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Systems far from equilibrium respond to probes in a history-dependent manner. The prediction of
the system response depends on either knowing the details of that history or being able to character-
ize all the current system properties. In crystal plasticity, various processing routes contribute to a
history dependence that may manifest itself through complex microstructural deformation features
with large strain gradients. However, the complete spatial strain correlations may provide further
predictive information. In this paper, we demonstrate an explicit example where spatial strain
correlations can be used in a statistical manner to infer and classify prior deformation history at
various strain levels. The statistical inference is provided by machine-learning (ML) techniques. As
source data, we consider uniaxially compressed crystalline thin films generated by two dimensional
discrete dislocation plasticity simulations, after prior compression at various levels. Crystalline thin
films at the nanoscale demonstrate yield-strength size effects with very noisy mechanical responses
that produce a serious challenge to learning techniques. We discuss the influence of size effects and
structural uncertainty to the ability of our approach to distinguish different plasticity regimes.

I. INTRODUCTION

The term “far from equilibrium” describes sta-
tistical ensembles that are not exploring the avail-
able microstates in an ergodic manner. Thus,
the system’s response to probes (e.g. mechanical
stress, electric/magnetic fields) is highly dependent
on the particular initial condition and its history.
In metallurgy, far from equilibrium microstruc-
tures are easily created by plastic deformation
but their history is typically hidden (e.g. various
processing routes used, such as extrusion, forging
etc. ). It is common that a sample that had been
processed in various ways, then polished, is further
mechanically tested as a part of a component [1–
6]. In such cases, characterizing the mechanical re-
sponse of the sample requires either the precise his-
tory of the processing routes taken, or the precise
knowledge of the particular state realized and its
state variables. In plasticity, the main observable,
the strain tensor of the freshly deformed sample, is
usually not capable of uniquely and reliably char-
acterizing the mechanical response [7]. Neverthe-
less, spatially resolved strain correlations do reflect
the full spatial structure of the microstructure [8–
11], and are formally equivalent [8] to capturing
microstructural strain gradients [12–14]; strain
gradients have been shown to classify plastically
deformed microstructures in various cases [15, 16].

In this paper, we present a direct and simple ex-
ample where we can statistically infer the prior de-
formation history of a crystalline thin film sample
through a small-strain mechanical test by only us-
ing spatial strain correlations. We utilize discrete
dislocation dynamics simulations to produce test
samples with well-controlled mechanical process-
ing histories. We demonstrate, using unsupervised
machine learning, that spatial correlations encoded
in the strain images of the reloaded samples, con-
tain adequate information to produce a full clas-
sification of dislocation-driven deformation history
at multiple scales and perform reliable predictions.

It is an axiom of materials science [17] that mi-
crostructure controls properties, and of course mi-
crostructure is the result of processing. In met-
allurgy, standard metal preparation techniques in-
volve a variety of processing steps [18] with as-
sociated process-structure-property linkages; con-
sequently, components of the same net shape
and composition, but different prior processing
technique(s), may exhibit different mechanical
properties. In some fields, these processing-
structure-property relationships are empirically
well-established, and in some others, only general
qualitative knowledge is common. However, in the-
ory [8] as well as in practice [18], this type of link-
age may be questioned when memory-dependent,
hysteretic phenomena [19] such as friction, plastic-



ity or/and fracture are involved, but only partial
sample history information exists.

Nevertheless, in the context of crystal plastic-
ity, there has been strong evidence that the formal
absence of the complete sample deformation his-
tory information, may be remedied to a large de-
gree by accounting for developed local gradients in
the plastic/elastic distortion [20, 21]. These gra-
dients naturally represent a “truncated truth” of
what happened to the material through its defor-
mation, but remain at least a set of observables
that one may check by direct mechanical tests and
also, display a sense of clarity by connecting to the
microstructural feature of strain localization [7].
Strain gradients in a microstructure can be directly
captured through measures of spatial strain cor-
relations [8] . The fact that spatial correlations
of an observable can capture and classify its gra-
dient, has been the principal reason that spatial
correlations have been traditionally used as a di-
rect way to assess phase transitions in statistical
mechanics [22], driven by interface phenomena of
appropriately defined order parameters [23]. In
phase transitions, the spatial correlations of the or-
der parameter develop a long-distance expectation
value which can be a direct phase signature. How-
ever, crystal plasticity’s complexity may allow for
a large variety of possible spatial correlation fea-
tures (depending on type of plasticity activated),
and thus, it is natural to avoid a direct –and pos-
sibly constraining– assessment of particular short-
distance features.

Spatial correlation features of crystal plasticity
may contain various plastic deformation signatures
that may include dislocation-driven motions and
processes, diffusional creep, mechanical twinning
or grain boundary sliding [24, 25]. Despite the
multitude of origins, the success of strain gradi-
ents in capturing deformation history of plastically
deformed materials, is based on the main spatial
signatures of strain localization and shear band-
ing [7, 26]. Shear bands have been identified as
possible indicators of prior deformation, given that
the creation of slip bands during various small-
load mechanical tests of polished samples, shows
strong dependence on the prior deformation his-
tory [1, 2, 4]. However, the presence/absence of
shear banding may not suffice for characterizing
prior processing, and a more complete character-
ization of crystal plasticity history should require
the classification of the full spatial correlations of
stress and strain tensorial fields [21].
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FIG. 1. Schematic of experimental non invasive
test in modeling and sequence of sample load-
ing: A schematic of the sequence of events when load-
ing, unloading and reloading a sample is shown, with
the corresponding stress and strain graphs vs the time
step of simulation. A sample is obtained from 2D-DDD
simulation and it’s loaded to a specific strain value –
“Prior” Loaded stage (Stage L). Then, the sample is
unloaded to zero stress and the remaining plastic strain
can be calculated – “Prior” Unloaded stage (Stage U).
Finally, the sample is reloaded to a testing deforma-
tion -“Test” Reloaded stage (Stage T). Even though
a sample has been plastically deformed (Stage L), the
samples obtained from experiments can be polished,
thus the surface of a sample is not able to provide in-
formation about deformation (Sample at stage U can
be seen in the figure as having smooth surface). Such
techniques are applicable in experiments such as digi-
tal image correlation, where randomly placed tracking
nanoparticles are detected optically and contribute to
correlation statistics are applied to the sample. Then,
as the sample is reloaded, the permanent deformation
can be observed, since there are changes in the dis-
tances between tracked nanoparticles.

In this paper, we only focus on crystal plas-
ticity signatures during uniaxial compression of
thin films, obtained through a two dimensional
discrete dislocation dynamics model (2D-DDD).
Given that dislocation movements are the princi-
pal instigators of plastic deformation on materials,
this study captures a large number of experimen-
tally relevant cases and can provide a transparent
application framework [27–30]. The simulated sys-
tems begin in a state with no pre-existing mobile
dislocations, but with a set of dislocation sources
and obstacles present (see also Fig. 1). The sys-
tems are then run through a compression and re-
lease, with the amplitude of this compression being
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the “prior deformation”. After release, the systems
are “polished” (by erasing any pre-existing mem-
ory), and then they are subjected to a second, low-
amplitude compression, the amplitude of which is
called the “testing deformation”. The strain de-
veloped during the testing deformation is imaged,
and information derived from this imaging process
is the input to a machine-learning (ML) approach,
whose goal is to accurately determine the ampli-
tude of the prior deformation. Because we use a
discrete set of prior deformation amplitudes, our
ML task is one of classification – for a given data
set obtained from the testing deformation, the ML
set-up should be able to say which discrete prior
deformation the sample had undergone. While we
measure the strain developed during the testing
deformation directly through simulation, the pro-
cess is meant to mimic a readily-accessible, non-
destructive experimental technique, namely, digi-
tal image correlation (DIC) [31–38].

