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The mechanical behavior of polymers such as their probability density function (PDF), strain
energy and entropic force, has long been described by the non-Gaussian statistical model. Non-
Gaussian models are often approximated by the Kuhn-Grün (KG) distribution function, which is
derived from the first order approximation of the complex Rayleigh’s exact Fourier integral distribu-
tion. The KG function is widely accepted in polymer physics, where the non-Gaussian theory is often
used to describe energy of the chains with various flexibility ratios. However, KG function is shown
to be only relevant for long chains and becomes extremely inaccurate for the chains with less than
40 segments. In comparison to KG model, other approximation of non-Gaussian statistical model
are often less accurate, and those with higher accuracy, are usually too complex to be implemented
in large-scale simulations. Here, a new accurate approximation of the Non-Gaussian PDF, entropic
force and strain energy of a single chain subsequently is developed to describe the mechanics of a
polymer chain. With similar level of complexity, the presented approximations of Non-Gaussian
PDF, strain energy and entropic force are at least 10 times more accurate than KG approximations
and thus are an excellent alternative option to be used in micro-mechanical constitutive models.

I. INTRODUCTION

In computational simulations of polymeric sys-
tems, two competing factors determine the type
of the material model that should be used in the
simulation; computational cost (i.e. the simula-
tion time) and the accuracy. Optimizing the trade-
off between these two factors determines the min-
imum requirements of the model. In mechanics of
polymers, the excessive computational costs of ac-
curate models prevents them from being used in
large-scale simulations. Here, our goal is to pro-
pose a family of effective approximation functions
with different range of accuracy and complexity
that can address the existing trade-off problem.

In polymer physics, micro-mechanical consti-
tutive models are mostly derived from the non-
Gaussian statistical distribution of a randomly
jointed molecular chain [1–4]. In these models, the
elasticity of the chains is induced from the changes
in the probability of chain end-to-end distance, r,
in the course of deformation, and thus the change
of the chain entropy [5]. The probability distribu-
tion function (PDF) of a perfectly flexible chain
with fixed end positions P (r) can be calculated
using a solution that is first proposed to solve the
random flights problem [6–8]. The concept was
later used in several theoretical and experimental
studies to describe the properties of dilute poly-
mer solutions. In dilute solutions, the isolation of
polymer molecules allows characterization of indi-
vidual molecules. A strong correlation was found
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between the number of segments of a chain, n, and
its end-to-end distance, r given by r ∝

√
n [5].

This correlation later became the basis to consider
P (r) similar to that of a random-flight problem.

In most statistical polymer models, the stress-
strain relation for the polymer matrix originates
from molecular description of deformation of sin-
gle chains. The first attempt in understanding be-
haviour of polymers was based on a statistical ap-
proach to derive entropic conformation of a poly-
mer chain, which was independently proposed by
Kuhn [6] and Guth and Mark[9]. Both theories
successfully derived the Gaussian PDF estimation
of a polymer chain from its entropy [10]. However,
it can be shown that Gaussian statistics are exact
only for the polymer chains with infinite length or
very small deformation. Later, Kuhn and Grün
proposed the inverse Langevin approximation for
’freely jointed chain’ (FJC) to address the effect of
finite chain length in the network, and reached to
pioneer model for single chain statistics in large de-
formation. The popular Kuhn-Grün (KG) model
describes the statistical probability of existence
of an unconstrained single chain with an entirely
random orientation in space [11]. Beside simplic-
ity, the relevance of the assumption has motivated
the majority of models ever since to use the KG
function to estimate non-Gaussian PDF [3, 12–14].
This estimation is the first order approximation of
the Rayleigh’s exact Fourier integral distribution
function [15], and can describe the finite extensi-
bility of the polymer chains even at large strains.
This model is widely accepted in the field of rub-
ber elasticity due to its accuracy to captures the
ultimate strain of polymer network [2, 16, 17]. In
polymer physics, most constitutive models of the
polymer matrix such as 3-chain [18], 4-chain [19],
8-chain [2], the full-network models [5, 20] , and
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the micro-macro unit sphere models [21] are based
on the KG approximations of non-Gaussian the-
ory, which generally includes the inverse Langevin
function [5]. However, different studies in the lit-
erature examined its relatively large error for the
short chains [4, 5].

