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We report on experiments investigating the dynamics of a slider that is pulled by a spring across a
granular medium consisting of a vertical layer of photo-elastic disks. The motion proceeds through
a sequence of discrete events, analogous to seismic shocks, in which elastic energy stored in the
spring is rapidly released. We measure the statistics of several properties of the individual events:
the energy loss in the spring, the duration of the movement, and the temporal profile of the slider
motion. We also study certain conditional probabilities and the statistics of mainshock-aftershock
sequences. At low driving rates, we observe crackling with Omori-Utsu, B̊ath, and waiting time
laws similar to those observed in seismic dynamics. At higher driving rates, where the sequence
of events shows strong periodicity, we observe scaling laws and asymmetrical event shapes that are
clearly distinguishable from those in the crackling regime.

I. INTRODUCTION

A wide variety of physical systems exhibit stick-slip
dynamics in response to a steady driving force. In such
systems, configurations of microscopic elements remain
stable as the force builds up, then undergo fast mi-
croscopic rearrangements during macroscopic relaxation
events. When the driving force is increased slowly, the
distribution of event sizes often develops a power-law
form, and the system is said to “crackle” [1]. Examples
can be found in phenomena associated with fracture [2–
5], friction [6, 7], magnetization [8], neural activity [9, 10]
and seismicity [5, 11, 12], to mention a few.

Many experimental studies [13–19], simulations [17,
20–23], and theoretical models [24–27] have investigated
the statistics of sizes and durations slip events in disor-
dered athermal systems. Such studies typically focus on
the quasi-static regime, where the driving rate is slower
than any relevant intrinsic time scale. Several conceptual
tools for characterizing the dynamics were originally de-
veloped for the purpose of analyzing seismological data
and forecasting earthquakes. In that context, it has been
observed that the statistics of mainshocks (MS) and af-
tershocks (AS) follow several phenomenological scaling
laws [28]: the Gutenberg-Richter power-law decay in the
event size distribution; a power-law distribution of the
waiting times between successive events [5, 11, 29]; a
power-law distribution of AS productivity as a function
of MS magnitude [30, 31]; B̊ath’s law [32] for the con-
stancy of the size ratio of the largest AS to the MS that
produced it; and the Omori-Utsu law [33–35] for the de-
cay in the rate of AS following a given MS. These laws,
referred to as the fundamental laws of seismology [36],
are used in the probabilistic forecasting of earthquakes,
and it is important to understand their mechanistic ori-
gins and potential applicability to other types of crackling
phenomena.

This paper reports on experimental studies of a slider
that is pulled over a granular material. The system re-

sembles earthquake systems in that stress accumulates
at a slow, constant rate due to an external driving mech-
anism and is released rapidly in discrete events. More-
over, the granular matter (gouge) between two tectonic
plates may play an important role in earthquake dynam-
ics, which motivates us to probe the dynamics induced
by the granular matter alone, in the absence of apprecia-
ble elastic deformations of the plates themselves. Krim
et al. have also noted the importance of vibrations in
determining frictional properties of granular materials,
employing an apparatus quite similar to ours to study
the statistics of events for a slider pulled at a given speed
while vibrating at various frequencies [37]. The present
work focuses on the zero vibration case and the depen-
dence of event statistics on the pulling speed.

Our system undergoes a transition from crackling to
periodic dynamics as the driving rate is increased [38].
We present results for all of statistical quantities men-
tioned above in both regimes. We find that for slow
driving rates our system follows familiar seismic laws and
their associated predictions. For higher driving rates,
however, the statistics of plastic events changes signif-
icantly. Our results in the crackling regime can serve
as tests for general theories that have been developed in
other contexts, such as the theory of epidemic-type af-
tershock sequences [36, 39].