For our simulations and chosen tests, we use the
exemplary case of thin Al films (≤ 2µm) under uni-
axial compression. The films may have undergone
prior deformation of 0.1, 1 or 10% deformation in
terms of prior uniaxial compression, before unload-
ing to reach mechanical equilibrium (cf. Fig. 2).
Over the last decade, it has been shown that exper-
imental [39] and simulation tests [28, 29] on such
thin-film geometries, display very noisy charac-
teristics that may develop unpredictable features,
such as avalanches [40], especially at very small
widths w < 500µm. (see for example the defor-
mation features in Fig.A.1 in Appendix A of the
Supplementary Information (SI) [41]). While the
overall behavior of the films may be traceable to
the behavior of the film’s mean dislocation density,
in this paper we explore how well we could infer
prior deformation if neither dislocations nor prior
deformations are observable but instead, only the
total strain in a small-strain compressive thin-film
test. We believe that our study can become an ex-
emplary test problem for “black-box” and physics-
agnostic machine-learning methods in Data Sci-
ence and Informatics, before these methods be-
come applicable to devices and geometries that
undergo mechanical deformation with elasticity-
plasticity.

The remainder of this paper is organized as fol-
lows: In section II we describe our 2D-DDD model
and our approach for quantifying strain correla-
tion patterns. In section III we discuss the ML ap-
proaches we use for processing our data samples,
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FIG. 2. Schematic of the various loading histo-
ries & testing deformation on samples: A mate-
rial has an assumed prior deformation history (Stage
L, red circles). We unload the sample and obtain the
Stage U (blue circles). How does the strain field, which
characterizes Stage T (green circles), reflect the prior
history? The testing deformation εT − εU is constant
in all T-U cases.

and present results based on system sizes, reload-
ing strain, slip systems and alternate processing
techniques. In section IV we make several remarks
and present a summary of our work. Appendix A
in the SI [41] contains more details of the numeri-
cal simulations, while in Appendix B in the SI we
discuss the loading/unloading results from a phys-
ical consistency perspective. In the Appendix C of
the SI, we describe the calculation of the statisti-
cal correlations. In the Appendix D of the SI, we
discuss principal component analysis (PCA), a sta-
tistical approach that is heavily used in this work,
while in the Appendix E of the SI we present a
more complete set of parameters for our results.
Finally, in the Appendix F of the SI we show that
spatial resolution does not affect the classification
of prior deformation history in crystal plasticity.

II. THE MODEL

A. Discrete dislocation dynamics

We use a 2D-DDD model that is a simplified ver-
sion of crystal plasticity. It can capture the most
important crystal plasticity mechanisms, namely
dislocation gliding, nucleation and mutual inter-
actions. Even though there are 3D-DDD mod-
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FIG. 3. The 2D discrete dislocation plasticity
model of uniaxial compression of thin films:
Slip planes (lines) span the sample, equally spaced at
d = 10b, but planes close to corners are deactivated
to maintain a smooth loading boundary. Surface and
bulk dislocation sources (red dots) and forest obsta-
cles (blue dots) are spread homogeneously across the
active slip planes. Initially the sample is stress and
dislocation free.

els that include more detailed aspects of disloca-
tion microstructures [15], this 2D model suffices to
demonstrate the feasibility of our approach while
increasing statistical accuracy. We consider a 2D
plane stress problem, considering only infinitely
long straight dislocation lines along the third di-
mension. While minimal, this model has been
used extensively in the past for thin-film model-
ing [27–30], and the choice of parameters in the
model (dislocation sources, obstacles, slip spacing)
are based on previous studies of nanopillar com-
pression, where realistic dislocation densities were
obtained [29].

In this model, plastic flow occurs by the nucle-
ation and glide of edge dislocations, on single or
double slip systems. Our primary focus will be on
double slip system samples (see Fig. 3), and we
will compare the performance with single slip in
Sec. III C. Samples are modeled [29] by a rectan-
gular profile of width w, height h and aspect ratio
α (α = h/w). We study sample widths ranging
in powers of 2 from w = 0.125 (or w0) to 2 µm
with α = 4. 2D-DDD samples are discretized on
an finite element mesh of 320×80 square elements,
independently of the width. The top and bottom
edges (x = 0,w) are traction free, allowing dislo-
cations to exit the sample. Loading is taken to
be ideally displacement controlled, by prescribing
the y-displacement at the lateral edges (y = 0, h).
The applied strain rate (for both loading and un-

loading regimes), ḣ/h = 104 s−1, is held constant
across all our simulations, similar to experimen-
tal practice. Plastic deformation of the crystalline
samples is described using the discrete dislocation
framework for small strains [27]. Each dislocation

is treated as a singularity in a linear elastic back-
ground solid with Young’s modulus E and Pois-
son ratio ν, whose analytic solution is known at
any position. We assume that the Burgers vector
b = 0.25nm.

In the model, slip planes are separated by 10b
and oriented at ±30○ from the loading direction
(Fig. 3). In the single slip model, planes are also
separated by 10b but are oriented in just one direc-
tion (30○ from the loading direction). Bulk sources
are randomly distributed over slip planes and loca-
tions, and their strength is selected randomly from
a Gaussian distribution with mean value τ̄nuc = 50
MPa and 10 % standard deviation. Forest dis-
location obstacles with strength τobs are also dis-
tributed on the samples. Their strength is Gaus-
sian distributed with mean 300 MPa and 20 %
standard deviation (see Appendix A of the SI [41]).

At the beginning of the calculation, the crys-
tal is stress free and there are no mobile disloca-
tions. We only consider glide of dislocations, ne-
glecting the possibility of climb. The motion of
dislocations is determined by the Peach-Koehler
force in the slip direction. Once nucleated, dis-
locations can either exit the sample through the
traction-free sides, annihilate with a dislocation of
opposite sign when their mutual distance is less
than 6b, or become pinned at an obstacle. Our
simple obstacle model is that a dislocation stays
pinned until its Peach-Koehler force exceeds the
obstacle-dependent value τobsb. If dislocations ap-
proach the physical boundary of the sample then
a geometric step is created on the surface along
the slip direction (see Fig. 4) Our simulations are
carried out for material parameters that are rem-
iniscent of aluminum: E = 70 GPa, ν = 0.33. The
effective Young’s modulus for plane stress prob-
lems is Eeff = E/(1 − ν2) = 78.55 GPa. In the
case of double-slip systems, we consider 50 ran-
dom realizations of sources and obstacles in each
parameter case (loading of 0.1, 1, 10 %) for a to-
tal of n = 150 samples. For single-slip systems, we
consider 9 random realizations for each parameter
case for a total of n = 27 samples.

The simulation is carried out incrementally, us-
ing a time step that is a factor 20 smaller than
the nucleation time tnuc = 10 ns. At the beginning
of every time increment, nucleation, annihilation,
pinning at and release from obstacle sites are eval-
uated. After updating the dislocation structure,
the new stress field in the sample is determined,
using the finite element method to solve for the
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FIG. 4. Strain profiles captured from the 2D-
DDD simulation at stage L and stage T –
w = 2 µm – Double slip system: The full sample is
shown, in both deformed (a) or undeformed (b) coor-
dinates. A sample is loaded to 10 % strain, unloaded
to zero stress and reloaded to testing deformation of
0.1 %. (a) Strain profile for Stage L at 10 % strain.
Plastic steps are allowed to emerge on the film sur-
face [29]. (b) A strain profile at the Stage T, after
subtracting the residual plastic deformation at Stage
U. Such strain profiles are analogous to typical DIC
experimental strain profiles. The strain maps are unit-
less.

image fields [27].