As it shown in the literature, Gaussian distri-
bution, energy and entropic force have very good
agreement with theory of rubber elasticity and ex-
perimental evidences in small deformations. As de-
formation increases this theory cannot predict the
behavior of elastomeric material with limited ex-
tensibility accordingly. In order to overcome this
shortcoming, the non-Gaussian theory of rubber
elasticity proposed to improve the theory for de-
formations near the failure of the material. The
complexity some of these theories leads to exten-
sive application of KG theory in different area of
polymer physics as a simple alternative of non-
Gaussian theory. Despite the fact that KG the-
ory is only valid for long chains, there are several
studies that used this theory with less than 20 seg-
ments chains [17, 21, 22]. Arruda and Boyce (1993)
[23] proposed their outstanding 8-chain model us-
ing KG theory, which is validated against experi-
mental data assuming the chains length as low as
8. The Full network model [24] that considers the
spatial uniform distribution used the KG model by
chains with only 2.8 segments (the relative error of
entropic force for chain with 3 segments will be
shown in section IV, which is reach to more than
100% , Fig. 7).

Despite its wide acceptance, KG estimation is
only valid for sufficiently large chains (n � 40)
[10, 16, 25]. While KG shows good graphical agree-
ment with Rayleigh’s exact distribution in low
extensibility[25], it yields significant errors in the
large extensibility (see Fig.1a). Moreover, for long
chains, KG approximation becomes strongly inac-
curate as r

nl → 1 as the probability approaches to
zero. Figure 1-a shows that the relative errors of
a short chain and a long chain almost is the same
unlike the most stated in the literature [25]. In
polymer physics, the strain energy of a chain W ,
which is correlated with W ∝ ln (P (r, n))), is used
more often than the P (r), and thus is the subject
of interest. In Fig.1-b, we have plotted the relative
errors in approximating W by using KG PDF. As
it can be in this figure, the maximum relative error
of KG energy function is about 25% for the chain
with 8 segments. However, the maximum relative
error of KG energy function can reach to as much
as 100% for the chain with 3 segments. It is evident
that the relative error for short chains are much
higher than that of long chains. To address this
problem, Jerningan and Flory [25] introduced a
new approximation, referred to as ’amended Kuhn-
Grün’ (A-KG), by adding an extra multiplicative

term to the KG function. Due to its complexity,
A-KG model were used in very few studies such as
the work of Elias-Zuniga and Beatty [12].

Currently, almost all statistical models of chain
elasticity are based on the KG PDF. Accordingly,
the entropic force resulted from KG are the func-
tion of one parameter only; namely the extensi-
bility ratio, t = r

L where r is the end-to-end dis-
tance of a chain, L = nl the contour length. How-
ever, studies suggest that the entropic force re-
sulted from PDFs are influenced by two param-
eters, namely t and n. To date, most constitutive
models suffer from the large errors induced by the
KG function in predicting the PDF, force or en-
ergy in the case of short chains. So far, there is no
other feasible approximation of PDF that can also
capture the behavior of the short chains.

Here, we developed an approach to derive a fam-
ily of approximations for the PDF, force and strain
energy of polymer chains. Such an approximation
model is particularly relevant in constitutive mod-
els of polymer chains that use the inverse Langevin
function (ILF) L−1( rnl ) to describe the entropic
force of a chain. Since the ILF cannot be derived
explicitly, approximation functions with different
degree of errors are used to represent it. Recently,
due to significant improvement of our computa-
tional power for simulating the entropic energy of
the whole network, accurate approximation of the
ILF has become a subject of interest. In the last
decade, several high accuracy approximations with
errors as low as 10−4% have been introduced [26–
29]. While accurate approximations of the ILF
can reduce the error of KG energy and force ap-
proximations, there still exists a significant error
in those approximations due to the intrinsic error
associated with KG PDF. Such error necessitates
the future efforts to be directed toward deriving a
new approximation for PDF function first before
deriving force and energy.

The fundamentals of non-Gaussian statistical
mechanics of polymers are first reviewed in sec-
tion II. We propose new approximation functions
for PDF in section III. In section IV, the error of
the current approximations of entropic energy and
force of a polymer chain is calculated to show the
relevance of new approximation functions. Finally,
in section V and VI new approximation functions
for entropic force and energy of a single polymer
chain is provided. The functions show negligible
error even for short chains and are relevant for a
long range of extensibility ratios.
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(a) (b)

(c) (d)

Figure 1. Comparison between Exact and KG a- Normalized PDF, b-Relative error of PDF, c- Normalized strain
energies, and d- Relative error of strain energies for chains with n = 8 and 64

II. STATISTICAL MECHANICS
TREATMENTS

In this section, the non-Gaussian PDF of exis-
tence of a chain, P (−→r ), with end-to-end vector
−→r and contour length nl is briefly reviewed. The
probability distribution of a freely jointed chain
(FJC) is the same as 3-D random flight problem,
which describes the probability of a chain ending at
a certain point at distant r. In 1905, Pearson dis-
cussed the distribution of position of a mosquito in
a forest [30]. To address this problem, several dis-
tribution functions have been developed ever-since
based on the Fourier integration of the random-
flight problem, first of which was developed by
Rayleigh in 1919 by using the discontinuous inte-
gral of Dirichlet [15]. The probability of existence
of a chain can be derived by taking the Fourier
transform of characteristic function as

Pexact (r) =
1

2π2r

∫ ∞
0

ρsin(ρr)

(
sin(ρl)

ρl

)n
dρ.

