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We use molecular simulations to study jamming of a crumpled bead-spring model polymer in a
finite container and compare to jamming of repulsive spheres. After proper constraint counting,
the onset of rigidity is seen to occur isostatically as in the case of repulsive spheres. Despite this
commonality, the presence of the curved container wall and polymer backbone bonds introduce new
mechanical properties. Notably, these include additional bands in the vibrational density of states
that reflect the material structure as well as oscillations in local contact number and density near
the wall but with lower amplitude for polymers. Polymers have fewer boundary contacts, and this
low-density surface layer strongly reduces the global bulk modulus. We further show that bulk-
modulus dependence on backbone stiffness can be described by a model of stiffnesses in series and
discuss potential experimental and biological applications.

I. INTRODUCTION

The phenomenon of jamming is observed in systems
ranging from granular materials flowing down a chute
[1] to biomacromolecules [2–5]. Most theoretical under-
standing of jamming comes from ideal models of granular
materials, e.g., simulations of repulsive disks and spheres
in periodic boundary conditions (PBC). In general, a
packing of a biopolymer into a container involves at least
two unavoidable additional features: backbone bonds
that link the material into a polymer chain and container
walls that influence the material near the boundary. As
a step toward closing the large gap between the most ide-
alized models and experimental systems, we investigate
the effects on jamming of unbreakable adhesive bonds
and external spherical confinement (SC).

Jamming occurs as the constituents of a flowing mate-
rial sufficiently constrain one another’s motion, leading
to a configuration that resists applied stress. A central
question is whether the material jams isostatically, that
is, in precise balance of constraints and degrees of free-
dom, consistent with the boundary conditions. Simula-
tions of frictionless, repulsive disks and spheres in PBC
have shown that the onset of rigidity occurs as a jump in
particle-particle coordination number from zero to twice
the dimensionality: four for disks and six for spheres,
which corresponds to isostaticity [6–13]. We show that
jamming in our simulations, with backbone bonds and a
concave confining wall, occurs isostatically in fundamen-
tally the same way as for repulsive spheres.

Repulsive spheres typically jam at a packing fraction
of about 64%, which corresponds to the density of the
maximally-random jammed (MRJ) state [6, 7, 14–19].
Unlike repulsive spheres, a bead-spring model polymer
has “built-in” constraints provided by backbone bonds.
Isostatic packings of freely-jointed chains of tangent hard
spheres can be obtained at φMRJ using algorithms that
eliminate the effects of connectivity and allow effective
equilibration through chain-connectivity-altering Monte
Carlo moves [20–30]. However, when connectivity is
preserved, approximately-tangent, fully-flexible, bead-
spring chains jam at about 2% below φMRJ in PBC with

little system-size dependence and retain a significant frac-
tion of unconstrained degrees of freedom [31]. Confine-
ment of monomers also reduces the jamming density by
inducing layering near the boundary [32–42]. We present
both the reduction in density due to SC alone using re-
pulsive sphere packings and further reduction due to the
polymer backbone that links all particles together.

On the other hand, few studies of polymer packings in
confined geometries address mechanical properties. Pre-
vious investigations have largely focused on chain confor-
mation within the packing [43–47] and topological order-
ing of segments [48]. Long polymers with specified bond-
bond angles typically coil during packaging in SC to mini-
mize bending energy [49–55] and thus exhibit boundary-
induced layering [53]. In contrast, we use a crumpled,
flexible-chain model to avoid coiling [52] and to focus on
the role of backbone connectivity in distinguishing the
polymer from the monomer systems.

In Sec. III, we explain the necessity of using direct
constraint counting rather than coordination number to
assess the onset of rigidity due to unique considerations
of systems in external confinement. In Sec. IV A, we show
that essentially the same understanding of states of self-
stress and zero modes in repulsive sphere packings can
be extended to the case of a polymer in SC. In Sec. IV B,
we provide the distribution of jamming densities in simu-
lations of spherically-confined polymers and compare to
those of monomers in SC and in PBC to isolate the ef-
fects of backbone bonds and the confining wall. We find
boundary-induced order in local density and coordina-
tion (Sec. IV C) and in the vibrational density of states,
with effects on band structure due to the confining wall
and the backbone (Sec. IV D). Finally, we show how the
bulk modulus changes due to these structural differences
between monomers and polymers as well as due to the
polymer backbone stiffness (Sec. IV E).