II. EXPERIMENTAL PROCEDURE

The experimental set-up used for the present study
is similar to the one used in Ref. [38, 40], illustrated
schematically in Fig. 1(a). A toothed 2D frictional slider
of length 25 cm and mass 85 g is attached to a lin-
ear spring of stiffness k = 70 N/m. The end of the
spring is pulled at a constant speed c. The slider lies
on a vertical bed of bi-disperse cylindrical elastic parti-
cles of diameters 4 mm and 5 mm, with the number ratio
Nsmall/Nbig = 2.7. The granular bed and the slider are
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FIG. 1. (color online) Stick-slip event statistics for loading
speed c = 0.1 mm/s. (a) Schematic of the experiment at
loading speed c. (b) Time series of the spring energy E (blue)
and radiated power P (black). (c) An enlarged view of a
single peak in P with starting time ti, duration Di, and size
Si. The horizontal line indicates the threshold used for event
detection. (d) PDF of the event sizes. The blue dashed line is
a fit to the form of Eq. (1) with β = 1.22± 0.07 and Smax =
6.1 × 10−4 ± 0.7 × 10−4 J. Error bars show 95% confidence
intervals. (e) Average event shape for D ∈ [0.01, 0.02] s. The
black solid line is computed from the experimental data, and
the blue dashed line is a fit to Eq. (2) with σ = 1.09 ± 0.02.
(f) Event duration as a function of event size. Gray dots are
individual events; the black line is the binned average. The
dashed line shows a power-law corresponding to 1/γ = 0.79.

sandwiched between two dry-lubricated glass plates. The
force, f , applied to the spring is measured by a sensor at
a frequency of 1 kHz. From the time series f(t), we calcu-
late the elastic energy stored in the spring, E = f2/(2k),
and the power radiated during a given time step, P. In
our experiments, c can vary from 0.02 to 100 mm/s.

Slip events, also called plastic events or avalanches, are
identified directly from the P(t) data. To avoid including
transient effects, we consider the force signal only after
the slider has moved approximately half of its length.
After this point the signal is seen to oscillate around a
well defined average. For slower pulling speeds, we collect
roughly 1,000 avalanches per run, and we include several
runs in our statistical analysis. For higher speeds, we
collect ten runs with roughly 50 slip events per run.

To identify avalanches, we choose a threshold for P of
1.5µW, which is above our rms noise level of 1.16µW,
as illustrated in Fig. 1(c), an avalanche starts when P
exceeds the threshold and ends when it next drops be-
low the threshold [17, 41]. For each event we extract the
starting time, ti, the duration, Di and the event size Si,
defined as the total energy radiated during the event; and
the temporal profile of the power released by the spring,

Pi(τ) for τ ∈ [0, Di], where τ = t− ti. We then construct
the following statistical quantities: the probability den-
sity function (PDF) for event sizes, P (S); the average
duration of events of a given size, D(S); and the average
scaled event shape for events with Di ∈ [D − δ,D + δ],
PD(u) ≡ 〈Pi(τ)/max(Pi(τ))〉i, where u = τ/Di. Fi-
nally, we identify the AS’s associated with a given MS
for the purpose of observing B̊ath’s law, the productivity
law, and the Omori-Utsu law.

III. CRACKLING DYNAMICS

When the slider is pulled very slowly, we observe crack-
ling dynamics, as evidenced for c = 0.1 mm/s by the two
decades of power-law decay in P (S) shown in Fig. 1(d).
The PDF is well fit by the Gutenberg-Richter form

P (S) ∼ S−βe−
S

Smax , (1)

with β = 1.22 ± 0.07 and Smax = (6.1 ± 0.7) × 10−4 J.
Fig.1(f) shows a scatter plot of the size and duration
of individual events. The average curve 〈D(S)〉 also ex-
hibits a power-law, 〈D〉 ∼ S1/γ , over two decades, with
1/γ = 0.79±0.03. For large events, the average duration
appears to saturate.

Fig. 1(e) shows the average shape of avalanches with
Di ∈ [0.01, 0.02] s, a subset of the events with their size
and duration in the power-law regime of Fig. 1(d). Each
avalanche has been rescaled vertically by its maximum
power radiated and horizontally by its duration. The
form of PD(u) has been investigated for a variety of amor-
phous systems [16, 17, 23, 24]. We follow the procedure
of Refs. [42] and [3], fitting the average shape to the form:

PD(u) = 4[u(1− u)]σ[1− a(u− 1/2)] (2)

where a is an asymmetry parameter. We find a = 0, and
σ = 1.09±0.02. We note that σ differs significantly from
the value σ = γ − 1 predicted in Ref. [42].

