critical amplitude was 
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2

crit
Y
a

ξ
ρ

=              (5) 

Comparisons with the experimental work of Barnes et al. [35] agreed well with Drucker's model. 

A third definition for ξcrit was proposed from 2D experimental yogurt results by Dimonte et al. 

[37] 

          
a

Y
crit ρ

ξ =              (6) 

The current ξcrit for instability was determined based on a curve fit of the experimental data 

where the perturbation amplitude was varied (at a constant wavelength) for both 2D and 3D 

initial perturbations; the results  are then compared with the previous results in Eqs. (4)-(6). The 

averaged results in Table III were plotted to provide a relationship between ξo and Y/ρa, as 

shown in fig. 9. From the results, ξcrit, was found to be ~ 1.8Y/ρa for 3D perturbations using a 

linear curve fit with a resulting R2
 = 0.83. For 2D perturbations, ξcrit was ~ 1.4Y/ρa with R2 = 

0.81. Table IV compares the current ξcrit with previous results. Both analytical methods found a 

higher ξcrit, while the current work and experimental results by Dimonte et al. [37] found lower 

values for ξcrit. When comparing the results for the current work, ξcrit  for 3D and 2D 

experimental results were in between the Drucker model [30, 31] and the 2D results of Dimonte 

et al. [37]. 

ii. Effect of wavelength 

 To study the effect of wavelength, fig. 10 (a)-(b) show experimental images of 3D 

perturbations for ξi = 4 mm with λ = 30 mm and λ = 15 mm, respectively. The first image is the 
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initial interface, and the remaining images highlight the instability and amplitude growth, similar 

to fig. 6 of experimental images of the amplitude effect study . Figure 6 (b) shows experimental 

images for the largest wavelength (λ = 60 mm). Comparable to the effect of amplitude results, 

the peak amplitude grew, and necking occurred due to the material’s deformation. For the 

smallest wavelength perturbation (λ = 15 mm), the necking increased until a pinch off occurred 

and the resulting peak detached as a bubble. Similar detachment would be expected for larger 

wavelengths if the test section was taller. Figure 11 (a)-(b) highlight experimental images for 2D 

perturbations where profile growths were qualitatively the same as 3D results, see fig 7(a) for 2D 

perturbations with λ = 60 mm. Sample peak amplitude growth for 3D perturbations 

corresponding to an approximate λ equal to 60 mm, 30 mm, and 15 mm are shown in fig. 12. 

The peak amplitude at the start of instability (ξo) increases with wavelength. For all wavelengths 

tested, an exponential growth rate was observed with slightly higher values for λ = 15 mm, due 

to the spike beginning to detach from the interface. The experimental results for effect of 

wavelength were averaged to account for random error as displayed in Table V. The acceleration 

required to reach instability increased with decreasing wavelength, agreeing with previous 

research [28, 48]. The exponential growth rate varied from ~ 13 s-1 to 27 s-1 for 3D and from ~ 

15 s-1 to 28s-1 for 2D, with an increase in growth rate as the perturbation wavelength decreased. 

Analogous to the effect of amplitude results, 2D perturbations were less stable than 3D 

perturbations for the same initial conditions. 

C. Growth rate comparison with models for RT-strength 

 Previous models for RT-strength have modified the classical growth rate to account for 

effects of yield strength as shown in Eq. (2) [35]. Others have studied the effects of viscosity and 
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surface tension [15, 43, 44, 64] on RT-strength growth rates. Analysis by Miles and Dienes [44] 

determined an approximate exponential growth rate based on dynamic viscosity as 

     ( ) 3/124.0 μργ μ a= ,            (7) 

where the effects of surface tension can be neglected for kh >> 1; here h is the slab/plate 

thickness. The growth rates for 2D perturbations using yogurt and the LEM experiment [37] 

agreed well with Eq. (7) resulting in γ ~ 100 s-1 and using a measured dynamic viscosity of μ = 5 

