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Understanding the magnitude and structure of inter-neuronal correlations and their relationship to
synaptic connectivity structure is an important and difficult problem in computational neuroscience.
Early studies show that neuronal network models with excitatory-inhibitory balance naturally create
very weak spike train correlations, defining the “asynchronous state.” Later work showed that, un-
der some connectivity structures, balanced networks can produce larger correlations between some
neuron pairs, even when the average correlation is very small. All of these previous studies assume
that the local network receives feedforward synaptic input from a population of uncorrelated spike
trains. We show that when spike trains providing feedforward input are correlated, the downstream
recurrent network produces much larger correlations. We provide an in-depth analysis of the re-
sulting “correlated state” in balanced networks and show that, unlike the asynchronous state, it
produces a tight excitatory-inhibitory balance consistent with in vivo cortical recordings.

I. INTRODUCTION

Correlations between the spiking activity of cortical
neurons have important consequences for neural dynam-
ics and coding [1–3]. A quantitative understanding of
how spike train correlations are generated and shaped
by the connectivity structure of neural circuits is made
difficult by the noisy and nonlinear dynamics of recur-
rent neuronal network models [4–7]. Linear response
and related techniques have been developed to overcome
some of these difficulties [7–15], but their application to
networks of integrate-and-fire neurons models typically
relies on a diffusion approximation that requires an as-
sumption of sparse and/or weak connectivity and an as-
sumption that neurons receive uncorrelated, feedforward
Gaussian white noise input. However, cortical circuits
are densely connected and receive spatially and tempo-
rally correlated synaptic input from outside the local cir-
cuit [16–19].
An alternative approach to analyzing correlated vari-

ability in recurrent neuronal network models is motivated
in part by the widely observed balance between exci-
tatory and inhibitory synaptic inputs in cortex [20–27].

When synaptic weights are scaled like 1/
√
N where N

is the size of a model network, balance between excita-
tion and inhibition arises naturally at large network size,
which defines the “balanced state” [28, 29]. A similar
scaling of synaptic weights has since been observed in
cultured cortical populations [30].
Early work on balanced networks assumed sparse con-

nectivity to produce weak spike train correlations, but
it was later shown that keeping connection probabilities
O(1) naturally produces weak, O(1/N), spike train cor-
relations, defining the “asynchronous state” [31]. While
these extremely weak spike train correlations are consis-
tent with some cortical recordings [32], the magnitude
of correlations in cortex can depend on stimulus, corti-

cal area, layer, and behavioral or cognitive state, and
can be much larger than predicted by the asynchronous
state [6, 33–37]. This raises the question of how larger
correlation magnitudes can arise in balanced cortical cir-
cuits. Later theoretical work showed that larger correla-
tions can be obtained between some cell pairs in densely
connected networks with specially constructed connectiv-
ity structure [38–42], offering a potential explanation of
the larger correlations often observed in recordings.

All of these previous studies of correlated variability in
balanced networks assume that the recurrent network re-
ceives feedforward synaptic input from an external pop-
ulation of uncorrelated spike trains, so feedforward in-
put correlations arise solely from overlapping feedforward
synaptic projections. In reality, feedforward synaptic in-
put to a cortical population comes from thalamic pro-
jections, other cortical areas, or other cortical layers in
which spike trains could be correlated.

We extend the theory of densely connected balanced
networks to account for correlations between the spike
trains of neurons in an external, feedforward input
layer. We show that correlations between the feedforward
synaptic input to neurons in the recurrent network are
O(N) in this model, but cancel with O(N) correlations
between recurrent synaptic input to produce O(1) spike
train correlations on average, defining what we refer to
as the “correlated state” in densely connected balanced
networks. This correlated state offers an alternative ex-
planation for the presence of moderately large spike train
correlations in cortical recordings. We derive a simple,
closed form approximation for the average covariance be-
tween neurons’ spike trains in the correlated state in term
of synaptic parameters alone, without requiring the use
of linear response theory or any other knowledge of neu-
rons’ transfer functions. We show that the tracking of
excitatory synaptic input currents by inhibitory currents
is more precise and more similar to in vivo recordings [23]
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in the correlated state than in the asynchronous state.
Our results extend the theory of correlated variability
in balanced networks to the biologically realistic assump-
tion that presynaptic neural populations are themselves
correlated.