IV. CORRELATIONS BETWEEN EVENTS

We now consider the statistical relations between
avalanches. Fig. 2(a) shows the waiting time distribu-
tion, which would show a simple exponential decay for
an uncorrelated Poisson process. Each curve is obtained
by setting a lower cutoff size Sc and compiling the PDF of
the times ∆t = tj′ − tj , where j and j′ refer to successive
events with S > Sc. The curves are scaled horizontally
by the average waiting time, Tc, between the included
events, which yields a collapse to a single curve that can
be fit by a power-law with an exponential cutoff [11]:

P (∆t|Sc) ∼
1

Tc
u−νe−

u
umax , (3)

where u = ∆t/Tc. We find ν = 1.10 ± 0.08 and umax =
3.04± 0.15. The dashed line shows the best fit.
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Another conventional method for characterizing corre-
lations between events is known as seismicity decluster-
ing [5, 43]. For any event M (called the mainshock), as-
sociated aftershocks are defined as all subsequent events
occurring before the next event larger than M . The inset
of Fig. 2(a) shows the average number, NAS of AS asso-
ciated with MS of a given size, SMS . We have checked
that his productivity law remains unchanged after ran-
dom shuffling of the sequence of events. Given the ab-
sence of relevant correlations in the sequence of event
sizes, the law can be computed directly from the cumu-

lative event size distributions F (S) =
∫ S
Smin

P (s)ds [5]:

NAS(SMS) =
F (SMS)

1− F (SMS)
. (4)

The result, shown as a dashed line in the inset of
Fig. 2(a), matches the direct computation, confirming
that the sequence of event sizes is essentially random.

Finally, we study the temporal structure of aftershocks,
which is characterized by the Omori-Utsu law for the
time dependence of the rate r of aftershock events [33, 35]
and B̊ath’s law for the ratio ρ of the size of a MS to its
largest AS. Fig. 2(b) shows the rate r of aftershocks fol-
lowing a MS of size SMS as a function of the time elapsed
since the MS, averaged over MS with similar sizes: r is
a function of (t−tMS). Curves for different SMS collapse
under the rescaling t− tMS → (t− tMS)/NAS(SMS) re-
vealing that:

r(t|SMS) ∼ u−pf(u) (5)

where u = (t− tMS)/NAS(SMS) and f is a scaling func-
tion. We find p ≈ 0.7.

The inset of Fig. 2(b) shows ρ as a function of SMS .
Within the error bars, the data is consistent with B̊ath’s
law, which states that ρ = SMS/max{SAS} is indepen-
dent of SMS and close to 1. Once again, permuting the
sequence of events randomly does not change the curve,
as shown by blue crosses. This implies that, like produc-
tivity law, B̊ath’s law finds its origin in the distribution
of individual event sizes, without requiring system mem-
ory of the type introduced in epidemic-type aftershock
sequence (ETAS) models [36, 39].

V. DRIVING RATE EFFECT

As the driving rate is increased, the system passes into
the periodic regime discussed in Ref. [38]. We report here
the changes in avalanche statistics associated with this
transition. Fig. 3(a) shows the evolution of P (S) with
increasing c. The crackling behavior at low driving rates
evolves to a uniform distribution (with an upper cut-
off) reaching a stable form for c > cc ≈ 20 mm/s. The
inset shows the dependence on c of the P (S) exponent,
β, indicating that β ∼ log(c) for 10−1 < c < cc. For
faster c, β vanishes within the error bars. For slower c it
saturates at a constant value near 1.22.

FIG. 2. (color online) Waiting time law, productivity law,
Omori-Utsu law, and B̊ath’s for c = 0.1 mm/s. (a) Waiting
time law: PDF of the waiting time between two consecutive
events larger than Sc, rescaled by Tc, the average waiting time
between events larger than Sc. The dashed line is a fit to the
form of Eq. (3) with ν = 1.10 ± 0.08 and umax = 3.04 ±
0.15. Inset: The number of AS’s as a function of the MS
energy, SMS . Blue dots are from experiment; cyan crosses
are obtained from random permutations of the experimental
events, and the black dashed line is obtained from Eq. (4).
(b) The rate of AS events corresponding to a MS of energy
SMS . Time is rescaled by NAS(SMS). The straight dashed
line with slope 0.7 is a guide to the eye. Inset: Ratio between
MS size, SMS , and size of the largest AS. Black dots are
experimental data; cyan crosses are obtained from a randomly
mixed sequence of events.

Figure 3(b) shows the evolution of P (∆t) to a narrow,
Gaussian-like distribution for c > cc indicating a charac-
teristic time between events. The inset shows the upper
cut-off, ∆tmax, as a function of c, revealing a power-law
decay for c slower than cc: ∆tmax ∼ c−0.75±0.03. For
faster c, ∆tmax decays only logarithmically with increas-
ing c, as discussed in Ref. [38].