II. SIMULATION DETAILS

To study jamming of flexible polymers, we use 3D
molecular dynamics simulations [56] of single chains, each
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composed of 256 ≤ N ≤ 8192 monodisperse, frictionless,
spherical particles of diameter σ. Each particle represents
a monomer along a polymer chain, and interactions are
governed by the following potentials:
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Nonconsecutive monomers interact via the harmonic re-
pulsive potential V0(rij), where rij is the distance be-
tween the centers of particles (also referred to as sites)
i and j, ε0 is the characteristic energy, and θ(x) is the
Heaviside step function. Consecutive monomers k and l
are bound by the two-sided harmonic potential VB(rkl),
so that backbone bonds have energy scale εB and rest
length σ. To induce jamming, the polymer is confined
by a spherical wall centered at the origin according to
the radial harmonic potential VW (ri), where ri is the ra-
dial coordinate of site i, and R is the wall radius. The
total potential energy E is the sum of all pairwise and
wall potentials. We consider at each site an equal point
mass m, which sets the mass scale, and energies will be
reported in units of ε0, distances in units of σ, pressures
in units of ε0/σ

3, and frequencies in units of
√
ε0/mσ2.

Disordered configurations are generated by thermaliz-
ing the polymer chains at temperature kT = 0.003 in a

large confining sphere at packing fraction φ = N
(
σ

2R

)3
=

0.02. Each thermal configuration is then quenched to
T = 0 using the FIRE algorithm [57]. We compress each
quenched system in small increments 0.001 ≤ ∆φ ≤ 0.01
(adjusted by system size) by decreasing R and minimiz-
ing energy after each compression until a jammed con-
figuration is obtained, indicated by a nonzero E . We
then expand or compress these configurations to within
1% of each target pressure p ≡ −∂E/∂V , where the
system volume V = 4πR3/3 is that bounded by the
confining sphere. For each system of size N , at least
100 random configurations are prepared, and each of
these is studied at a large range of target pressures
10−7 ≤ p ≤ 10−1, bond energies 0.1 ≤ εB ≤ 10, and
wall energies 0.1 ≤ εW ≤ 10.

The same procedures are repeated for nonbonded
monomers in SC (where εB = 0) and in PBC [where

εW = εB = 0 and φ = πN
6

(
σ

2R

)3
in a cubic domain with

side length 2R].

III. ISOSTATICITY AND COORDINATION

We review the analysis of the mechanical constraints
that resist deformations and cause jamming. This allows
us to introduce the effects of confining walls and adhesive
bonds. Here, we introduce the index theorem, and in

Appendix B, we derive the theorem in detail and explain
associated subtleties.

When interested in the linear response at low pres-
sure, near jamming, we may consider the unstressed net-
work of a given system by replacing all contacts (includ-
ing backbone bonds and wall contacts) with unstretched
harmonic springs in an analysis following Ref. [58]. The
mapping to the spring system is exact in the limit of
zero pressure, and each spring introduces one harmonic
constraint. Each contact i′ ≤ NC , where NC is the num-
ber of contacts, is replaced by a harmonic bond of rest
length ri′ equal to rij , rkl, or R−ri [referring to Eqs. (1)]
depending on the interaction. A zero mode is a normal
mode of the system that causes no springs to be extended
or compressed and corresponds to a motion with zero
stiffness. A state of self-stress (SSS) is a set of extensions
and compressions assigned to the springs that results in
zero net force at each site. The index theorem embodies
the fact that each contact either reduces the number of
zero modes or increases the number of SSSs [58], which,
for a d-dimensional system with dN degrees of freedom,
is

N0 −NS = dN −NC . (2)

Creating a rigid (i.e., having no floppy modes), d-
dimensional packing of spheres requires the number of
constraints to match or exceed the degrees of freedom to
be constrained [59]. Therefore, NC ≥ dN − f(d), where
f(d) is the number of zero modes associated with rigid-
body motions. PBC permit f(d) = d rigid translations
while a frictionless, (d − 1)-spherical boundary permits
f(d) = 1

2d(d − 1) rigid rotations. By its strictest def-
inition [58], an isostatic system contains neither floppy
modes nor SSSs [N0 = f(d), NS = 0]; however, jammed
packings necessarily have at least one SSS (NS ≥ 1)
corresponding to a nonzero modulus [7, 9], so that the
number of contacts of a jammed isostatic system is
N iso
C = dN − f(d) + 1. Each additional constraint added

to such a system creates an additional SSS:

NS = NC −N iso
C + 1. (3)