The test that we wish to imitate would mea-
sure the strain field in the sample after it has been
strained and relaxed, as described above, and then
subjected to a subsequent “testing” deformation.
We consider a testing reload regime that is gov-
erned mainly by the degree of invasiveness we in-
troduce to the data set. All tests have been carried
out for prior deformation (see Sec. I in three differ-
ent amplitudes (0.1 %,1 %,10 %) of total strain.
Figs. 1,2 show a schematic of the way we create
our data set: “As annealed” samples (see Fig 1)
are loaded to 3 different amplitudes (L stages).
For each stage L, we unload (at 0 applied stress)
to obtain U stages. In stage U, the samples are
stress free, but there is some remaining strain due
to plasticity. We then reload the samples to a spe-
cific testing deformation (stage T).

Samples of different widths (w) undergo the
same unload-reload protocol to create our data
set. We have the option to select at which strain
the unload process begins, as well as the test-
ing deformation level we want to introduce. We
perform tests at two different reloading strains
(small-reload data set: 0.1 % and large-reload data
set: 1.0 %). Reloading strain is the strain differ-
ence between stages T and U (εT − εU ). Fig. 5
shows two typical stress-strain curves like the one
shown schematically in Fig. 1. Stages L (trian-
gles), as well as stages U (squares) and T (cir-
cles) are shown. Note that in Figure 5 (a), the
inset figure shows that the slope of the stress-strain

(a) (b)

FIG. 5. w = 2 µm – Small vs large reload stress
strain curves: Samples are loaded to 3 different de-
formations levels (Stage L- ▼). For each level, the
sample is then unloaded (to zero applied stress) cre-
ating Stage U (∎). The predeformed sample is then
reloaded to a testing deformation (Stage T - ). Each
color represents a particular class of prior deformed
states. (a) Testing deformation = 0.1 %. The inset
figure represents a zoom-in of the circled unloading-
reloading region (Stages U/T at 10 % strain.). The
dashed line represents the ideal elastic response by just
considering the parent material’s elastic modulus. The
solid lines correspond to the unloading and reloading
curves. The reloading curves slightly deviate from the
ideal elastic response even in small stresses, due to the
presence of inelastic precipitates and also, due to the
ideal form of applied uniaxial loading. (b) Testing de-
formation = 1 %.

curve, in the case of 10 % stage L amplitude, ex-
ceeds the elastic modulus when the testing load
is applied. Dislocation motion relieves stress and
reduces the effective modulus, but obstacles and
boundary conditions (the top and bottom bound-
aries are constrained to be straight) impede relax-
ation and stiffen the system. The excess modulus
arises from the work required to maintain straight
boundaries as the system deforms. For more in-
formation on the unloading-reloading procedures,
see Appendix B of the SI [41]. Figure 5 (b) shows
a stress strain curve obtained through reloading to
larger testing deformation, 1 %. The main differ-
ence is at the reload points, which show further
deformation of the sample, in contrast to samples
reloaded to smaller strain (0.1 %). For the small-
reload data set case, the reload strain value is small
enough that does not introduce further plastic de-
formation.
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B. Extracting machine learning input data
from local strain information

By running 2D-DDD simulations, we acquire
strain information at the L,U and T stages. In
order to remove the prior memory, we form the
quantity T−U = εT (r⃗)−εU(r⃗), or εTU , which is the
testing deformation in Fig. 2. This process is sim-
ilar to polishing a sample, applying speckles and
tracking their movement as the sample is further
deformed, which is naturally similar to DIC [31–
38].

After removing the prior strain, it is not straight-
forward to characterize the plastic behavior of the
samples without prior knowledge (i.e. the degree
of plasticity incurred from L and T stages). For
example, in Fig. 6, without prior knowledge we
would not know that the samples in (a),(b) are
loaded to 10 % strain while in (c),(d) the samples
are loaded to 1 % strain. The figures appear to be
quite different, and the similarity of their histories
is not recognizable by eye. However, ML’s trained
eye is able to detect the initial deformation history.
Indeed, in later sections we will show how ML al-
gorithms can show that the figures are quantifiably
and fundamentally different. With the help of ML
we are able to find the initial deformation history
of various samples, as long as the testing deforma-
tion does not overwrite it.

We compute the strain εTU on a grid of 2000×500
points overlaid on the 320×80 finite element mesh,
using finite element interpolation to compute the
strain at each point. At each point we then con-
struct a scalar, the determinant of the deviatoric
total strain, φ ≡ 1

2
(ε2xx + ε2yy) − εxxεyy + 2ε2xy,

where the tensor ε is the total strain. The choice
of the total strain was based on making contact
with what is easily accessible in experimental set-
tings; nevertheless, other choices such as the plas-
tic strain (cf. Appendix E [41], Fig.E9) do not
appear to qualitatively influence the conclusions
of this work. The scalar φ can be interpreted
as a color to form a strain profile image, such as
those shown in Figs. 4, 6. These strain profiles are
then put through a correlation algorithm, follow-
ing the scheme of the Materials Knowledge Sys-
tem (MKS) [42]. It is worth noting that the choice
of the deviatoric φ−invariant satisfies local rota-
tion invariance but is not unique in any way; as
we show in Sec. III F and also in Appendix E [41]
(cf. Fig. E9), our results do not depend on the par-

(a)

(c) (d)

(b)

x 10-4 x 10-4 

x 10-4 x 10-4 

FIG. 6. Variety of strain profiles in 2D-DDD
simulations for smaller and larger testing strain:
For the spatial scale of the figures see Fig. 4. A sample
is loaded to a high deformation of strain (which could
be either 1 % or 10 %) and then unloaded. This prede-
formed sample is then reloaded to a testing strain. In
(a),(b) the samples are loaded to 10 % strain, while in
(c),(d) the samples are loaded to 1 % strain (a) Small
testing deformation (0.1 %). w=2 µm. Double slip sys-
tem simulation. (b) Large testing deformation (1 %).
w=1 µm. Single slip system simulation (c) Small test-
ing deformation (0.1 %). w=1 µm. Single slip system
simulation. (d) Large testing deformation (1 %). w=2
µm. Double slip system simulation. For description of
color map see Fig. 4 (b).

ticular choices made.
In the general MKS scheme [43], one selects

spatially-varying quantity(-ies) which characterize
the microstructure. The space of all possible values
of these quantities is called the local state space,
H, and a point in this space is denoted n. Some
care with the vocabulary is required, since physi-
cally speaking, these quantities are simply the val-
ues of fields of interest to us, and may or may not
correspond to thermodynamic state variables. In
this study, our quantity is the determinant of the
deviatoric total strain invariant.

In the MKS method, one further considers a
“microstructure function”, defined on the prod-
uct space of the microstructure state variables H,
and physical space x, m(n,x). In general use, this
function may be thought of a probability density
on these spaces. In our case, where we have a
succession of particular microstructural instances,
the microstructure function corresponding to each
instance is a delta-function in n at each point in
space.