II. MODEL AND BACKGROUND

We consider recurrent networks of N model neurons,
Ne of which are excitatory and Ni inhibitory. Neurons
are randomly and recurrently interconnected and also
receive random feedforward synaptic input from an ex-
ternal population of Nx neurons whose spike trains are
homogeneous Poisson processes with rate rx (Fig. 1(a)).
The membrane potential of neuron j in population

a = e, i obeys the exponential integrate-and-fire (EIF)
dynamics

Cm

dV a
j

dt
= −gL(V

a
j − EL) +DT e

(V a
j −VT )/DT + T a

j (t)

with the added condition that each time V a
j (t) exceeds

Vth, it is reset to Vre and a spike is recorded. Our results
do not depend sensitively on the exact neuron model
used or the values of neuron parameters. We addition-
ally set a lower bound on the membrane potential at
Vlb = −100mV. Spike trains are represented as a sum
of Dirac delta functions,

Sa
j (t) =

∑

n

δ(t− ta,jn ),

where ta,jn is the nth spike time of neuron j in population
a = e, i, x. The total synaptic input current to neuron j
in population a = e, i is decomposed as

T a
j (t) = Ea

j (t) + Iaj (t) +Xa
j (t)

where

Ua
j (t) =

Nb∑

k=1

Jab
jk (ηb ∗ Sb

j )(t) (1)

for U = E, I,X and b = e, i, x respectively where ∗ de-
notes convolution, Jab

jk is the synaptic weight from neu-
ron k in population b to neuron j in population a, and
ηb(t) is a postsynaptic current (PSC) waveform. Without
loss of generality, we assume that

∫
ηb(t) = 1. We use

ηb(t) = τ−1
b e−t/τbH(t) where H(t) is the Heaviside step

function, though our results do not depend sensitively on
the precise neuron model or PSC kernel used. For calcu-
lations, it is useful to decompose the total synaptic input
into its recurrent and external sources,

T a
j (t) = Ra

j (t) +Xa
j (t)

where

Ra
j (t) = Ea

j (t) + Iaj (t)

is the recurrent synaptic input from the local circuit.
Local cortical circuits contain a large number of neu-

rons and individual cortical neurons receive synaptic in-
put from thousands of other neurons within their lo-
cal circuit and from other layers or areas. Densely
connected balanced networks have been proposed to
model such large and densely interconnected neuronal
networks [31, 40]. In such models, one considers the
limit of large N (with Nx, Ne and Ni scaled propor-
tionally) with fixed connection probabilities and where

synaptic weights are scaled like O(1/
√
N) [29, 31]. This

scaling naturally captures the balance of mean excita-
tory and mean inhibitory synaptic input, as well as the
tracking of excitation by inhibition, observed in cortical
recordings [31]. Recent work in cultured cortical popu-
lations shows that similar scaling laws emerge naturally
and produce network dynamics consistent with the bal-
anced state [30]. In particular, we consider a random
connectivity structure in which

Jab
jk =

1√
N

{
jab with probability pab
0 otherwise

(2)

where connections are statistically independent and
jab, pab ∼ O(1) for b = e, i, x and a = e, i. We further-
more define the proportions

qb =
Nb

N

which are assumed O(1). For all examples we consider,
qe = 0.8 and qi = qx = 0.2.
We next introduce notational conventions for quantify-

ing the statistics of spike trains and synaptic inputs in the
network. The mean firing rates of neurons in population
a = e, i, x is defined by ra for a = e, i, x and it is useful
to define the 2× 1 vector, r = [re ri]

T where ·T denotes
the transpose. The mean is technically interpreted as the
expectation over realizations of the network connectivity,
but for large N it is approximately equal to the sample
mean over all neurons the network. Similarly, mean-field
synaptic inputs to neurons in populations a = e, i are
defined by

Ua = meanjU
a
j (t)

for U = E, I,X,R, T and, in vector form, U = [Ue Ui]
T

For quantifying correlated variability, we use the cross-
spectral density (CSD)

〈Ua
j , Z

b
k〉(f) =

∫ ∞

−∞

CUa
j
Zb

k
(τ)e−2πifτdτ

between Ua
j (t) and Zb

k(t) for U,Z = E, I,X, S,R, T and
a, b = e, i, x where

CUa
j
,Zb

k
(τ) = cov(Ua

j (t), Z
b
k(t+ τ))

is the cross-covariance function. The argument, f , is the
frequency at which the CSD is evaluated. The CSD is
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a convenient measure of correlated variability because it
simplifies mathematical calculations due to the fact that
〈·, ·〉 is a Hermitian operator and because most commonly
used measures of correlated variability can be written as
a function of the CSD. For example, the cross-covariance
is the inverse Fourier transform of the CSD. Spike count
covariances over large time windows can be written in
terms of the CSD by first noting that the spike count is
an integral of the spike train [4],

spike count over [0, t0] =

∫ t0

0

Sa
j (t)dt.