(1)
This equation would be difficult to solve analyt-
ically for chains with large number of segments,
n > 10. The exact non-Gaussian distribution func-
tion for 3, 4, and 6 steps were derived by Rayleigh

as sets of discontinuous polynomials [15]. The ex-
act solution of Fourier integral of Eq.1, often re-
ferred to as “Rayleigh exact distribution func-
tion”, was later derived by Treloar [8] based on the
theory of random sampling as

Pexact (r) =
1

2n+1 (n− 2)!πl2r

k≤
n− r

l
2∑

k=0

(−1)
k

(
n
k

)(
n− 2k − r

l

)n−2
.

(2)

Similarly, Wang and Guth [18], Nagai [31], and
Hsiung et al. [32] derived similar formulations
with different mathematical approaches. To avoid
the high computational cost of the exact solution
(due to its piece-wise nature), several approxima-
tion methods were developed for non-Gaussian dis-
tribution. The degree of mathematical difficulty of
these approximations depends on the required ac-
curacy and the covered extensibility ratio (t = r

nl ).
The Gaussian distribution, for example, is simple
and has a good agreement with the exact distri-
bution at small t. It can be shown that the first
order approximation of 1D random walk problem
yields to the Gaussian distribution (see Appendix
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A). However, Gaussian distribution becomes ex-
ponentially inaccurate for the chains in their fully
extended length (t ∼= 1). Thus, a more elabo-
rate distribution function is required to capture the
non-Gaussian PDF. In general, the approximation
functions that are developed to approximate the
Rayleigh exact PDF, Eq.2, can be categorized into
three types (i) Taylor expansion approximations
which are valid for long chains with low extensibil-
ity, (ii) Statistical approximation which are valid
for long chains at all extensibility ratios and (iii)
Steepest decent approximations which are valid for
all chains and extensibility ratios, although it has
a high computational cost [18].

(i) Taylor expansion approximation (TE)
has an acceptable accuracy for long chains at
small t. In this case Eq. 1 can be rewritten as

Pexact(r) =
1

2π2r

∫ ∞
0

ksin(kr)eφ(k)dk, (3)

where φ(k) = n ln sin(ka)
ka . To further sim-

plify the above equation, φ(k) can be sub-
stituted by its Taylor expansion φ(k) =

−nΣ∞k=1
B2k−1(2s)

2k

(2k)!2k , where Bn is Bernoulli

number. By using the first term of φ(k) Taylor
series, Eq.3 yields the standard Gaussian dis-
tribution function, PG, as [10],

An (ρ) ∼= exp

(
−n (ρl)

2

6

)

→ PG (r) = A0 exp

(
− r

2

2n

)
, (4)

where A0 =
(

3
2πa2n

) 3
2 . By using full expansion

of φ(k) a more accurate approximation of Pexact
can be obtained as,

PT (r) = A0

(
1− 3

20n

(
5− 10

r2

n
+ 3

r4

n2

)
+ . . .

)
exp

(
−3r2

2n

)
.

(5)

In order to further enhance the accuracy of
the approximation, the Taylor expansion can
be written around its saddle point [33] as,

PT−SP (r) ∼= A0 exp

(
−n
[

3

2
t2(1− 1

n
+

2

5n2
) +

9

20
t4(1− 11

5n
) +

99

350
t6
])
. (6)

To simplify Eq. 6, one can assume 1
n −→ 0 for

long chains (n� 40), and thus reduce Eq. 6 to

PT−SP (r) ∼= A0 exp (−nα (t)) , (7)

where α (t) is a function of extensibility ratio
only. Since Eq. 7 is equal to the distribution
function resulted from Taylor expansion of ILF,
one can conclude that the ILF approximations
are also mainly relevant for long chains.

(ii) Statistical approximation (SA) of
Pexact , also known as Kuhn-Grün (KG) PDF,
is particularly accurate for the large chains in
the highly stretched state [5]. KG PDF is in-
troduced in 1942 through the maximum term
method of statistical mechanics as

PKG (R) = c

{
sinh (β)

β exp (tβ)

}n
, (8)

where c is normalization factor that can be
A0 or P exactn

(
10−2

)
. The ILF parameter β =

L−1 (t) can be implicitly calculated through
Langevin function equation, t = L (β) ≡
coth (β)− 1

β . Note that James and Guth (1943)

[1] and Flory (1953) [34], independently derived
the same formulation with different approaches.
In another effort Jernigan and Flory [25] de-
rived an amended version of KG distribution
function as

PA−KG(r) = A0

[
sinh (β)

β exp(tβ)

]n [
β

t

]
=
β

t
PKG.