Pa s. Bellman and Pennington [43] modified the classic growth for RT-strength to determine the 

effects of surface tension and viscosity. Results showed that both parameters reduced the growth 

rate. Furthermore, viscosity decreased the growth rate as the wavelength approached zero. The 

simplified case for pure viscosity (kh >> 1) was governed by: 

    akAkk t++−= 242 ννγ ν ,            (8) 

where ν is the kinematic viscosity. Mikaelian [15] found the same result when solving the 

momentum equation for RT instability by setting the surface tension coefficient to zero. Colvin 

et al. [64] used a similar approach as Mikaelian, but represented surface tension as a function of 

shear modulus ( /T G k→ ). For fully plastic flow, when the pressure applied is greater than the 

yield strength, G = 0 and the viscous growth rate by Colvin et al. matches Eq. (8), for large 

values of kh. Additionally, Colvin et al. determined an equivalent plastic kinematic viscosity 

based on strain rate (ε& ) and the von Mises criterion as  

         
6EP
Yν
ρε

=
&

          (9) 

For both 3D and 2D perturbations, the measured growth rates were compared with theories for 
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RT exponential growth rate ( tAkaγ = ) for inviscid fluids. Using ( ) ( )22 /2/2 xyk λπλπ += , a 3D 

perturbation with λ = 60 mm has a wavenumber of k ~ 148 m-1 and calculated the classical 

growth rate of ~ 74 s-1 to 103 s-1 which varies with the initial amplitude, using the instability 

accelerations determined from experiments. The current measured experimental growth rates 

were ~ 11 s-1 to 27 s-1 for λ = 60 mm. The difference in rates is expected because linear stability 

theory does not account for the viscous effects of the EP material in RT-strength. For 

comparison, the experimental growth rate results with yogurt by Dimonte et al. [37] were ~ 40% 

of linear stability theory for similar perturbations. Experimental growth rates were compared 

with the viscous models of Miles and Dienes [44] (γμ) and Bellman and Pennington [43] (γν) as 

outlined in Eqs. (7) and (8), respectively. The kinematic viscosity (ν) was calculated with Eq. (9) 

where ε&  was estimated from the average rate of change in peak amplitude for t’ ≥ 0 as 
to Δ

Δξ
ξ
1

. 

Applying the material properties for mayonnaise and using the average instability acceleration 

for 3D perturbation λ = 60 mm ξi = 4 mm (ao = 48.55 m/s), Eq. (8) yielded a growth rate of ~ 21 

s-1. Current experimental results for the same perturbation measured ~ 13 s-1 for exponential 

growth. Using Eqs. (7) and (8), growth rates for both models were calculated for each interface 

and compared with the measured experimental γ for the effect of amplitude and wavelength 

results as shown in Tables VI and VII respectively.  To calculate dynamic viscosity (μ) for Eq. 

(7), the definition for kinematic viscosity, Eq. (9), was used resulting in dynamic viscosity values 

ranging from ~ 3 to 8 Pa s due to the variance in strain rate for the different instability 

accelerations. Because mayonnaise is a non-Newtonian fluid, a change in viscosity is expected 

with varying strain rate. Both viscous models for growth rates showed an increase in the 

calculated rate as the initial amplitude decreased. The change in viscous models’ growth rates 
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was due to the change in instability acceleration and strain rate observed in the mayonnaise 

experiments. With the decrease in ξi, the rate of increase of γν is significantly higher (~ 350 % in 

3D cases & ~ 420 %) than γμ (~ 130 % in 3D cases & ~ 160% in 2D cases). Overall, measured 

growth rates were found to be lower than both viscous growth rate models irrespective of initial 

amplitude. Similar to the effect of amplitude results, the experimental growth rates were always 

lower than predicted γμ values for any given wavelength of the interface. From the effect of 

wavelength results, it is observed that growth rates measured experimentally and predicted by 

Miles and Dienes’ model[44] increase with a decrease in wavelength. However for λ = 15 mm, 

Bellman and Pennington model[43] underpredicts the growth rate in comparison to current 

experiment growth rates. 

IV. CONCLUSIONS 

 To study the effect of initial amplitude and wavelength on RT-strength instability, 

different sinusoidal perturbations were formed on an elastic-plastic material (mayonnaise) and 

accelerated in a test section, with air as the light fluid, using a novel rotating wheel experiment. 