Both D(S) and PD(u) for D = 0.015 s show clearly
discernible differences in the periodic regime from their
crackling behavior at low c. Figure 4(a) shows D(S) for
different pulling speeds. While D(S) is a power-law in all
cases, the exponent is observed to decrease from ∼ 0.8
for low c to ∼ 0.3 for c > cc.

Figure 4(b) shows how the average event shape of
Fig. 1(e) evolves with increasing c. PD(u) develops a



4

FIG. 3. (color online) (a): PDF of the event energy, P (S),
for loading speeds c ∈ [0.02, 100] mm/s. Inset: Logarithmic
decay of the exponent β with increasing c. The fit for 10−1 <
c < 20 mm/s has slope −0.55±0.06. (b): PDF of the waiting
time between two consecutive events larger than Sc = 10−6 J
for different c. Inset: Evolution of the upper cut-off, ∆tmax,
(see Eq. (3)) as a function of c. The fitted power-law for
c < 20 mm/s shows an exponent of −0.75± 0.03.

left-shifted asymmetry as c increases. The exponent σ
and asymmetry parameter a of Eq. (2) are plotted as a
function of c in the top and bottom insets. σ is roughly
constant for low c, then slowly increases to a saturation
value for c > cc. a is near zero for low c and increases
sharply to a constant for c > cc, meaning that during the
average event in the periodic regime, the slider acceler-
ates faster than it decelerates.

VI. DISCUSSION

Our experiments demonstrate that slowly shearing a
granular bed by means of a pulled slider on its surface
gives rise to the same types of scale free distributions of
event sizes, durations, and shapes as those seen in other
crackling systems. We observe behavior that is well de-
scribed by standard versions of the Gutenberg-Richter
law, Omori’s law, the productivity law, and B̊ath’s law.
As the driving rate is increased, the parameters char-
acterizing the statistics vary smoothly until a crossover
occurs to the qualitatively different behavior observed in

FIG. 4. (color online) (a): Evolution of avalanche duration,
D(S), for loading speeds c ∈ [0.02, 100] mm/s. Inset: Evolu-
tion of the exponent, 1/γ. (b): Average shape PD for events
with Di ∈ [0.01, 0.02]s. Insets: Evolution of the exponent, σ,
and asymmetry parameter, a, for event shapes as a function
of c showing that events develop left-shifted asymmetry as c
increases. In all graphs error bars stand for 95% confidence
level and vertical gray lines show c = cc = 20 mm/s.

the periodic regime reported in Ref. [38].

Comparing our results to those from other systems in
the crackling regime, we find the following. Our size ex-
ponent β matches that observed in many other stud-
ies. Several quasi-static theoretical models and simu-
lations [21, 23, 25–27], as well as fracture experiments
by Barés et al. [3], reproduce the same scaling exponent
within the error bars. This value is smaller, however,
than that observed in other dynamic 3D experiments
[13, 14, 16, 44] and the mean field model exponent of
1.5 [16, 22, 24, 29], and it is larger than was found some
other studies [20, 45]. The exponent γ we measure for
the D(S) power-law agrees with 3D experiments of Dal-
ton et al. [13] and with dislocation dynamics models [45].
It is lower, however, than those of simulations by Liu
et al. [23] and a mean field model by Budrikis et al. [26].
Our measured exponent ν for the waiting time law agrees
with the creep mean field model [29]. Finally, as has
been recently reported for nominally brittle fracture in
amorphous materials [5], we find that the productivity
statistics and B̊ath’s law can be directly implied from
the Gutenberg-Richter law, without knowing the correct
sequence of events. This fact disqualifies ETAS [36] for
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modeling our system.

The symmetric parabolic avalanche shape we observe
in the crackling regime is predicted by many models [42],
including mean field [24]. In the periodic regime, how-
ever, we find asymmetric avalanche shapes with parame-
ters different from those predicted by 3D simulations [23].
The source of the asymmetry is not clear, but we conjec-
ture that it is related to a crossover in time scales associ-
ated with the slider motion and the relaxation dynamics
of the granular bed. Moreover, we measure an exponent σ
different from the value γ−1 predicted in Ref. [42]. This
may be due to the combination of the physical effect of
a finite driving rate and the experimental resolution that
requires a finite threshold value for event detection. The
former may yield overlapping avalanches that we classify
as a single event, and the latter may result in the split-
ting of single avalanches into two or more events [46].

Similar features were observed in Barkhausen pulses [47]
and were shown to result from the finite value of the de-
magnetization factor. Further investigation of the grain
scale dynamics during slip events is needed to clarify the
origin of these macroscopic phenomena.
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