(9)

(iii) Steepest decent approximation
(SD) is derived by Wang and Guth [18] based
on the saddle point approximation of Eq.2,
which gives

PWG(r) = A0

[
sinh (β)

β exp(tβ)

]n [
β

t

]
[
1− t2 − 2t

β

]− 1
2
[
1 +

q(t)

n
+ ...

]
, (10)

where q(t) is a specific function [35]. Us-
ing steepest decent approach, another approx-
imation function is derived by Yamakawa [10]
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which can be rewritten similar to PWG as 1

PSD (r) = A0

[
sinh (β)

β exp(tβ)

]n [
β

t

] [
1− t2 − 2t

β

]− 1
2

(11)
Interestingly, Eq.11, PSD is the first four terms
of Wang and Guth approximation Eq.10 and
9, PA−KG is the first three terms. As men-
tioned by Jerningan and Flory [25], the term[

sinh(β)
β exp(tβ)

]n
becomes more significant and then

the other terms can be neglected for longer
chains same as KG model. However, the other
terms has more contribution in the accuracy of
the model for shorter chains.

To date, there exists no comprehensive study
to characterize the error induced by each of the
aforementioned approximation methods in predict-
ing PDF of chains with different lengths extensi-
bility ratios. Here, a comprehensive comparison
of the aforementioned approximation functions in
predicting PDF and strain energy of chains with
different lengths at different extensibility ratios is
presented (see Fig.2).
PG and PT have almost similar and relatively

small relative with respect to the exact distribu-
tion in only very small t. Interestingly, PT−SP
with only three terms has extremely low relative
error with respect to exact distribution in small
and moderate extensibility ratios. Note that in-
creasing the number of terms in the expansion of
this approximation can improve the relative error
for larger t. As expected, PKG(R) has a negli-
gible error for small t which exponentially grows
as t tends to 1. Despite being the most popu-
lar approximation method, PKG(R) can be only a
good approximation for long chains that are not
stretched. Therefore, it is not suitable for mod-
els of rubber elasticity to derive force and energy
due to its large error in predicting the asymptotic
behavior of ln (Pexact). The WKG has a consider-
ably large error which can become even larger in
shorter chains. For example, the relative error of
strain energy resulted from KG PDF for a short
chain with 8 segments is at least 8 times higher
than that of a long chain with 64 segments. While
many other approximations such as PA−KG pro-
vide slightly more accurate approximations than
KG, they remain unpopular due to the extreme
complexity of their first derivatives. Despite the

1 Original formulation presented in [10] is PY (r) =

3
3
2A0

β2

t

[
1−

(
β

sinh(β)

)2
] 1
2

{
sinh(β)
β exp(tβ)

}n
, which can be

rewritten as PSD by considering 1 − t2 − 2t
β

= 1
β2 −

1
sinh2(β)

.

fact that PSD has an acceptable accuracy even
for short chains, utilizing this distribution func-
tion is almost unfeasible due to its mathematical
complexity.

III. APPROXIMATION OF
NON-GAUSSIAN DISTRIBUTION

The accuracy-complexity trade-off problem in
current PDF approximation functions (see section
II) necessitate to develop a family of precise and
simple approximation that are particularly rele-
vant for shorter chains. Comparing PKG with
Pexact for different chain lengths shows a repeating
error profile which can be considered almost inde-
pendent of n. In view of this profile as a multiplica-
tive error functions, one can consider all of the pre-
vious approximation functions such as PWG, PSD
and PA−KG as special sub-classes of a master ap-

proximation function P̃ which can be written with
respect to PKG as

P̃ (r) ' PKG (r, n)φ (t) , (12)

where φ (t) is a multiplicative correction function
defined to reduce the error of PKG. Here, we hy-
pothesize that φ (t) can be chosen to control the
accuracy- complexity trade off for different appli-
cations. In view of good agreement of PWG, PSD
and PY with exact distribution for short chains,
one can conclude φ (t) should have same proper-
ties as the ratio of these distribution and PKG. As
discussed in the Section II, PWG, PSD and PY have
almost same formulation. Thus among them, PY
is selected to calculate an estimation of φ (t) as

φ (t) ' PY
PKG

=
β2

t

[
1−

(
β

sinh(β)

)2] 1
2

. (13)

The first feature of this estimation is its limit when
t approaches to 1 tends to infinity. By consid-
ering the first order pole of ILF at t = 1 and

limt→1 1−
(

β
sinh(β)

)2
= 1, one can conclude that

φ (t) has second order pole at this point and its
residue can be calculated as

R (φ) = lim
t→1

(t− 1)
2
φ (t) = 1. (14)