Constraints in repulsive sphere packings are commonly
characterized by the average coordination number

z =
1

N

N∑
i=1

zi, (4)

where zi is the number of contacts of particle i, but this is
less appropriate in confinement. First, without external
confinement, as in PBC, all contacts are between two
particles, so z = 2NC

N is twice the contact density, and
the relation between NS and z is

NS
N

=
∆z

2
≡ z − ziso

2
(5)

with ziso =
2N iso

C

N = 2d − 2f(d)
N . However, in external

confinement, each wall contact involves only one particle.
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FIG. 1. Selected index theorem values for (a) monomers
(εB = 0, εW = 1) and (b) polymers (εB = εW = 1). Mono-
tonically increasing (decreasing) curves show NS/N (N0/N).
Upper curves show computational results for (NC + N0 −
NS)/N , equal to the dimensionality d = 3 as guaranteed by
Eq. (2). Black lines have slope 1/2. Approximately 100 states
of each system size and pressure are considered.

Since the wall itself is not counted as a particle, wall
contacts do not get double-counted, and the coordination
number z is lower than twice the contact density by an
amount that decreases with system size:

2NC
N
− z =

NW
N
∼ 1

L
, (6)

where NW is the number of wall contacts, and L ≡ N1/d

is the linear system size. Therefore, z is twice the den-
sity of constraints only when each contact constrains two
degrees of freedom.

Second, previous studies of monomers have removed
rattlers in order to isolate the rigid subsystem so that
∆z is directly related to NS [7, 9]. Due to unbreakable
bonds, polymers instead contain particles called flippers,
which are constrained only by backbone bonds and thus
can freely move tangent to their neighbors [21]. To accu-
rately analyze the rigid subsystem of a confined polymer,
an analogous computation of ∆z would require both a
boundary correction and the removal of all flippers and
the backbone bonds constraining them.

IV. RESULTS

A. States of self-stress and zero modes

In Fig. 1, we compute NS (Eq. B4). Our results show
that NS ≥ 1 as seen in the splitting of NS/N curves to
1/N in the low-p limit. Jamming in our systems, even
with adhesive bonds and confinement, therefore corre-
sponds to the introduction of a single SSS. For the poly-
mers, the SSSs may contain both extended and com-
pressed backbone bonds; indeed we find that ≈ 30% of

backbone bonds are extended near the jamming transi-
tion, so the ratio of extended to compressed backbone
bonds is ≈ 0.5.

We see the power-scaling law with pressure NS/N ∼
∆z ∼ p1/2, the same as for spheres [7, 9], for both
monomers and polymers (εB = 1) in confinement. This
may be contrasted with a perfect d-dimensional crystal
in external confinement, which would contain NS >∼ Ld−1

at p → 0+. The increasing number of SSSs involves an
increasing number of sites (N rigid) and engaged contacts

(N rigid
C ) as the rigid subsystem grows.
To quantify the number of unconstrained motions, we

compute N0 (Eq. B2). We find that Nmono
0 > Npoly

0

in the low-p limit. For monomers, these are primarily
rattlers, which have no constraints, so each contributes
d = 3 zero modes. For polymers, these are primarily flip-
pers; the smaller number of zero modes reflects the ex-
tra constraints from the backbone bonds that constrain
motion even on particles outside the rigid subsystem.
Because flippers can occur at chain ends and may in-
volve consecutive polymer sites, directly computing the
precise number of flippers from N0 requires distinguish-
ing topologically-distinct groups and is not necessary to
see that about 1–2% of the degrees of freedom are un-
constrained even at moderate pressures. The significant
number of unconstrained motions is consistent with other
realistic packing protocols [60, 61].

The fraction of rattlers (flippers) decreases with sys-
tem size. In the high-p limit, no rattlers (flippers) remain
as all particles become sufficiently coordinated that the
only remaining zero modes are those associated with f(d)
rigid rotations within the spherical container. As pres-
sure increases, particles rearrange to allow the system to
relax. Rearrangements only result in small-scale config-
urational changes, even though the chain spans the full
system.

Next, we delete rattlers and flippers, isolating the

N rigid particles and N rigid
C engaged contacts of the rigid

subsystem. At all pressures, we find that the number
of zero modes that remain is again f(d), indicating that
no other zero modes are present in the rigid subsystem.
Therefore, from Eq. (2),

lim
p→0+

N rigid
C = dN rigid − f(d) + 1 = N rigid,iso

C , (7)

and we find that the rigid subsystem jams isostatically.