In order to obtain data suitable for construct-
ing two-point correlations, it is necessary to bin
the state variables. We make use of the PyMKS
software [44] which offers tools to accomplish this.
The most basic n-axis discretization scheme is
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(a)
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(b) (c)x 10-3 

FIG. 7. w = 2 µm – 2D projection of PCA results for thin films – Double slip system: n0,n0 auto-
correlation. (a) Projection of data set on first two principal components. Red blobs denote samples with 0.1 %
strain (stage L), blue triangles samples with 1 % strain (stage L) and green squares denote samples with 10 % strain
(stage L), respectively. (b) First principal component of PCA, shown in sample coordinates (Fig. 3, Sec. III B).
(c) Second principal component of PCA, shown in sample coordinates (Fig. 3, Sec. III B). The colormaps are
unitless, showing the intensity the PCA-transformed correlations.

the so-called “primitive basis” scheme, in which
one selects some number P of evenly-spaced lev-
els, n0, n1, . . . nP , and, at a point in space where
the state variable has value n, selects amplitudes
ωi for these levels such that ∑i ωini = n, with
the additional restriction that only the ni’s which
are directly below and directly above the local
value n are nonzero, and ∑i ωi = 1. The en-
tire system is thus described by a set of val-
ues {ωi} in each spatial point x. In our simu-
lations we discretize the state space into 3 dif-
ferent bins, corresponding to 3 local states n0,
n1, and n2 at low, intermediate, and high local
strains. 6 possible correlations are observed for
(i, j) ∈ Z, where space Z is defined by the values of
(i, j) = ((0,0), (0,1), (0,2), (1,1), (1,2), (2,2)) for
the 3 local states. The 2-point correlations are:

C[k][r∣l, l′] = 1

S
∑
s

m[s, l]m[s + r, l′], (1)

where C[k][r∣l, l′] is the conditional probability of
finding the local states l and l′ at a distance and
orientation away from each other defined by the
vector r, for the kth sample. S is the total number
of spatial cells in the microstructure and s is a
specific spatial cell. When the 2 local states are
the same l = l′, the correlation is called an auto-
correlation. If the 2 local states are not the same,
it is a cross-correlation.

III. PRE-PROCESSING, CLUSTERING
AND CLASSIFICATION FOR STRAIN

PROFILES OF CRYSTALLINE THIN FILMS

In the model, signatures of plastic deformation
are concentrated in collective features of the 2-

(a) (b)

(0.1 %)

x 10-4 

(1 %)

x 10-4 

(10 %)

x 10-4 

x 10-3 

FIG. 8. Efficiency of ML compared to visual in-
spection of results – w = 2 µm – Double slip sys-
tem: n0,n0 auto-correlation. The colors follow the def-
inition of Fig. 7. (a) Strain profiles obtained through
our model. The top figure corresponds to strain pro-
files for a sample with stage L at 0.1 % strain. The
middle figure is a sample strain profile obtained from
stage L at 1 % strain. Finally, the bottom figure is
a sample strain profile from stage L at 10 % strain.
All strain profiles show the strain localizations formed
from the quantity εTU (see Sec. II B). For the spatial
scale of the figures see Fig. 4 (b) PCA map for samples
that have similar strain profiles as (a). 3 distinct clus-
ters are formed. The projection is upon the first and
second principal components. For description of color
map see Fig. 4 (b).
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(a) (b)

(d)(c)

x 10-3 x 10-3 

FIG. 9. w = 0.5 µm – 2D projection of PCA re-
sults for thin films – Double slip system: n0,n0

auto-correlations. The colors follow the definition of
Fig. 7. (a) Projection of data set on first two prin-
cipal components with a clustering algorithm applied
to the data set, demonstrating a failure in clustering
the various deformation levels. (b) Projection of data
set on first two principal components without a clus-
tering algorithm applied to the data set, justifying (a).
(c) First principal component of PCA, shown in sam-
ple coordinates (Fig. 3, Sec. III B). (d) Second princi-
pal component of PCA, shown in sample coordinates
(Fig. 3, Sec. III B). For description of colormaps, see
Fig. 7

point correlation function (see Eqn. 1, Sec. II B).
In order to identify and classify these collective
features, a statistical approach needs to be imple-
mented in a multitude of training samples. Sim-
ilar work has been examined in materials science
in the past [43, 45–47]. We use Principal Com-
ponent Analysis (PCA, [48]) as a dimension-
reduction scheme to pick out relevant axes in a
high-dimensional space, and then we do classifica-
tion on the points projected along these important
axes. PCA takes a cloud of points in a high di-
mensional space and computes the orthogonal di-
rections (”principal components”) in that space in
which the cloud has the largest variance. Project-
ing the points onto the subspace defined by the
principal components allows the points to be dis-
tinguished from one another succinctly.

The inputs to our ML algorithm are the correla-
tion functions of the MKS local states discussed in
Sec. II B. Having computed the correlation func-
tions, we now wish to see if ML can extract prior
histories from them. Our ML workflow will: (1)

convert correlation functions to vectors, (2) find
the significant features of the vectors by PCA, and
(3) apply a clustering algorithm to identify samples
with similar histories.

The correlation functions are evaluated at dis-
placements r = (rx, ry) in a box around (0,0). The
range of the correlation function can be limited by
choosing the size of the box. We usually use a
40 × 40 square. By assigning integers v to each r,
we can convert the 2-dimensional set of points to
a list, and thus convert the correlation function to
a high dimensional vector:

dij = (C[k][r1∣ninj], C[k][r2∣ninj], ⋯, C[k][rq ∣ninj])
(2)

Here, q is the total number of points in the box,
(i, j) label the MKS local states from which the
correlation function was computed, and k labels
the samples (i.e. the simulation run). Thus the
Stage T strain from each simulation run has been
mapped to a point in a high dimensional space.
Our goal is to see if different Stage L strains show
up as clusters in this space.

Alternatively, we can remove some of the high-
resolution information, by selecting small 5 × 5, or
bigger 20×20, squares on the overlaid interpolated
mesh (Sec. II B). In these squares, we average the
strain information, thus “blurring” the images. By
averaging this information, we also limit the spatial
resolution of the images and we can examine longer
range correlations (see Appendix F of the SI [41])
instead of the 40 × 40 short range correlations.

At the end we have a matrix D in the form n×m,
with n rows, where n is the number of statistical
samples. Each row contains the vector dij which
may or may not be truncated. The matrix D has
m columns, where m is the number of spatial cor-
relation instances:

D =
⎡⎢⎢⎢⎢⎢⎣

C[1][r1∣ninj]⋯C[1][rm∣ninj]
⋮

C[n][r1∣ninj]⋯C[n][rm∣ninj]

⎤⎥⎥⎥⎥⎥⎦
(3)

The rows of D are the data vectors on which PCA
operates, and the resulting principal components
are linear combinations of the basis vectors of this
set ([48], also see Appendix D of the SI [41]).
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FIG. 10. w = 1 µm, The choice of the correlation domain and how it impacts the PCA maps –
Double slip system : n0,n0 auto-correlation. For description of colormaps and colors of PCA maps, see Fig. 7.
Projection of data set on first two principal components. (a) 40×40 domain of correlation matrix. Highly smooth
in the center and towards the boundaries of the domain. (b) 100×100 domain of the correlation matrix. A highly
focused area near the center of the domain is shown, where the phenomena are focused. The smoothness present in
(a) is slowly removed from this domain. (c) 200×200 domain of correlation matrix. We have rich phenomenology
present towards the center of the correlation matrix and at the boundaries. (d) PCA maps for 40 × 40 domain.
(e) PCA map for 100 × 100 domain. The variance of the data has changed and the projections have shifted. The
information provided by (b) does not change the cluster formations, but introduces unnecessary information that
has shifted the results along the PC1 and PC2 axes. (f). PCA map for 200 × 200 domain. The variance of the
data has changed even more compared to (e). The distances between the blue and green clusters have increased
an order of magnitude compared to (e) and 2 orders of magnitude compared to (d). The information provided by
(c) does not affect the clusters that are formed from our algorithm. For description of correlation domains, see
Sec. III B

A. Clustering and classification

We use the Continuous k-Nearest Neighbors
(CkNN) algorithm [49] to classify samples after
running PCA on the data set. The CkNN algo-
rithm is a clustering algorithm, with the advan-
tage that the number of clusters is not arbitrar-
ily defined by the user, as in K-Means clustering
[50], but is calculated through a distance based
approach. In particular, CkNN recognizes sam-
ples that are close to each other and calculates the
most probable number of clusters for the data set.
After the number of clusters has been found, the
algorithm classifies the samples similar to the K-
Means approach. The algorithm is an unsuper-
vised method that detects natural clusters within

a data set, and our interest in it is the degree to
which the natural clusters correspond to the prior
deformation (stage L). The input to this algorithm
must consist of a set of points, which in our case
is the projections of the correlation matrix on the
3 principal components. As an output, the algo-
rithm produces the classified samples, based on the
cluster to which they belong.