By fitting φ (t) an approximation P̃ with good
accuracy with respect to Pexact can be obtained.
In this regard, the approximation function should
have same properties as φ (t), second order pole
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(a) (b) (c)

(d) (e) (f)

Figure 2. Comparison between Gaussian, KG, Amended KG and Eq. 11 distribution function with the exact
PDF (Relative error of PDF a-c and Relative error of ln (Pn) d-f )of ideal chains with different lengths a and d)
n = 8, b and e) n = 16 and c and f) n = 64

with residue of 1. The simplest function with sec-
ond order pole is (1− t)−2. In view of the second
order pole of φ (t) and (1− t)−2, it can be written
as a rational function such as,

φ (t) =
a(t)

(1− t)2
, (15)

where a(t) is approximation function which is used
to adjust the approximation function with the ex-
act distribution. There are different alternative
forms for estimations of a(t) such as polynomial,
exponential and ... . In this study exponential
function (exp

[∑m
i=1 ait

2i−1], where m is the num-
ber of terms used in the approximation) is selected
to approximate a(t), which will result simple strain
energy functions. In order to obtain best approxi-
mation with least maximum relative error in whole
domain [0− 1], predefined min−max solver (fmin-
imax) in MATLAB is used to minimize the maxi-

mum relative error of P̃ (r) respect to exact distri-
bution function. The coefficient of approximation
function with one and two terms is obtained as

Pm=1
approx (r) = PKG (r, n)

[
exp (−1.75 t)

(1− t)2

]
(16a)

Pm=2
approx (r) = PKG (r, n)

[
exp

(
−2t+ 0.29t3

)
(1− t)2

]
.

(16b)

The max relative errors of these approximations for
chains with different length are presented in Table
I and summarized in Fig. 3. They illustrate good
agreement with the exact PDF for chains with dif-
ferent lengths in the whole range of t.

IV. ENTROPIC FORCE OF A SINGLE
CHAIN

In polymer physics, the elastic retraction force of
a single polymer chain is associated with changes
in the entropy of the chains in the course of defor-
mation. Accordingly, the strain energy W = −TS
of a single chain is calculated through Boltzmann’s
entropy relation, S = k ln (P (r)), where S is the
entropy of the chain, T the absolute temperature,
and k the Boltzmann constant. Thus, the entropic
force, fn (r), required to perturb the chains end-
to-end distance is given by

fn (r) =
∂W (r)

∂r
= −kT ∂ ln (Pn (r))

∂r
. (17)

In view of the complicated formulation of the exact
PDF, the approximates are often used to describe
the force of the chain in the course of deforma-
tion. The simplest approach is to derive the force
based on the Gaussian PDF PG (Eq. 4) which
yields the force as a linear function of deforma-
tion (fG (t) = kT

l t). However, PG is valid for long
chains and at small deformation regimes, only. In
large deformations, PKG is the most popular ap-
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Table I. Relative error of approximated distribution function by considering 1 and 2 terms for chains with different
length

max. relative error [%]
m n = 8 n = 16 n = 32 n = 64
KG 100 100 100 100
1 11 8 9 10
2 3 4 5 5

(a) (b)

Figure 3. The relative error of approximated distribution function respect to the exact PDF for chains with
different number of segment a) m = 1 and b) m = 2.

proximation function, which yields the following
equation for polymer force

fKG (t) =
kT

l
β. (18)

Other approximations of the force can be sim-
ply derived by implementing any of the aforemen-

tioned PDF approximations into Eq. 17. For ex-
ample using the PSD (Eq. 11), the entropic force
can be estimated as

fSD (n, r) =
kT

l

{
β +

1

n

(
1

t
− γ

2t

tβ (β − γ) + 2
(
β − 5

4γ
)

(β − γ)
2

)}
, (19)

where γ = 2t
1−t2 . Similar to PDFs, the com-

plexity of accurate approximations such as Eq. 19
prevent them from wide acceptance (e.g. compare
Eq. 18 with Eq. 19).

The entropic force derived based on PG, PKG,
PA−KG and PSD are compared with the force of
the exact PDF and shown in Fig. 4-a andb for
short and long chains, respectively. As illustrated
in Fig. 4-a , the force resulted from the KG has
large relative errors with respect to the exact en-
tropic force for a small chain. In longer chains, the
KG force has good agreement with the exact one.
Furthermore, the force associated with PSD has
the best agreement with the exact entropic force
(see Fig. 4-a-b ). The Fig. 4-c-d show that the
relative error of the steepest decent approximation

is the minimum in both short and long chains.