For the effect of amplitude, the initial conditions were varied from 1 mm to 4 mm while the 

wavelength was varied from 15 mm to 60 mm to study the effect of wavelength. Results for both 

2D and 3D perturbations showed a decrease in initial amplitude and wavelength produced a more 

stable interface thereby increasing the acceleration required for instability. Comparing instability 

accelerations demonstrated 3D perturbations were more stable than 2D for equivalent initial 

conditions. Critical amplitude conditions for instability were calculated and compared with 

previous models and experimental results. For 2D perturbations, experimental results matched 

with Drucker’s model [30, 31], 1.4Y/ρa, while 3D results were 1.8Y/ρa, in between the 3D 

experimental results of Dimonte et al. [37] and Drucker’s model[30, 31]. The growth observed 
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after reaching the instability were exponential with calculated rates ~ 13 s-1 to 27 s-1 and trends 

of increasing growth rates for lower initial amplitudes and wavelength. Results indicated that 

growth rates were slightly higher for 2D perturbations compared to 3D perturbations. For both 

2D and 3D perturbations, experimental growth rates were found to be lower than growth rates 

estimated by models developed by Bellman and Pennington [43] & Miles and Dienes[44] in all 

the cases except for 15 mm wavelength case.  
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Table I.  RT-Strength Experiments 

Experiment 
Facility 

EP 
Material 

Yield 
Strength 

(Pa) 

Light 
Fluid 

Pressure 
(Pa) 

Initial 
Amplitude 

(mm) 

Initial 
Wavelength 

(mm) 
HE [35] 1100 Al 30×106 Helium 1010 0.051 - 

0.1015 
2.54 - 5.08 

6061 – T6 Al 250×106 0.1015 5.08 
304 SS 300×106 0.1015 5.08 

HE [36] 1100 Al 30×106 Helium 1010 0.051 4.73 

Omega Laser 
Facility [38] 

 

Vanadium 715×106 Helium 1011 0.0006 0.06 

LEM [37] Yogurt 340 Nitrogen ~104 0.66 - 4 30 - 60 

Rotating Wheel 
(Current Work) 

Mayonnaise 356±35 Air ~103 1- 6 15 - 60 

 

Table II. Details of Instability Tests. 

Dimensionality 
(2D/3D) 

Wavelength -
λ (mm) 

Initial Amplitude - 
ξi (mm) 

Maximum 
Deviation Angle 

(degrees) 

3D 
60 

5.88 ± 0.13 8.65 ± 1.19 
3.95 ± 0.17 12.25 ± 1.32 
2.88 ± 0.13 13.09 ± 1.33 
1.88 ± 0.17 14.91 ± 2.41 
0.90 ± 0.16 15.80 ± 4.95 

30 3.83 ± 0.17 16.95 ± 1.04 
15 3.87 ± 0.18 18.39 ± 1.77 

2D 
60 

5.76 ± 0.13 7.42 ± 3.19 
3.55 ± 0.18 15.17 ± 1.30 
2.76 ± 0.12 16.62 ± 3.32 
1.63 ± 0.17 19.40 ± 0.46 
0.69 ± 0.16 17.81 ± 1.72 

30 3.52 ± 0.17 19.19 ± 1.24 
15 3.48 ± 0.17 20.68 ± 0.34 
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Table III. Instability tests – varying the perturbation amplitude.  

2D/3D 
Initial 

Amplitude - 
 ξi (mm) 

Instability 
Acceleration - 

 ao (m/s2) 

Instability 
Amplitude -  

ξo (mm) 

Measured 
Growth Rate - 

γ  (s-1) 

3D 

5.88 ± 0.13 36.69 ± 1.85 18.34 ± 0.81 10.86 ± 0.62 
3.95 ± 0.17 48.55 ± 1.71 16.13 ± 0.78 13.32 ± 1.21 
2.88 ± 0.13 57.57 ± 1.96 14.20 ± 0.32 15.78 ± 0.56 
1.88 ± 0.17 65.49 ± 2.23 11.65 ± 1.76 17.79 ± 2.65 
0.90 ± 0.16 71.20 ± 3.22 10.97 ± 1.34 24.34 ± 0.75 