B. Packing fraction at jamming

For reference, we provide the fraction of systems that
are jammed fJ at packing fraction φ as well as the aver-
age packing fraction at jamming φNJ for 256 ≤ N ≤ 8192
(Fig. 2).

Monomers in PBC jam near 64%, as expected for MRJ
states, for all system sizes. Confinement shifts jamming
distributions to lower densities and increases system-size
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FIG. 2. Fraction of jammed states for (a) monomers and
(b) polymers (εB = 1) in SC (εW = 1). (c) Comparison

of φN,mono
J and φN,polyJ in SC to monomers in PBC. Approxi-

mately 500 states (250 for the largest systems) of each system
size are considered.

dependence. φN,mono
J < φMRJ, in agreement with previ-

ous studies of confined monomers [36, 37, 40, 41]. The
deviation of φJ from φMRJ is almost 6% at N = 256 and
diminishes to less than 1% by N = 8192.

Fig. 2(b, c) shows that the inclusion of unbreakable
backbone bonds further reduces the jamming density to
almost 10% below φMRJ at N = 256 and 4% below at

N = 8192. The ≈ 4% difference between φN,mono
J and

φN,poly
J persists across system sizes, similar to the density

shift seen in jamming of flexible, thermal polymers in
PBC [31]. Backbone bond stiffness has no appreciable

effect on φN,poly
J of flexible polymers, so only εB = 1

data are shown in Fig. 2.

In addition, we consider monomer packings generated
from jammed polymer configurations by deleting the
backbone bonds. Without the extended bonds, the pack-
ings are unstable, and jamming is reattained at densities
similar to the monomer distributions in Fig. 2(a).

FIG. 3. Average local number density n̄ (lower curves, left
axis) and average local coordination z̄ (upper curves, right
axis) for N = 8192 systems (εW = εB = 1) at p = 10−4.
Dashed horizontal lines are the global number density n and
coordination number z for each system. 50 bins of equal vol-
ume were used.

C. Boundary-induced structure

We compute the average local number density n̄ and
average local coordination z̄ by binning point masses at
{ri} and their respective coordination values {zi} over
distance from the boundary R − r (Fig. 3). Here, each
nonbonded contact, backbone bond, and wall contact in-
volving particle i is included as one contact in zi. Den-
sity layering is significant near the boundary (and, as
reflected in Fig. 2, reduces φNJ ). The global number den-
sity n and coordination number z are shown as dashed
lines in Fig. 3. Oscillations occur in both n̄ and z̄, similar
to previous density profiles of confined monomers deter-
mined in experiments [37, 42] and simulations [34, 35, 38–
41, 53] as well as tangent hard-sphere chains [29]. Both
oscillatory periods are consistent with the height of a
regular tetrahedron (3-simplex),

√
2/3σ ≈ 0.82σ, and

agree with the well-established polytetrahedral structure
of jammed monomer [62, 63] and polymer [24–31] states.
We note that sharply-peaked maxima (minima) in n̄ (z̄)
are separated by broad, rounded minima (maxima). This
qualitative “inversion” of curves would suggest that sites
of high-density layers are, perhaps unintuitively, less co-
ordinated than sites in the low-density layers between
them. This could be rationalized by considering that
particles in high-density layers sit between two lower-
density layers, with which they have fewer contacts than
particles in low-density layers that sit between two high-
density layers. However, the structure is even more com-
plex than this, as z̄ curves are also shifted to the right
of their inverted n̄ counterparts; qualitatively, this phase
shift appears to be about one-quarter of the period.

While the curves are similar for monomers and poly-
mers, a first noticeable difference is the height of the ini-
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FIG. 4. D(ω) at p = 10−4 and 0.1 ≤ εW ≤ 10 for a N = 2048
monomer system. Vertical lines indicate corresponding ωW
values. Inset: average displacement for eigenstates {Uµi : ω >
3, εW = 10}.

tial narrow peak at R − r = σ/2, indicating Nmono
W >

Npoly
W , which becomes important to the bulk modulus as

considered in Sec. IV E 1. Additionally, for polymers, the
oscillation amplitude of n̄ is noticeably less than that of
monomers, indicating that polymers exhibit less-extreme
layering. In contrast, z̄mono < z̄poly at nearly all points
because of backbone bonds retained by flippers, which
lead to the higher global coordination z of polymers than
monomer systems with fully-uncoordinated rattlers.