V. APPROXIMATION OF THE
ENTROPIC FORCE

A new approximation for the force of a chain is
developed based on the following observation. The
profile of the relative error, En, of the force de-
rived by PKG is almost identical for the chains with
different lengths, n. As shown in Fig.5, the rela-
tive error can be normalized by 1

n , e(t) = −nEn,
the value of which is varying approximately be-
tween 100% and 220% (±5%). Accordingly, a new
approximation function can be derived simply by
multiplying a correction function, 1

1−En , into fKG.
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(a) (b)

(c) (d)

Figure 4. Comparison of the entropic force of a single chain resulted from exact non-Gaussian distribution function
and its approximations, steepest decent approximation, and inverse Langevin function (a-b), and their relative
errors with respect to the exact function (c-d) for a and c) n = 8 and b and d) n = 64,.

Then, by expanding the correction function using
the geometric series and using the first two terms,
the approximation of exact force is written as

En =
fexact − fKG

fexact
=⇒

fexact = fKG
1

1− En
' fKG

n∑
i=0

(En)
i ' fKG (1 + En) .

(20)

By replacing the error, En, by its normalized value

− e(t)n , the proposed function becomes

fapprox (n,R) =
kT

l
L−1 (t)

(
1− e (t)

n

)
, (21)

The approximation can be optimized by fitting
a more general function for the normalized error
shown in Fig.5, which can make the approxima-
tion too complex for practical applications. Here,
e(t) can be estimated through a fitting procedure
of a polynomial with degree of m (see Fig.5), which
yields

• Order 0: using e(t) = 1 reduces the Eq.19

into

fm=0
approx (n,R) =

kT

l
L−1 (t)

(
n− 1

n

)
, (22)

which has a relative error varying from 0%
to 120

n % as shown in Fig. 5. The relative

error of fm=0
approx is around half of the rela-

tive error of fKG.2 This simple modification
can strongly improve the constitutive models
[39–41], that use a probability of chains exis-
tence with different lengths. In these models,
the force of the matrix is determined by sum-
ming up the forces of chains with different
lengths.

• Order 2: a two term polynomial, e(t) =
1 + ti, is used to represent e(t). By mini-
mizing the approximation error, the second

2 In another study, Horgan and Saccomandi [36, 37] and
later Beaty [38] derived almost the same formulation as
Eq. 22 by comparing an estimation of non-Gaussian the-
ory with the averaged stretch in the macroscopic level
(β = 2t

1−t2 ) with Gent phenomenological model. Inter-

estingly, it can be shown that Gent model has better
agreement with non-Gaussian theory than KG for short
chains.
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order polynomial (i = 2) is selected in this
study due to its simplicity and lower relative
errors. The proposed approximation can be
written as

fm=2
approx (n,R) =

kT

l
L−1 (t)

(
1− 1 + t2

n

)
. (23)

This approximation has extremely high ac-
curacy, comparable to that of fSD (Eq. 19),
as shown in Fig. 6. The maximum rela-
tive error of the proposed approximation for
n = 8 is equal to 1.7%, which is significantly
lower than 33% error of the fKG. In addi-
tion the maximum relative error of proposed
entropic forces (Eq. 22 and 23 ) for the
chains with different lengths are plotted in
comparison with the maximum relative error
of Langevin entropic force in Fig 7. It can
be seen in Fig 7 that the maximum relative
error of KG entropic force with 40 segment
is about 5%. Considering this limit as an er-
ror tolerance for the approximation of Non-
Gaussian entropic force, the proposed simple
modification of entropic force is valid for the
chains with 4 segments. Note that both pro-
posed approximation functions can be easily
implemented in most of the current elasticity
models by replacing ILF.

In most physical-based models of rubber elasticity,
breakage of the chain occurs when the chains de-
formation exceeds their allowed extensibility limit,
which is determined by strength of C-C bonds.
Therefore, it is important that models use an ac-
ceptable prediction of the force and the energy at
high extensibility ratios, particularly when t is ap-
proaching 1. While for long chains there are few
models to provide force and energy with enough ac-
curacy around t = 1, for short chains no model ex-

ists that can accurately predict force around t = 1.

VI. APPROXIMATION OF THE
ENTROPIC ENERGY

In view of the proposed approximations for the
distribution function and the entropic forces, one
can derive a set of approximations for the strain
energy function. Accordingly, in view of the PDFs
derived in Eq. 16a and 16b, the strain energy, W ,
can be obtained through W = −kT ln (P (r)) as

Wm=1
P−app (r) = WKG (r, n) +

kT (1.75 t+ 2 ln (1− t)) , (24a)

Wm=2
P−app (r) = WKG (r, n) +

kT
(
2t− 0.29t3 + 2 ln (1− t)

)
. (24b)