2D 

5.76 ± 0.13 30.37 ± 0.79 16.99 ± 0.34 11.85 ± 0.57 
3.55 ± 0.18 39.56 ± 2.01 14.16 ± 1.32 15.52 ± 0.62 
2.76 ± 0.12 49.24 ± 1.51 12.65 ± 0.53 16.98 ± 0.65 
1.63 ± 0.17 58.58 ± 4.09 11.02 ± 1.11 22.81 ± 0.89 
0.69 ± 0.16 66.09 ± 1.85 9.34 ± 0.27 30.94 ± 1.13 

 

Table IV. Estimating and comparing critical instability amplitude. 

Author Method ξcrit 

Miles [27] Analytical (1D) 4Y/√3ρa 
Drucker [30, 31] Analytical (2D) 2Y/ρa 

Dimonte [37] Experimental (2D) Y/ρa 

Current Work 
Experimental (3D) 
Experimental (2D) 

1.79 ± 0.07 Y/ρa 
 1.37 ± 0.06 Y/ρa 

 

Table V. Instability tests – varying the perturbation wavelength. 

2D/3D 
Wavelength 

-λ (mm) 

Initial 
Amplitude - ξi 

(mm) 

Instability 
Acceleration - 

ao (m/s2) 

Instability 
Amplitude - 

ξo (mm) 

Growth Rate 
- γ (s-1) 

3D 
60 3.95 ± 0.17 48.55 ± 1.71 16.13 ± 0.78 13.32 ± 1.21 
30 3.83 ± 0.17 62.66 ± 2.19 15.56 ± 0.85 15.79 ± 0.71 
15 3.87 ± 0.18 70.77 ± 3.33 13.48 ± 1.81 26.83 ± 1.12 

2D 
60 3.55 ± 0.18 39.56 ± 2.01 14.16 ± 1.32 15.52 ± 0.62 
30 3.52 ± 0.17 49.27 ± 1.60 13.83 ± 0.64 21.16 ± 0.89 
15 3.48 ± 0.17 52.63 ± 2.21 11.38 ± 0.47 27.46 ± 1.03 
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Table VI. Comparison of Growth Rate Models – varying the perturbation amplitude  
(λ = 60 mm). 

 

 

 

 

 

 

 

 

 

Table VII. Comparison of Growth Rate Models – varying the perturbation wavelength. 

2D/3D 
Wavelength -

λ (mm) 

Initial 
Amplitude -  

ξi (mm) 

Measured 
Growth Rate 

- γ  (s-1) 

Viscous 
Growth Rate 

- γμ (s-1) 

Viscous 
Growth Rate 

- γν (s-1) 

 60 3.95 ± 0.17 13.32 ± 1.21 27.57 ± 0.70 21.29 ± 1.45 
3D 30 3.83 ± 0.17 15.79 ± 0.71 35.34 ± 1.57 18.25 ± 1.85 

 15 3.87 ± 0.18 26.83 ± 1.12 48.16 ± 3.62 20.76 ± 3.93 
 60 3.55 ± 0.18 15.52 ± 0.62 25.50 ± 0.60 26.07 ± 0.99 

2D 30 3.52 ± 0.17 21.16 ± 0.89 32.38 ± 1.18 24.20 ± 1.76 
 15 3.48 ± 0.17 27.46 ± 1.03 38.75 ± 1.31 20.21 ± 1.24 

 

2D/3D Wavelength - 
λ (mm) 

Initial 
Amplitude -    

ξi (mm) 

Measured 
Growth Rate - 

γ (s-1) 

Viscous 
Growth Rate -

γμ (s-1) 

Viscous 
Growth Rate -

γν (s-1) 
  5.88 ± 0.13 10.86 ± 0.62 20.71 ± 0.89 12.40 ± 1.13 
  3.95 ± 0.17 13.32 ± 1.21 27.57 ± 0.70 21.29 ± 1.45 