For large t0, the covariance between two integrals is re-
lated to the zero-frequency CSD,

lim
t0→∞

1

t0
cov

(∫ t0

0

Ua
j (t)dt,

∫ t0

0

Zb
k(t)dt

)

= 〈Ua
j , Z

b
k〉(f = 0).

(3)

Hence, the spike count covariance over the interval [0, t0]
is given asymptotically by t0〈Sa

j , S
b
k〉(f = 0) for large t0.

Following this result, we quantify covariability between
spike trains and between synaptic currents using the zero-
frequency CSD, which we estimate by taking the covari-
ance between integrals as in Eq. (3) using t0 = 250ms.
This provides a simple, easily estimated quantity for
quantifying covariance.
Most of our computations are performed at the level

of population averages, so we define

〈Ua, Zb〉 = meanj 6=k〈Ua
j , Z

b
k〉. (4)

which is a scalar function of frequency, f , for each a, b =
e, i, x and U,Z = E, I,X, S,R, T . It is also convenient to
define the 2× 2 mean-field matrix form,

〈U ,Z〉 =
[
〈Ue, Ze〉 〈Ue, Zi〉
〈Ui, Ze〉 〈Ui, Zi〉

]
.

for U ,Z = E, I,X,S,R,T . We also define the recur-
rent and feedforward mean-field connectivity matrices,

W =

[
wee wei

wie wii

]
and Wx =

[
wex

wix

]

where wab(f) = pabjabqbη̃b(f) ∼ O(1) with η̃b(f) the
Fourier transform of ηb(t). For the exponential kernels
we use, η̃b(f) = 1/(1 + 2πifτb). The zero-frequency val-
ues, wab = wab(0) = pabjabqb, define time-averaged inter-
actions and mean-field connection matrices, W = W (0)
and W x = Wx(0).
This choice of notation allows us to perform com-

putations on mean-field spike train and input statis-
tics in a mathematically compact way. We first re-
view the mean-field analysis of firing rates in the bal-
anced state [28, 29, 43–45]. Mean external input is

given by X =
√
N W xrx and mean recurrent input by

R =
√
N Wr so that mean total synaptic input is given

by

T =
√
N

[
Wr +W xrx

]
.

In the balanced state, T ∼ r ∼ O(1), which can
only be obtained by a cancellation between external and
recurrent synaptic inputs. This cancellation requires
Wr +W xrx ∼ O(1/

√
N) so that [28, 29, 43–45]

lim
N→∞

r = −W
−1

W xrx (5)

in the balanced state. Hence, the balanced state can
only be realized when this solution has positive entries,
re, ri > 0, which requires that [28, 29, 43] Xe/Xi >
wei/wii > wee/wie.
Note that the derivation of Eq. (5) relied on an assump-

tion that T ∼ r, i.e., that the transfer of mean input
to firing rates is O(1). The analysis of correlations in
balanced networks requires similar assumptions. Specifi-
cally, our analysis of correlations relies on an assumption
that transfer of mean-field covariance is O(1), specifically
that 〈Ta, Ub〉 ∼ 〈Sa, Ub〉 or

〈Ta, Ub〉
〈Sa, Ub〉

∼ O(1) (6)

for U = X,S as N → ∞. A more precise and slightly
weaker assumption that is sufficient for our analysis is
that

lim
N→∞

1√
N

〈Ta, Ub〉
〈Sa, Ub〉

= 0 (7)

for U = X,S, which is implied by Eq. (6). Note that
this does not imply that 〈Sa, Ub〉 cannot be much larger
or smaller than 〈Ta, Ub〉, but only that their ratio does
not converge to zero or diverge to ∞ as N → ∞. The
validity of this assumption is discussed in more detail in
Appendix A and the end of Section III.

Importantly, we do not need to know the value of the
fraction in Eq. (6), the fraction does not need to converge
to a limit as N → ∞, and 〈Sa, Ub〉 need not be linearly
related to 〈Ta, Ub〉, which contrasts to assumptions made
by linear response theory.

III. A REVIEW OF THE ASYNCHRONOUS
BALANCED STATE

We first review previous work on correlated variabil-
ity in balanced networks when spike trains in the ex-
ternal population are uncorrelated Poisson processes
(Fig. 1(a),(b)),

〈Sx, Sx〉 = 0.