The relative errors of the proposed approxima-
tions of Eq. 24a and 24b, as shown in Fig 8, are
significantly more accurate in comparison to KG
strain energy function (see Table II). We also pro-
pose a second approach to estimate the strain en-
ergy functions directly from the proposed entropic
forces in Eq. 23 by integrating them over R. Since
direct integration of force approximation is not fea-
sible due to the complex nature of the ILF, the in-
tegration is carried out after replacing the ILF by
its approximation. Recently, many accurate ILF
approximations with relative error less than 0.1%
have been proposed in the literature (e.g. [26, 27])
and thus using each of those, one can derive the
strain energy of the chains from Eq. 23 as follows

Wm=2
f−app (n, r) = n

∫ t

0

kT

l
β (t)

(
1− 1 + t2

n

)
dt

(25)

For example, using L−1 (y) = x
1−x +2x− 8

9x
2 (max

relative error 1%)[26], the internal energy can be
written as,

Wm=2
f−app (n, r) = kT

[
8

45
t5 − t4

2
− 8n− 17

27
t3 +

(
n− 1

2

)
t2 − (n− 2) [t+ ln (1− t)]

]
+ c (26)

As shown in Fig 8, the relative errors of Eq 26 are
significantly lower than that of WKG. The relative
error and the complexity of strain energy can be
easily adjusted by using simpler or more accurate
ILF.

VII. CONCLUSION

Currently, the probability distribution function,
force and energy of a polymer chain is mostly de-
rived based on the Kuhn and Grün model. How-
ever, the KG model is only valid for long chains
(n � 40) and induces a significantly high error
as the length of chain decrease [3, 4, 25]. How-



10

(a) (b)

Figure 5. The relative error of the inverse Langevin function (ILF) a) with respect to the length of chain and b)
Averaged normalized for all lengths

(a) (b)

Figure 6. The relative error of the proposed entropic force for a) n = 8 and b) n = 64 along with the relative
error of full steepest decent approximation

ever, long isolated polymer molecules is often does
not exist in reality. They are in the interaction
with other molecules. In theory of rubber elas-
ticity, the segment between two cross-link or en-
tanglement is considered as a non-Gaussian chain.
Thus, the networks mostly contain short chains in
the polymers with high cross-linking, which ac-
count for their limited extensibility. While there
are some other approximation models with con-
siderably higher accuracy, their complex nature
prevents their wide implementation in large-scale
models. In this work, we presented a generic ap-
proach to derive a family of approximation func-
tions for the probability distribution function, en-
tropic force and strain energy of a polymer chain
with adjustable accuracy and complexity level,
which are summarized in Table III. We show that
with same level of complexity, our proposed func-
tions are considerably more accurate than current
functions. Particularly for short chains or chains
under large deformations, our approximation func-
tions are at least 10 times more accurate than KG
approximations and thus are excellent options to
replace them in constitutive models. We hope that

the proposed family of approximations can help
other researchers to improve the modeling accu-
racy in polymer physics. In addition to help en-
gineers to optimize the accuracy-cost trade-off in
large-scale simulations by allowing them to select
the approximation functions based on the applica-
tion.

Having a family of approximations with different
accuracy-complexity would be particularly help-
ful in some specific applications where one cer-
tain form of the approximation function can re-
duce the computational loads or increase accu-
racy significantly. Some of application of proposed
approximation of theory of rubber elasticity in-
cludes bi-modal polymeric networks, constrained
swelling, stress induced orientation of the polymer
chains and etc.. The proposed Non-Gaussian the-
ory can directly affect the contribution of short
and long chains in a bi-modal polymeric networks,
which contains various proportions of relatively
short and long chains specially in high elongations
[42–44]. The contribution of free energy in the to-
tal change of chemical potential of a solvent result-
ing from swelling of a network contain short chains
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𝑓𝑎𝑝𝑝𝑟𝑜𝑥
𝑚=2 =

𝑘𝑇

𝑙
ℒ−1 𝑡 1 −

1 + 𝑡2

𝑛

𝑓𝑎𝑝𝑝𝑟𝑜𝑥
𝑚=1 =

𝑘𝑇

𝑙
ℒ−1 𝑡 1 −

1

𝑛

𝑓𝐾𝐺 =
𝑘𝑇

𝑙
ℒ−1 𝑡

Figure 7. The maximum relative error of the proposed entropic force for chains with different length along with
the maximum relative error of KG approximation

Table II. Max. relative error of approximated distribution functions for chains with different length

max. relative error [%]
m n = 8 n = 16 n = 32 n = 64
KG 26 13 6 3
1 (Eq. 24a) 1.2 0.6 0.45 0.3
2 (Eq. 24b) 0.28 0.25 0.2 0.14