The size of the data set (see Sec. II A), as in most
classification algorithms, imposes a limitation on
the algorithm. The algorithm groups data sam-
ples with similar PCA vectors into one cluster. We
find that the algorithm works better for larger data
sets. This introduces a limitation on classification,
especially for single slip systems. The method is
successful if the samples with different prior load-
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FIG. 11. w = 1 µm, 3D projection of PCA results
for thin films – Double slip system : n0,n0 auto-
correlation. The colors follow the definition of Fig. 7. 3
different clusters are shown like in Fig. E3. Introducing
the 3rd component into the PCA map, does not affect
the results.

ing are grouped into different clusters. Note that
the clustering is done in three dimensions using all
three principal components, but most of our plots
are two dimensional, which can sometimes hide the
degree of clustering.

In Figure 11 we show a 3D PCA map for ma-
terial samples of w = 1 µm. It is obvious that the
clustering isn’t affected by the 3rd dimension, and
in this case the information provided by PC3 is
irrelevant to our results.

The results shown on this paper, except for re-
sults shown in section III D, are extracted by ap-
plying PCA and the CkNN algorithm to the whole
data set. The same PCA and CkNN steps are
applied to all simulations. The remainder of this
paper discusses how well the clustering algorithm
works in various situations.

Fig. 8 (b) and Fig. 12 (b)

(a) (b)

(0.1 %)

(1 %)

(10 %)

x 10-4 

x 10-4 

x 10-4 

x 10-3 

FIG. 12. w = 2 µm, – Strain profiles and 2D pro-
jection of PCA results for thin films – Single slip
system : n0,n0 auto-correlation. The colors follow the
definition of Fig. 7. Projection of data set on first two
principal components. (a) Different strain profiles are
seen for a single slip system of w = 2µm. The top figure
is a sample’s strain profile with stage L at 0.1 % strain.
The middle figure is a sample’s strain profile obtained
from stage L at 1 % strain. Finally, the bottom figure
is a sample’s strain profile from stage L at 10 % strain.
Strain localization are formed from the quantity εTU

(see Sec. II B). For the spatial scale of the figures see
Fig. 4 (b) PCA projection of of our results for samples
of w = 2 µm. The similarity between strain profiles
at 1 and 10 % strain does not affect the formation of
separate clusters for samples that were initially loaded
at these strains. For description of color map see Fig. 4
(b).

B. Distinguishing plasticity regimes for small
testing deformation (0.1 %)

We ran a multitude of tests for different w. For
large w (> 0.5µm), our algorithm correctly clusters
and classifies data into 3 different groups, one for
each of the prior strain values, which was the main
objective of our work. Figure 7 (a) shows that
clustering is easily observed for w = 2 µm, where
3 distinct clusters appear in the PCA of the n0,n0
autocorrelation. It is clear that there is enough
cluster separation to reliably classify plastically de-
formed metals into heavily deformed and less de-
formed categories. For these larger sized systems
the CkNN algorithm has 100 % accuracy, but for
smaller sized systems with w ≤ 0.5 µm the cluster-
ing algorithm fails to cluster data points accord-
ing to their deformation state. That is evident in
Fig. 9 (b), where one can see what a correct clus-
tering and classification would look like for speci-
mens of w = 0.5µm. In figure 9 (a) one can observe
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FIG. 13. w = 2 µm – Comparison of principal
components among double and single slip sys-
tems: Components shown correspond to the analysis
of Figs. 8 (b), 12 (b). (a) First principal component
of double slip system. (b) First principal component
of single slip system. (c) Second principal component
of double slip system. (d) Second principal component
of single slip system. For description of colormaps, see
Fig. 7.

the results after the CkNN algorithm is applied to
the data set. Other figures in Appendix E.1 of
the SI [41] show how specimens of various sizes are
classified using the CkNN algorithm. The plas-
tic noise fluctuations in the system, as well as the
finite size of the system, interferes with the clas-
sification of smaller sized data samples, while for
larger w the samples are classified correctly.

Figures 7 (b) and (c) show the representation of
the first two principal components of the data ma-
trix D for samples of w = 2 µm, shown in their
natural sample coordinates (i.e., the PCA vectors
have been converted back to the 2D grid represen-
tation of a correlation function, see Sec. III). If two
correlation functions were randomly chosen from
the data set, the difference between them would
most likely look like 7 (b) (with some scaling)
mixed with a smaller amount of 7 (c). Note that
the first principal component is roughly isotropic,
while the second is strongly anisotropic. Figures 7,
9 show the progression of our ML work-flow as
sample width decreases. We can observe that
the first PCA component at larger w is relatively
isotropic.

While in Fig. 7 (b) we notice a concrete isotropy
of the first principal component of the analysis, it
gradually becomes anisotropic as the sample width

decreases (Fig. 9 (b)). This change is correlated
with the onset of stochastic fluctuations at small
scales and mechanical annealing [51] that promotes
concrete slip bands even at small testing strains.
While both principal components for w = 2 µm
(Fig. 7 (b,c)) are smooth, they gradually become
less structured as w decreases (Fig. 9 (b,c)), nat-
urally an effect of stochastic fluctuations at small
length scales. For w = 2 µm there is a distinct
difference between the first and second principal
components, related to a spatial symmetry break-
ing. This distinction disappears as w decreases.
For smaller w, due to the emerging crystal plastic-
ity size effects [29], the data set is not as distin-
guishable as we would have wanted with our clus-
tering technique, because of the noise associated
with strengthening. (Fig. 5 (a)).

The area of the correlations, with respect to
the sample area can be calculated by: Acorr =
Nx×Ny×(w2/5002)µm2, where Nx,Ny is the num-
ber of nodes in x,y directions respectively. For
example, for short range (40 × 40) correlations:
Acorr = 40 × 40 × (w2/5002) = (4/625) × w2 µm2.
Figure 10 shows how Acorr can influence the re-
sults. Differences can be observed in Figs. 10 (d),
(e), (f), only with respect to the variance of the
projected points. The principal components in (a),
(b), (c) have small differences, mostly on their in-
tensity. We deduce that our results do not depend
on the examined area of correlations, and in order
to reduce computational resources and time, we
examine short (40 × 40) range correlations, from
the center of the sample.