D. Density of states

To investigate the vibrational density of states, we con-
struct the dynamical matrix Djµ

iν (Eq. B6). The set

of eigenvectors {Uµi } of Djµ
iν are the polarization vec-

tors of the system’s normal modes, and the eigenvalues
{λ} = {ω2} are the squared frequencies of the normal
modes [64]. From {ω}, we compute the density of states
D(ω). Since there is little variation among system sizes,
we present only N = 2048 data.

1. Boundary modes

We compute D(ω) in systems with wall potentials
0.1 ≤ εW ≤ 10 for monomers in SC (Fig. 4). We first
note that peaks at ω = 0 represent zero modes due to
rattlers and rigid rotations. The curves have the uni-
versal characteristic shape seen previously in disordered
systems in PBC [7], the so-called boson peak at small
finite ω. However, wall potentials induce NW boundary
modes with typical frequencies of ωW ≡

√
εW /mσ2, re-

sulting in additional pronounced peaks.
At large εW , the additional modes lead to a band gap

in D(ω). In this case, modes with ω > 3 may be isolated,

FIG. 5. D(ω) for N = 2048 polymer systems at p = 10−4 and
0.1 ≤ εB ≤ 10. (a) Three systems with ε0 = εW = 1. Vertical
lines indicate

√
2ωB . (b) D(ω) with ε0 = εW = 0, εB = 10

for both the system in (a) and averaged over > 20 systems.
Vertical lines indicate natural frequencies of regular simplices.

and we bin the total set of polarization magnitudes {|ui|}
over R−r to compute the average polarization 〈|u|〉 with
respect to distance from the wall (Fig. 4 inset). The
boundary modes are almost entirely localized to the two
layers of sites nearest the boundary, giving the two dis-
tinct peaks in 〈|u|〉.

2. Backbone modes

Next, we see the effect of backbone-bond stiffness on
the density of states [Fig. 5(a)]. Backbone interactions

lead to a broad band approximately centered at
√

2ωB ≡√
2εB/mσ2, as identified in Refs. [65, 66]. The broadness

of this band may be contrasted with the narrower and
more structured boundary-mode band in D(ω). Like the
high-εW boundary band in Fig. 4, the high-εB backbone
band’s separation from the bulk band suggests a degree of
independence in mode structure, and the density of states
of the full system can be broken down into contributions
from all three sources.

In Fig. 5(b), we replot D(ω) when εB = 10 for the sys-
tem in Fig. 5(a) but set ε0 = εW = 0 in our computation

of Kj′

i′ (see Appendix B). Bulk and boundary bands van-
ish into the δ-function peak of zero modes, but we observe
almost no change in the backbone band, highlighting its
independence from the bulk band. A universal feature of
polymer vibrational spectra, the broad backbone band
is a feature of real globular proteins [67, 68]. For better
resolution of its features, we compute the average curve
from > 20 systems. Several pronounced peaks appear in
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FIG. 6. Bulk modulus for (a) monomer and (b) polymer

systems, (c) Bmono
scaled/B

poly
scaled ratio.

the backbone band, which are similar to the signatures of
analytically-derived modes in collections of short chains
of length Nch ≤ 5 in PBC [66]. The most pronounced

peak is at ω =
√

2ωB , which corresponds to the vibra-
tional frequency of the 1-simplex (a single bond) as well
as a normal mode of the general 3-simplex. There are also

small peaks at ω =
√

2± 1
2ωB and ω =

√
2±

√
1
2ωB ,

which correspond to vibrational frequencies of regular 2-
and 3-simplices, respectively.

E. Bulk modulus

1. Effect of backbone connectivity

Plotting the bulk modulus B ≡ φ∂p/∂φ of monomers
and polymers over a range of 10−7 ≤ p ≤ 10−1 (Fig. 6),
we find a constant, nonzero limit, limp→0+ = B0, consis-
tent with the power-law scaling relation B ∼ p0 [7, 8].
As pressure increases from zero, B remains within 1%
of B0 until p ∼ 10−4 while over this range NS increases
by orders of magnitude from NS = 1 in the system sizes
considered here (Fig. 1). B also varies with N , mostly
due to variation of φNJ with system size (Fig. 2).

The bulk modulus is substantially (≈ 40%) higher for
monomers than for polymers. Variation in the prefac-
tor φ in the definition of B accounts for only a small

part of the difference; φN,poly
J is only ≈ 4% lower than

φN,mono
J [Fig. 2(c)]. Therefore, it must also be that

(∂p/∂φ)N,mono > (∂p/∂φ)N,poly. Sec. IV A showed that
the rigid subsystems are nearly equal in size between the

two system types (N rigid,mono ≈ N rigid,poly, N rigid,mono
C ≈

N rigid,poly
C ), so the difference in B must be due to config-

urational differences.
Recall that monomer packings have stronger layering

and far more wall contacts than polymers (Sec. IV C).