3D 60 2.88 ± 0.13 15.78 ± 0.56 34.10 ± 0.44 31.90 ± 0.89 
  1.88 ± 0.17 17.79 ± 2.65 40.28 ± 3.03 42.58 ± 5.93 
  0.90 ± 0.16 24.34 ± 0.75 47.81 ± 2.60 56.22 ± 4.55 
  5.76 ± 0.13 11.85 ± 0.57 19.20 ± 0.10 11.87 ± 0.17 
  3.55 ± 0.18 15.52 ± 0.62 25.50 ± 0.60 26.07 ± 0.99 

2D 60 2.76 ± 0.12 16.98 ± 0.65 31.06 ± 0.74 28.45 ± 1.01 
  1.63 ± 0.17 22.81 ± 0.89 40.97 ± 1.59 50.67 ± 2.01 
  0.69 ± 0.16 30.94 ± 1.13 49.89 ± 1.68 61.94 ± 1.91 



32 | P a g e  

 

Figure 1.  Schematic of RT Strength rotating wheel experiment [ Component Labels: (a) rotating 
disk (b) test section (c) mirror assembly (d) light source (e) high-speed camera (f) counter 

weights] 
 

 
 
 

Figure 2. (a) Backlit image of test section at the start of the experiment; (b) initial perturbation  
3D interface, λ = 60 mm ξi = 4 mm. (c) initial perturbation 2D interface, λ = 60 mm ξi = 4 mm. 
(d) schematics of 3D interface, λ = 60 mm ξi = 4 mm, (e) front view of perturbation generated  

indicating the initial wavelength (λ) and amplitude (ξi).  
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Figure 3. MATLAB image processing of experimental images: (a) original image λ = 60 mm ξi 
= 4mm 3D interface; (b) edge detection and Hough lines used for rotation; (c) before the 

perturbation growth where the peak is at the center & (d) near maximum growth where the peak 
deviates from the normal axis 
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Figure 4.  (a) Shear stress and apparent viscosity (inset plot) as a function of shear rate for γ& = 
25 s-1 & Δ t = 60 s; (b) storage and viscous moduli vs. strain (amplitude sweep test) for 1 Hz and 
5 Hz; (c) storage and viscous moduli vs. amplitude (frequency sweep test) at Strain = 0.1. 
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Figure 5. Scaled dimensionless amplitude vs. time plot for the interface with ξi ≈ 4mm and λ = 
60 mm. Regimes of Elastic-Plastic (EP: slow) growth and Instability (IN: fast) growth is 

observed as the test section is accelerated. The onset of the instability growth is demonstrated in 
the inset plot defined as t’ = 0 where t = 43.54s with the corresponding instability amplitude 

denoted as ξ0. 
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Figure 6. Experimental images for 3D initial perturbation with wavelength (λ) = 60mm and 
varying initial amplitudes of (a) ξi = 6 mm (b) ξi = 4 mm (c) ξi = 2 mm (d) ξi = 1 mm, where t’ is 

in seconds. 
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Figure 7. Experimental images for 2D initial perturbation with wavelength (λ) = 60mm and 
varying initial amplitudes of (a) ξi = 6 mm (b) ξi = 4 mm (c) ξi = 2 mm (d) ξi = 1 mm, where t’ is 

in seconds. 
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Figure 8.  Peak amplitude growth at instability for 3D interface, λ = 60 mm. 
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Figure 9. Estimating ξcrit based on the threshold amplitudes (ξo) determined from instability tests 
with varying perturbation amplitude and constant wavelength 

 

  
Figure 10.  Experimental images for 3D initial perturbation with initial amplitude (ξi) = 4 mm 
and wavelengths: (a) λ = 30 mm (b) λ = 15 mm. The time t’ is in seconds and is defined at the 

onset of the instability. 
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Figure 11.  Experimental images for 2D initial perturbation with initial amplitude (ξi) = 4 mm 
and wavelengths: (a) λ = 30 mm (b) λ = 15 mm.  The time t’ is in seconds and is defined at the 

onset of the instability. 

   
Figure 12. Peak amplitude growth at instability for 3D initial perturbation with ξi = 4 mm and 

varying wavelengths. 