One deficiency of our ML work-flow emerged as
we examined the results: as w decreases, the dis-
tance between the PCA-transformed samples also
decreases. It is known that classification algo-
rithms have an inherent limitation: when the dis-
tance between points in one cluster is similar to
the distance separating two clusters, then the algo-
rithm has difficulty distinguishing the clusters. In
particular, Fig. 7 shows that the cluster distances
in the PC1 direction are of order of magnitude 10−2
to 10−1. For w ≤ 0.5 µm (see Fig. 9 a) the cluster
between PCA-transformed samples is on the order
of 10−3 to 10−2, similar to the distance between
the samples itself, and the data samples cannot be
classified correctly. For smaller systems, it is ev-
ident that samples with stage L = 0.1 % or 1 %
strain (red circles and blue triangles, respectively)
are so close to each other that the classifier regards
them as belonging to the same cluster.
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As mentioned in sections I, we were inspired
by experimental techniques. For this reason, we
have considered strong statistical variations in the
initial microstructures. Frank-Read sources (see
Sec. II A) are distributed randomly with a ran-
dom nucleation stress. Obstacles (mimicking pre-
cipitates) are also distributed randomly, with a
random resistance stress. This variability causes
strong noise and limited spatio-temporal resolution
(as can be seen for samples of w < 0.5 µm, Ap-
pendix B of the SI [41]). Furthermore, this noise
propagates into PCA maps where the variance for
samples loaded to 1 or 10 % strain is very high.
However, these variations do not affect the suc-
cessful application of the ML work-flow, and this
is one of the main findings of this work. Never-
theless, in order for our work to be comparable to
experimental data we need to limit the resolution
of the examined strain profiles as well (since in
experimenents, typical image resolution can reach
≈ 1µm . Our generated profiles originally have the
nanoscale resolution of the 2D-DDD grid. In Ap-
pendix F of the SI [41], we show that through av-
eraging out the slip band information, and moving
to more realistic resolutions (factor of 10-20 lower),
we can still conclude that strain correlations can
reveal the deformation history.

C. Distinguishing plasticity regimes for
single slip samples

As mentioned in Sec. II A, we model single and
double slip systems. So far, we have shown how
emergent shear bands can be observed in our sim-
ulations for both of these systems (Fig. 6), as well
as PCA results for double slip (Figs. 7, 9). PCA re-
sults for single slip are consistent with double slip,
as shown in Fig. 12. Specifically, Fig. 12 shows re-
sults of single slip system simulations for w = 2 µm.
The clustering properties for these larger sized sys-
tems are similar to the properties observed for sim-
ilar systems for double- slip simulations. A com-
parison between the results of single slip and dou-
ble slip systems for samples of w = 2 µm can be
made by observing Fig. 8 (b) and Fig. 12 (b). The
PCA results contain distinctly separated clusters.

Figure 13 compares the principal components for
single and double slip systems.

FIG. 14. w = 2 µm – 2D projection of PCA re-
sults for thin films – Double slip system – Val-
idation: n0,n0 auto-correlation. Red blobs denote
samples with 0.1 % strain (stage L), blue triangles sam-
ples with 1 % strain (stage L) and green squares denote
samples with 10 % strain (stage L), respectively. Red
stars depict testing samples of 0.1 % strain (stage L),
blue stars testing samples of 1 % strain (stage L) and
green stars testing samples of 10 % strain (stage L).
Validated-split data set. Projection on first two prin-
cipal components.

D. Validation and accuracy of the algorithm

An ML algorithm, in order to be considered suc-
cessful, should be validated with “unknown” data
sets (testing data) which have the same features as
the data set the algorithm was designed for (train-
ing data). In many cases, testing data sets are hard
to find, so the whole data set is split into two parts
(not necessarily a half and half split), and the ML
algorithm can be trained on part of the data set
and its effectiveness tested on the rest. Other than
this subsection, the results shown in the paper are
an application of our ML work-flow on the whole
data set (for a given w), and cannot be used to
determine the validity of the classifier.

For validation purposes, we “trained” the algo-
rithm by computing the PCA transformation from
a randomly chosen half of the w = 2 µm sam-
ples and applying the CkNN algorithm. Then we
applied the PCA transformation to the remaining
half of the samples and examined whether or not
they were projected into the correct clusters. The
results are shown in Fig. 14. It is evident that
the testing data perfectly matches the training set.
Similarly “training” the algorithm to samples of
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various sizes (i.e., half of the samples instead of
all the samples), follows the results of section II B.
For samples with w ≥ 1 µm the “testing” data set
is projected to the 3 classified clusters that have
formed. In contrast, for smaller systems, the train-
ing data set is misclassified (as happens when ex-
amining the whole data set) and the testing data
set falls within the misclassified results.

We can quantify the degradation of the cluster-
ing process using some of the tools provided in the
scikit-learn metrics module [52]. In particular, we
examine the accuracy score of the algorithm, as
well as the Fβ score. Accuracy is the fraction of
samples that were classified correctly. We apply
the CkNN algorithm and generate clusters. Be-
cause we know the prior strain for each sample, we
can immediately check whether the clusters cor-
respond to the strain levels. Perfect clustering is
when each cluster contains only samples with iden-
tical prior strains. The results are summarized in
Fig. 15. For w ≥ 1 µm the accuracy score is 1
as seen in Fig. 15 (a); that is, all the samples are
correctly classified. For smaller samples w ≤ 0.5
µm (or w/w0 ≤ 22 as in the figure), we have a 0.33
accuracy score, because only the samples of one
cluster are correctly classified. The accuracy score
is not affected by the wrongly classified samples,
and cannot provide a measure for the correct clas-
sification of individual clusters.

To quantify the performance of the classification
process, we also use the Fβ score [53, 54] which is
computed separately for each cluster:

Fβ = (1 + β2) ⋅ p ⋅ r
(β2 ⋅ p) + r (4)

where precision p is the number of correctly classi-
fied samples in the cluster divided by the number
of all classified samples in the same cluster, and re-
call r is the number of correctly classified samples
in the cluster divided by the number of samples
that should have been in that cluster. The β num-
ber changes the weight of recall vs precision. For
β > 1 recall is weighted more than precision, while
for β < 1 precision is weighted more than recall.
For β = 1, we have the F1-score, with precision
and recall having the same weight in the equation.
Fig. 15 (b,c,d) shows the F1, F2 and F0.5 scores for
our results.

For samples with w ≥ 1 µm (or w/w0 ≥ 23) we
have value of 1 on all scores and all clusters, but
for smaller w we observe that the line with the

squares, which corresponds to samples with 10 %
initial compressive loading returns non-zero values,
varying as the β value changes. For samples that
are classified in the cluster, we do not obtain the
highest possible result, because the number of cor-
rectly classified samples is smaller than the num-
ber of samples in the cluster (i.e., the precision
is small). The line with the circles, which corre-
sponds to samples with 0.1 % initial strain loading,
has value 0 for w ≤ 0.5 µm because no samples have
been classified as belonging to that cluster. The
last line, with the triangles corresponding to sam-
ples with 1 % initial loading has non-trivial values
because in some cases there are some samples that
are classified correctly (the recall and precision are
very small). In summation: For the “square” clus-
ter we have low precision but high recall, since we
classify the samples that actually belong to that
cluster correctly, but we also classify samples from
other clusters; for the “triangle cluster” we have
low recall and low precision, since we classify a
small number of samples into that cluster.

We also tested the response of the algorithm
with respect to accuracy and F1-score while chang-
ing the number of tested samples. Fig. 16 shows
the algorithm’s reduced effectiveness when the
number of samples is less than 20 % of our max-
imum. Fig. 16 (b) shows the average F1-score
across the three clusters instead of the score for
each cluster individually.