FIG. 7. Bulk modulus for N = 2048 polymer systems. Solid
lines show curve-fitting to Eq. (9).

TABLE I. Curve-fitted parameters for Eq. (9).

log p B∞ ε

-1 0.562 ± 0.005 0.039 ± 0.004

-2 0.2676 ± 0.0006 0.110 ± 0.002

-3 0.1854 ± 0.0004 0.194 ± 0.002

-4 0.1663 ± 0.0004 0.247 ± 0.003

-5 0.1612 ± 0.0008 0.260 ± 0.006

Only wall contacts couple the motion of the wall to
the interior packing, and therefore we may expect
B to rise with the wall contact density NW /A ∼
NW (φ/N)2/3. We consider the modulus scaled corre-

spondingly, Bscaled ≡ B
NW

(
N
φ

)2/3

, and plot the ratio

Bmono
scaled/B

poly
scaled in Fig. 6(c). We see that this ratio is ap-

proximately 1 for all system sizes and pressures, demon-
strating that the difference in B is primarily due to NW .

2. Effect of backbone stiffness

We also investigate the effect on B of the backbone
stiffness by varying εB into both low-stiffness and high-
stiffness regimes at pressures 10−5 ≤ p ≤ 10−1, plotted
in Fig. 7. At low pressure, the bulk modulus vanishes if
εB → 0, as the configuration without backbone bonds is
under-coordinated for rigidity. The bulk modulus satu-
rates to a constant as εB →∞; backbone bonds become
essentially inextensible compared to other contacts, yet
the material can still deform around an infinitely stiff
backbone. (In the equivalent case of decreasing ε0, recall
that the units of εB and B are proportional to ε0, so that
B decreases proportionally to ε0.)

To motivate a simple curve-fitting relation, consider
that the material is isostatic at jamming, so the exis-
tence of the bulk modulus is dependent on every con-
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tact, similar to the simple situation of springs all in se-
ries. Given that B is measured by isotropically deforming
the wall, we therefore consider a different system: a 1D
chain of N eff

0 springs of stiffness k0 ≡ ε0/σ
2 (these repre-

sent both wall and nonbonded-particle interactions since
we have set ε0 = εW = 1) and N eff

B springs of stiffness
kB ≡ εB/σ

2 (representing backbone interactions). The
chain’s overall effective spring constant is

keff =

(
N eff

0

k0
+
N eff
B

kB

)−1

, (8)

which is proportional to the bulk modulus B = βkeff/σ,
where β is a dimensionless constant. Rearranging Eq. (8)
in terms of εB and B∞ = limεB→∞B yields

B = B∞(1 + ε/εB)−1 (9)

with B∞ = βk0/σN
eff
0 and ε = σ2k0N

eff
B /N eff

0 . In nat-
ural units σ = k0 = 1, the energy scale ε represents the
ratio N eff

B /N eff
0 .

We plot curve fits using Eq. (9) in Fig. 7, which
agree well with data for p ≤ 10−2; curve-fitted values
of ε and B∞ are given in Table I. The upward devi-
ation in our data at p = 10−1 for the lowest εB is a
result of extreme compression and over-coordination as
second-nearest-neighbor interactions occur, which the fit-
ting form is not meant to capture. Pressure effects di-
minish in the low-p limit.

V. DISCUSSION AND CONCLUSIONS

We have analyzed jammed configurations of a flexi-
ble bead-spring polymer in SC. Despite the presence of
adhesive backbone bonds and spherical confining walls,
the conditions at jamming superficially carry over from
the case of repulsive spheres in PBC. After account-
ing for the rigid-body motions within the spherical con-
tainer, wall contacts, and under-constrained particles
(rattlers/flippers), we see that jamming occurs exactly
at isostaticity and coincides with the emergence of a sin-
gle SSS. Jamming occurs at somewhat reduced density
compared to monomers, and, upon further compression,
the number of SSSs scales as the square root of pressure,
as for monomers in SC.