(Eq. 26) 1 0.68 0.65 0.67

can be affected by considering more realistic non-
Gaussian distribution instead of Wall−White end-
to-end distribution function, which cannot taking
to account the finite extensibility limitations and
only approximate the excluded volume effect in the
compact conformations region [45, 46]. The KG
distribution function and entropic force of chains
is used to develop a model to predict the stress in-
duced orientation of the polymer chains [47, 48].
Another possible application of current theory is
studying molecular orientation of polymers chain
due to fast elongational flow.
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Figure 8. The relative errors of approximations of entropic energy (Eq. 24a, 24b and 26) respect to the exact
entropic energy for chains with different number of segments a) n = 8, b) n = 16, c) n = 32 and d) n = 64.
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Appendix A: Appendix

The random flights’ problem was one of the in-
teresting topics in the early 20th century. The ran-
dom flight problem first introduced by Pearson in a
letter to Nature 1905 [30, 49]. He tried to solve the
distribution of position of a mosquito in a forest.
Various distribution functions have been developed
in the literature based on the Fourier integration
of the random-flight problem, which is first pre-
sented by Rayleigh in 1919 [15]. In order to review
the solutions of random flights’ problem, different
approach is presented as below.

1D Random Walk

In 1-D random walk problem, the probability
of arriving to a point with distance x from the
origin by n equal step can be written as binomial
distribution

Pn (x) =
1

2n
n!(

n+x
2

)
!
(
n−x
2

)
!

(A.1)

Considering x � N and using Stirling’s formula
(a! =

√
2πa

(
a
e

)a
), the probability distribution

function will be simplified to Gaussian distribu-
tion3. The most well-known solution of end-to-end
distance distribution is expressed by the Gaussian
distribution, which is the probability of 1-D ran-
dom links at

Pn(x) =
1√
2πn

exp

(
−x

2

2n

)
(A.2)

The efforts for enhancing the Gaussian theory of
rubber elasticity to a more exact theory sacrifice
the generality and simplicity. The non-Gaussian
treatment of rubber elasticity is developed to ac-
count for the limiting extensibility of the single
chain. This leads to a more accurate deformation-
force relationship in the whole range of end-to-end
distance up to its limiting value. The entropic force
resulted from 1D random walk distribution (A.1)
can be written as

f1D (x) =
kT

2l

(
Ψ

(
n+ x+ 2

2

)
−Ψ

(
n− x+ 2

2

))
,

(A.3)

where Ψ is the Digamma function. As it can be
seen in Eq. A.3, the entropic force has a asymp-
totic behavior around r = n+ 2 instead of r = n.

3D Random Walk

The probability distribution of a freely jointed
chains (FJC) is same as 3-D random flight prob-
lem, which describes the probability of a chain end-
ing at a certain point at distant −→r can be solved
by 3-D random flight problem. The probability of
one step with length l in an arbitrary direction is
equal to probability of existence of a point on a

sphere, δ(r−l)
4πl2 . Applying the Fourier integration

of this probability, ”characteristic function” of a

single random step is derived as sin(ρl)
ρl , where l

is the length of a segment in FJC chain (Kuhn
length), and ρ the Fourier integral parameter. Due

3 Using Gaussian PDF to calculate entropic strain energy
is the basis of the Neo-Hookean constitutive model.
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to the independent nature of bonds, Pn(r) can be
written by the multiplication of the probabilities of
each bond. Considering an equal probability for all
steps, the ”characteristic function” of FJC, An (ρ)
is given as

An(ρ) =

n∏
i=1

(ρli)
−1 sin(ρli)

li=l→

An (ρ) =

∫
exp (iρ.r)Pn (r) dr =

(
sin(ρl)

ρl

)n
(A.4)

In the next step, the probability function a chain
can be derived by taking the Fourier transform
of characteristic function, which first derived by
Rayleigh by using the discontinuous integral of

Dirichlet [15]. He used the inverse Fourier transfor-
mation of Eq.A.4 to derive the non-Gaussian PDF
as

Pn (r) =
1

2π2r

∫ ∞
0

ρsin(ρr)

(
sin(ρl)

ρl

)n
dρ, (1)

which would be difficult to solve analytically for
large number of steps, n > 10. The exact non-
Gaussian distribution function for 3, 4 and 6 steps
are derived by Rayleigh as sets of discontinues
polynomials [15]. The exact solution of Fourier
integral of Eq.1, often referred to as “Rayleigh
exact distribution function”, was first derived
by Treloar [8] based on the theory of random sam-
pling. Later, Wang and Guth [18], Nagai [31], and
Hsiung et al. [32] reached to the same expression
with different mathematical approach.

P exactn (r) =
1

2n+1 (n− 2)!πl2r

k≤
n− r

l
2∑

k=0

(−1)
k

(
n

k

)(
n− 2k − r

l

)n−2
(2)