E. Distinguishing plasticity regimes for large
testing (1 %) total strain

The results from our ”large reload” data set,
with 1 % testing strain, show that delicate han-
dling is required to obtain the desired cluster sep-
aration. 1 % testing strain does not produce the
clear separation obtained with 0.1 % strain. As
the testing deformation increases so do strain lo-
calization features and shear band sizes. With
a shear band spanning the whole specimen, we
expect that the statistical correlations differ sig-
nificantly from the statistical correlations of the
“small-reload” data set. That is due to the overall
effect of localization, from a structural correlation
viewpoint. High loads lead to strain localization
in the form of shear bands, which are inhomoge-
neous and anisotropic, unlike the low strain plastic
response. Our methods pick up the transition be-
tween the two responses. Indeed, even in the case
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FIG. 15. Measures of success for classification
of samples - 0.1 % testing strain:. n0,n0 auto-
correlations. (a) Accuracy score for the samples. Max-
imum value 1 means that all the samples have been
correctly classified. (b) F1-score of our 3 clusters that
are formed. The line with the squares represents the
cluster with samples at stage L = 10 % strain, while the
line with the triangles is for the cluster with samples
at stage L = 1 % strain. Finally, the line with the cir-
cles is for the cluster with samples at stage L = 0.1 %
strain. For smaller sized systems we have observed
that most of the samples are classified as belonging in
the “square” cluster, hence the scored value for that
cluster only. Since the algorithm correctly classifies
the samples that were initially loaded to 10 % strain,
but also classifies more samples as belonging to that
cluster, then the score does not have the maximum
value of 1 but lower. (c) F2-score of our 3 cluster that
have formed. The definition of the colored lines fol-
lows (b). Since for F2-score we have increased weight
of the recall, the 0.7 maximum value is expected for the
“square” cluster. (d) F0.5-score of our 3 clusters. The
colors definitions follow (b). Since we have reduced
weight of the precision, for lower sample widths it is
expected to have lower score than F1 for the “square”
cluster.

of low reload strain, the distance between clusters
is small and in smaller systems (Fig. 9) the samples
are unclassifiable.

Fig. 17 compares the small and large reload test-
ing regimes. Fig. 17 (b) and (d) show the results
of PCA with a clustering algorithm applied to the
data set. From Fig. 17 (d) we can see that higher
testing deformation renders samples indistinguish-
able in PCA coordinates. The separation that was
present for the low testing deformation (0.1 %)

(a) (b)

FIG. 16. Measures of success for classification
of samples - 0.1 % testing strain:.n0,n0 auto-
correlations. The x-axis of each graph is percentage
of samples tested for classification.(a) Accuracy score
for samples of w = 2 µm (stars) and w = 1 µm (disks).
Maximum value 1 means that all the samples have been
correctly classified. (b) Averaged F1-score across the
3 clusters that have formed for samples of w = 2 µm
(stars) and w = 1 µm (disks). It is obvious that we
have good agreement for the classified samples even
when we test less than 30 % of the total number of
samples.

is missing for higher values. Figs. 17 (a,c) show
the strain profiles captured when the sample is
reloaded to low (a) and high (c) testing strains.
It is obvious that for higher testing deformation
there is much more mixing of the samples, thus
the classification algorithm fails. Fig. 18 shows
another difference between the two testing regines.
For large reload strain the first principal compo-
nent (a) is highly anisotropic, while it becomes
nearly isotropic at small reload strains (see Fig.9
(c)). This observation extends to other compo-
nents (e.g., 2nd, Figs. 18 (b) and 9 (d)) and is
correlated to the emergent anisotropy of strain lo-
calization. A more comprehensive comparison for
these regimes can be found in Appendix E.3 of the
SI [41].

F. Dependence of unsupervised learning
capacity on pre-processing aspects.

As discussed in Sec. II B, the discretization
scheme defines the form and dimensions of the cor-
relation functions to which we apply a PCA trans-
formation. We can choose to examine correlations
between different local states h. We can catego-
rize samples based on their deformation history
either for n0,n0 auto-correlations or n1,n1 auto-
correlations. We find that cross-correlations aren’t
helpful for classifying samples according to their
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(a) (b)

(c) (d)

x 10-4 

x 10-4 

x 10-3 

x 10-2 

FIG. 17. Large-reload vs. small-reload testing
– Example of PCA projection results for thin
films of w = 0.5 µm:. n0,n0 auto-correlations. The
colors follow the definition of Fig. 7. Strain profiles
are created from the quantity εTU (a) Sample with
stage L = 10 % strain is unloaded to zero stress and
then reloaded to small testing deformation (Stage T
= 0.1 %). (b) Stage T at small testing deformation
(0.1 %), without a clustering algorithm applied to data
set. Projection on two principal components. Actual
representation of the data set, with some mixing of the
samples. The clusters have shifted closer to one an-
other but not indistinguishable. (c) Sample with stage
L = 10 % strain is unloaded to zero stress and then
reloaded to large testing deformation (Stage T = 1 %).
(d) Stage T at large testing deformation (1 %), with-
out a clustering algorithm applied to data set. Actual
representation of the data set. For the higher testing
deformation of 1 %, we can see that there is much more
mixing of the samples. Reloading to higher strain val-
ues, adds plastic memory to the samples, rendering our
process inapplicable for these cases. For description of
color map see Fig. 4 (b).

deformation levels. Fig. 19 shows results obtained
from various correlation functions: in general, as w
decreases, we observe that distances between each
cluster are also decreasing. In particular, Fig. 19
(a) shows that the distances in each cluster are
measured in an order of magnitude 10−4 to 10−3
while in Fig. 19 (b) the order of magnitude is 10−2
to 10−1, similar to the one in Fig. 8 (b). This differ-
ence in Fig. 19 (a),(b) is enough for the clustering
algorithm to find the different deformation levels
and classify our data set with 100 % accuracy.

Another choice we can make is the quantity that
characterizes the microstructure. Until now, we

(a) (d)

FIG. 18. First and second principal component
of PCA application on thin films of w = 0.5 µm
shown in sample coordinates: (a) First princi-
pal component - Stage T = 1 % (b) Second principal
component- Stage T = 1 %. For description of col-
ormaps, see Fig. 7.

considered an isotropic measure of the total de-
formation strain in the sample. Our classification
scheme produces similar results if we use the more
common 2nd invariant of the strain deformation
tensor, J2 = εikεki. Fig. 20 shows the results for
different microstructural measure calculations. For
larger systems (w = 1,w = 2) the only notable dif-
ference is the overall variance of the data in PCA
coordinates.

Finally, we may use the plastic strain determi-
nant as the microstructural deformation state vari-
able, which effectively corresponds to examining
the unloaded stage T dislocation ensembles. In-
stead of computing correlation functions and clus-
tering on Stage T, we can unload the testing strain
to create a new Stage S, and look for clustering
there. Fig. 21 shows that classification still works
and there is an observable difference of the data
variance in PCA coordinates. For more figures on
the differences in pre-processing aspects and the
role of the plastic strain, please see Appendix E in

(a) (b)

FIG. 19. Auto-correlations vs. cross-correlations
for pre-processing – Example of PCA projec-
tion maps for w = 2 µm: The colors follow the defi-
nition of Fig. 7. w = 2µm. (a) n0,n1 cross-correlations
(b) n1,n1 auto-correlations.
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(a) (b)

(d)(c)

x 10-3 x 10-3 

x 10-3 x 10-4 

FIG. 20. Effect of strain invariant type for pre-
processing – Examples of PCA projection maps:
The colors follow the definition of Fig. 7. (a) n0,n0

auto-correlations. w = 2 µm. Deviatoric φ-invariant.
(b) n0,n0 auto-correlations. w = 2 µm. J2-invariant.
(c) n1,n1 auto-correlations. w = 1 µm. Deviatoric φ-
invariant. (d) n1,n1 auto-correlations. w = 1 µm. J2-
invariant.

the SI [41].