The boundary causes layering in both local density
and coordination, which are, unexpectedly, out of phase;
qualitatively, curves for density and coordination are in-
verted in shape and phase-shifted ≈ π/2. The bound-
ary also introduces a narrow band of vibrational modes
into the density of states with characteristic frequency
scaling with the square root of the wall stiffness. At
high wall stiffness, these modes are highly localized to
the outermost two layers of sites. The independence of
boundary modes from bulk modes extends to backbone
modes; bands generated by high-stiffness backbone bonds
are virtually unchanged after the removal of nonbonded

and boundary potentials. Not only do these bands fol-
low a universal pattern, but they also display peaks corre-
sponding to regular low-dimensional simplices, indicating
the possibility of inferring aspects of the internal struc-
ture from the vibrational spectrum.

The higher number of wall contacts in monomer pack-
ings raises the bulk modulus by ≈ 40% compared to poly-
mers. An explanation comes from a model of stiffnesses
in series that scales with wall contact number. A sim-
ilar conceptual model motivates a fitting relation that
describes the dependence of the bulk modulus on back-
bone stiffness and predicts its value in the limiting case
of incompressible backbone bonds.

Although packing of a flexible-chain polymer is a
highly idealized model of a biopolymer, several insights
may apply immediately to experiment. The vibrational
states convey information about the strength of confine-
ment, the number of boundary constraints, and the back-
bone configuration, which could be exploited to study
and potentially manipulate polymer structure. Our re-
sults may also apply to the cytoskeleton, the protein net-
work that spans the cell from the nucleus to the cell mem-
brane and accounts for cytoplasmic structure and rigid-
ity. The number of contact points with the cell membrane
may be strongly linked with cellular compressibility and
membrane flexibility. This dependence could be mea-
sured experimentally, e.g., via atomic force microscopy.
Further biological relevance could be found within the
cell nucleus, where our model may help elucidate the en-
velope’s influence on chromatin structure and mechanics.
In addition, we hope this work clarifies fundamental as-
pects of jamming in regards to internal constraints and
the finite boundaries present in all real systems.

Future analysis may investigate the spatial structure
of SSSs in SC, the origin of the apparent phase shift in
local density and coordination, or the material elastic-
ity at higher pressure and with higher-curvature walls,
where internal stresses and higher-order terms in the en-
ergy expansion are relevant (discussed in Appendix A). A
fuller analysis may also consider nonbonded adhesive in-
teractions, backbone-bending stiffness, dihedral stiffness,
bond stresses, or finite temperature to yield more accu-
rate models of real biopolymers.
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Appendix A: Unstressed-network approximation

We first explain the approximation of low stresses, ac-
curate at low pressures, that permits the index theo-
rem analysis based on an unstressed spring network (Ap-
pendix B). In the following, we use Einstein notation,
and sites are labeled by plain Roman indices, bonds by
primed Roman indices, and Cartesian components by
Greek indices.

We explicitly calculate the lowest-order energy terms
to analyze stability of a static configuration {r0

i } after
energy minimization, i.e., in force balance, with potential
energy E0 = E({r0

i }). Let ri be the position of particle i
and ui = ri − r0

i be its displacement from its reference
position. For small displacements, we can Taylor-expand
the energy:

E({ri}) = E0 + uµi
∂E
∂rµi

∣∣∣∣
{r0i }

+
uµi u

ν
j

2

∂2E
∂rµi ∂r

ν
j

∣∣∣∣
{r0i }

+ · · · ,

(A1)
where terms proportional to uµi are zero since we expand
about a stable configuration.

All potentials in the simulation, where nonzero, have
the form V(r) = ε(1 − r/d)2/2, where r = |r| corre-
sponds to displacements |ri − rj |, |rk − rl|, or |ri| [re-
ferring to Eqs. (1)]. A displacement component paral-
lel to the interaction direction u‖ ≡ u · r/r corresponds

to stiffness κ ≡ ∂2V/∂u2
‖ = ε/d2. A component per-

pendicular u⊥ ≡ |u − u‖r/r| also has finite stiffness,

∂2V/∂u2
⊥ = κ(1−d/r), which is positive for wall contacts

and extended backbone bonds. Explicitly, the change in
energy due to a small displacement perpendicular to rij ,
rkl, or ri is

∆V0(u⊥) =
ε0

2

(
1− σ

rij

)(u⊥
σ

)2

+O(u4
⊥) (A2a)

∆VB(u⊥) =
εB
2

(
1− σ

rkl

)(u⊥
σ

)2

+O(u4
⊥) (A2b)

∆VW (u⊥) =
εW
2

(
1− R− σ/2

ri

)(u⊥
σ

)2

+O(u4
⊥),

(A2c)

where θ(x) is omitted for brevity. The prefactor of the
quadratic term is negative for overlapping monomers
(rij < σ), so energy decreases in the perpendicular di-
rection, and the particles tend to slip off one another.
Small displacements perpendicular to extended backbone
bonds (rkl > σ) or tangential to the wall instead require
an increase in energy, resulting in linear restoring forces.
Prefactors vanish in the unstressed, i.e., zero-energy limit
(r = d), so the energy costs of these motions appear
only at O(u4

⊥), and produce no linear response. Fig. 8
illustrates the tangential curvature of V(r) for r < d
(∂2V/∂u2

⊥ < 0), r = d (∂2V/∂u2
⊥ = 0), and r > d

(∂2V/∂u2
⊥ > 0).

While extended backbone bonds and wall contacts con-
strain tangential motion, we focus on the unstressed case

1.00
0.50

0.00

0.50
0.00

0.50
1.00

0.00
0.10
0.20 V(r)

(ε)

x  (d)

y  (d)

0.50

FIG. 8. Plot of the z = 0 potential energy surface V(r) =

ε(1 − r/d)2/2, r =
√
x2 + y2 + z2, to illustrate the curva-

ture in the tangential direction of an extended or compressed
harmonic interaction and the higher-order stabilizing terms
at zero pressure, which are absent in the case of repulsive
interactions.

(at jamming), where the mapping to unstretched springs
is exact for harmonic analysis [58]. In that case, each
interaction constrains motion only along the interaction
direction. Therefore, at sufficiently low pressure, only rel-
ative motion in the direction normal to the contact con-
tributes significantly to the linear response, but higher-
order terms in the energy expansion can, in principle,
affect jamming in some materials, e.g., they are seen to
stabilize zero-frequency modes in packings of aspherical
particles [69–71]. At rest length, nonzero contributions
up to fourth order in the expansion come from the terms
κu‖u

2
⊥/6d, −κu2

‖u
2
⊥/12d2, and κu4

⊥/8d
2, so the curva-

ture of confining walls and the adhesive regime of back-
bone bonds may contribute to higher-order stability at
zero pressure. In principle, these terms may be able to
stabilize zero modes in the packing; however, as stated
in the main text, after rattlers and flippers have been
deleted, no zero-frequency modes are present in our pack-
ings other than rigid-body motions, indicating that har-
monic analysis accounts for all constraints in our sphere
packings.

Appendix B: Derivation of the index theorem

Site displacements form the dN -dimensional displace-
ment vector Uµi , where µ indexes the d = 3 Cartesian
components of each vector ui. The linear operator Cii′µ,

termed the compatibility matrix, maps Uµi to the NC-

dimensional bond elongation vector Ei′ ≡ ∂ri′
∂rµi

Uµi :

Cii′µU
µ
i = Ei′ . (B1)

Since a zero mode is described by a set of displacements
that causes no bond elongations, the nullspace of Cii′µ
is spanned by modes associated with both floppy modes
and global rigid-body motions, of which there are in total

N0 = nullity(Cii′µ). (B2)

Conversely, we may consider the resulting force on
each site as the linear response to a tension vector,



9

Fµi ≡ −∂r
i′

∂riµ
Ti′ . We then obtain the equilibrium matrix:

Qi
′µ
i Ti′ = −Fµi . (B3)

Comparing with Eq. (B1), we see that, in matrix form,

Qi
′µ
i is the transpose of Cii′µ.
In certain networks, the bonds may be placed under

tension or compression while maintaining zero net force

on each site, i.e., Qi
′µ
i TSi′ = 0. Such a tensional state

TSi′ is referred to as a state of self-stress (SSS) and is

contained in the nullspace of Qi
′µ
i . The number of SSSs

in a system is thus given by

NS = nullity(Qi
′µ
i ) = nullity(Ci

′µ
i ). (B4)

From the rank-nullity theorem, and given rank(Cii′µ) =

rank(Qi
′µ
i ), we obtain the index theorem [58]:

N0 −NS = dN −NC . (B5)

Finally we note the connection to the dynamical ma-
trix, defined as

Djµ
iν =

1

m
Ci

′µ
i Kj′

i′ C
j
j′ν =

1

m
Qi

′µ
i Kj′

i′ Q
j
j′ν , (B6)

where Kj′

i′ ≡ ∂2V (ri′)/∂r
2
j′ is the diagonal stiffness ma-

trix.
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