G. Independence from the choice of
discretization schemes and dimension

reduction methods

We find that our protocol is not sensitive to rea-
sonable variations of the microstructural binning
of the local strain variable. As a test, we dis-
cretize the microstructure into L = 2, 3, 4 and 5
parts. We are able to distinguish the initial de-

(a) (b)x 10-3 x 10-3 

FIG. 21. Total vs. Residual/Plastic strain for
pre-processing: Examples of PCA projection
maps: The colors follow the definition of Fig. 7. (a)
Plastic strain. n0,n0 auto-correlations. w = 2 µm (b)
Total strain. n0,n0 auto-correlations. w = 2 µm

(a) (b)

(d)(c)

x 10-3 x 10-3 

x 10-3 x 10-3 

FIG. 22. Effect of discretization schemes on pre-
processing: Examples of PCA projection maps
for w = 1 µm: The colors follow the definition of
Fig. 7. n0,n0 auto-correlations. (a) 2 local states (b) 3
local states (c) 4 local states (d) 5 local states

formation history of all the samples when calcu-
lating the n0,n0 auto-correlations and the n1,n1
auto-correlations. These results are independent
of the discretization scheme (i.e. the number of lo-
cal states used). Fig. 22 shows the results for data
samples of w = 1 µm, as the number of local states
L increases. Clustering and classification is possi-
ble, and the clustering algorithm has 100 % accu-
racy independently of the number of local states,
but the overall noise of the data increases with the
number of local states.

The noise is due to the use of a fixed num-
ber of DDD simulations for each prior strain level.
The signal strength in each correlation function in-
creases with system size and the number of disloca-
tions, but decreases as the data is distributed into
more bins L. This effect is more pronounced for
cross-correlations because they decrease for short
distances and our correlation function range is
truncated. Hence we do not obtain classifiable re-
sults for any cross correlations.

While PCA is one of the most common and use-
ful tools for dimensionality reduction, some data
sets could be so large that it is impractical. With
that in mind, we compared our PCA results with
other common algorithms, such as Incremental
Principal Component Analysis (IPCA) and the
Truncated Singular Value Decomposition (TSVD).
IPCA uses a different form of processing a data
set that allows for partial computations which in
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most cases match the results of PCA. Incremen-
tal PCA stores estimates of component variances
and updates the variance ratio of a component in-
crementally. It is faster and uses memory more
efficiently than PCA. TSVD on the other hand,
implements a variant of singular value decomposi-
tion (SVD) that only computes the largest singular
values. Given that PCA works on the basis of the
singular value decomposition, we expect little to
no difference with this method.

No significant differences are seen when applying
some of these variations of PCA to our data sets.
The results are shown on Fig. 23. Note that no ad-
ditional parameters, other than the initialization of
the different methods, have been modified; in par-
ticular, the same clustering algorithm is used as
with the PCA methods. The TSVD results do not
display any differences from regular PCA, besides
slight changes in data variance and data cluster po-
sitions. The IPCA results, on the other hand, are
mirrored from the PCA results in both the PC1
and PC2 axes (negative values). If we calculated
the absolute values we would see just minor differ-
ences in data variance and cluster positions as in
the TSVD results.

IV. REMARKS AND CONCLUSIONS

Our results could be generalized in a number of
ways. Our work is applicable to thin films [28–
30], but may also apply to more general fami-
lies of materials. Firstly, the material parameters
can change to correspond to composites and/or
polymers, and their associated mechanical behav-
ior during testing. For composites it is impor-
tant to model and study ductile fracture while
for polymers creep phenomena might be of in-
terest. Secondly, an expansion can be made to
the experimental protocol. Instead of examining
uniaxial compression of thin films and their spa-
tially resolved strain correlations, we could have
included multi-cycle loading-unloading tests, mul-
tiaxial compression or nanoindentation. Thirdly,
the data matrix D (see Eq. 3, Sec. III) can be de-
fined in different ways. While the protocol would
have remained the same within the algorithm, we
could have used geometrically necessary disloca-
tions or local misorientations to calculate spatial
correlations. In this particular case, the required
data for the correlations would have been obtained,
for example, by EBSD. In future studies, we will

examine data from theoretical solutions and aim
to compare them with experimental data sets for
dislocation-density related problems. A natural
next step in our approach is a development of a
regression method which can provide a continu-
ous assessment of clustering and classification, and
naturally provide error bars. Instead of using only
3 values of the applied strain at Stage L, we can
use a continuous set of values, and apply regression
based methods (eg. decision trees [55]) to identify
features at each load.

In addition, there are some caveats of the ap-
proach that one has to be careful with: When
samples used for ML have either been reloaded
to high strain (1 %) or exhibit large noise due to
their nano size (w ≤ 0.5 µm), our classification
method does not work. There are many possi-
ble reasons that the algorithm occasionally fails
to identify these samples. For example, in the
case of smaller w, short-range correlations may
not be enough to distinguish the deformation his-
tory. Moreover, we use a simple ML work-flow,
that may not distinguish features of the data ma-
trix D (see Sec. III, III A). Advanced ML protocols
such as neural networks [56] or deep learning algo-
rithms [57] could capture more information than
correlation based approaches. The occasional fail-
ure of our methodology to distinguish prior defor-
mation could also stem from basic aspects of the
physical phenomenon of crystal plasticity at small
scales: The data shows a substantial amount of
noise at smaller widths [28–30] making classifica-
tion occasionally unsuccessful (see Sec. III B, and
Appendix E in the SI [41]), and at larger reload
strain (see Sec. III E) the prior deformation his-
tory is overwritten [7] and becomes undetectable
by the algorithm.

In summary, we examined the applicability of
spatial correlations to practical and relatively in-
expensive experimental methods for the detection
of the degree of prior plastic deformation of thin
films, especially when they display significant plas-
ticity size effects. Our overall conclusion is that
ML algorithms can achieve our objective with
varying levels of success. Through mimicking ex-
perimental protocols with two dimensional discrete
dislocation plasticity simulations, we identified re-
alistic cases (single and double slip thin films with
widths larger than 1 µm) where data clustering
and classification is possible, based on the degree of
prior plastic deformation. When size effects come
into play, we found that clustering and classifica-

17



(a) (b) (c)

   

x 10-3 x 10-3 x 10-3 

FIG. 23. Comparison of different dimensionality reduction methods for w = 2 µm: The colors follow
the definition of Fig. 7. n1, n1 auto- correlations. (a) PCA (b) TSVD (c) IPCA

tion becomes gradually more difficult, since the
intrinsic, plasticity-induced crackling noise causes
large variance in smaller systems. In general, for
the success of our methodology for thin films, the
physical size of the samples should exceed 500 nm
in the lateral direction (see Sec. III A, III B), while
the data set should consist of more than 50 sam-
ples (See Sec. III D). Furthermore, we uncovered a
crucial parameter for the applicability of our meth-
ods, namely the testing total strain during reload-
ing. The stage T reload strain should be small
enough that it does not overwrite the prior defor-
mation history of the samples; Reload strains less
than 0.4 % could be applicable for detecting defor-
mation history. While for a small-reload level of
0.1 % (half of the commonly defined engineering
yield stress, found at at engineering strain 0.2 %),
our methods are highly successful (see Sec. III B),
they are clearly not successful one order of mag-

nitude higher, at 1 % (see Sec. III E). Another
output of our calculations was that smoothing the
short-range correlations and keeping features that
refer to larger distances improved the capacity of
our learning apparatus to reliably recognize mate-
rial history (see Appendix F in the SI [41]).
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