Since spike trains in the external population are uncorre-
lated, correlations between the external input to neurons
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FIG. 1. The asynchronous state in densely connected balanced networks. (a) Network diagram. An external
population, X, of uncorrelated Poisson processes provides feedforward input to a randomly connected recurrent network of
excitatory, E, and inhibitory, I , neurons. Feedforward input correlations are solely from overlapping projections from X.
(b)-(c) Raster plot of 200 randomly selected neurons from population X and E respectively in a network with N = 104 and
Nx = 2000. (d) Histogram of time-averaged external (X, green) recurrent (R = E + I , purple) and total (T = X + E + I ,
black) input to all excitatory neurons in a network with N = 104 and Nx = 2000. Currents here and elsewhere are reported
in units CmV/s where Cm is the arbitrary membrane capacitance. (e) Mean external (green), recurrent (purple), and total
(black) input to excitatory neurons for networks of different sizes, N . (f) Mean excitatory (red) and inhibitory (blue) neuron
firing rates for different network sizes. Solid curves are from simulations and dashed curves are from Eq. (5). (g) Mean
covariance between pairs of excitatory neurons’ external inputs (green), recurrent inputs (purple), total inputs (black), and
mean covariance between the recurrent input to one excitatory neuron and external input to the other (yellow) for different
network sizes. Covariances were computed by integrating the inputs over 250ms windows then computing covariances between
the integrals, which is proportional to zero-frequency CSD (see Eq. (3) and surrounding discussion). Integrated currents have
units CmmV , so their covariances have units C2

mmV 2. (h) Zoomed in view of black curve from (e) on a log-log axis (black)
and the function C/N (dashed gray) where C was chosen so that the two curves match at N = 2 × 104. (i) Mean spike
count covariance between excitatory neuron spike trains (red), between inhibitory neuron spike trains (blue), and between
excitatory-inhibitory pairs of spike trains (purple). In panels (i)-(l), solid curves are from simulations, dashed curves are from
the first term in Eq. (9), and dotted curves are from the first two terms. For the dotted curves, the {Se, Se} and {Si, Si} terms
in Eq. (9) were estimated empirically from simulations. In all panels, counts were computed over 250ms time windows. (j)
Absolute value of mean spike count covariances as a function of the external population size, Nx, when N = 104 and where
feedforward connection probabilities were scaled to keep pexNx = pixNx = 200 fixed as Nx was changed. Filled circles are from
simulations with uncorrelated external input (representing Nx → ∞) and open circles are from simulations with deterministic,
time-constant external input (external input covariance is zero in both cases). Asterisks and crosses are from evaluating the
second term of Eq. (9) using the values of {Se, Se} and {Si, Si} estimated from the simulations marked with filled circle and
crosses respectively. (k) Same data as (j), but plotted on a linear axis without taking absolute value, and zoomed into to larger
values of Nx. (l) Mean cross-spectral densities between neurons in the recurrent network using the parameters from panels
(b)-(d). Solid curves are from simulations, dashed are from the first term of Eq. (9), and dotted are from the first two terms
of Eq. (9) using empirically estimated power spectral densities for {Sb, Sb}(f). Synaptic time constants were τe = 8, τi = 4,
and τx = 10ms in all simulations. In all simulations except those in panels (j) and (k), recurrent and feedforward connection
probabilities are all pab = 0.1 for a = e, i and b = e, i, x.
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in the recurrent network arise solely from overlapping
feedforward synaptic projections with [31, 40, 46] (see
Eq. (A1) in Appendix A for a derivation)

〈X,X〉 = q−1
x WxrxW

∗
x ∼ O(1). (8)

where W ∗
x is the conjugate transpose of Wx.

It would at first seem that this O(1) external input cor-
relation would lead to O(1) correlations between neurons’
spike trains. In the asynchronous state, this is prevented
by a cancellation between positive and negative sources
of input correlation. In particular, correlations between
neurons’ recurrent synaptic inputs, 〈R,R〉, are also pos-
itive and O(1), but these positive sources of input cor-
relations are canceled by negative correlations between
neurons’ recurrent and external inputs, 〈X,R〉, in such
a way that the total synaptic input correlation is weak,

〈T ,T 〉 = 〈X,X〉+ 〈X,R〉+ 〈R,X〉+ 〈R,R〉 ∼ O(1/N)

where 〈R,X〉 = 〈X,R〉∗. In Appendix A, we review a
derivation of spike train CSDs in the asynchronous state
that gives the approximation

〈S,S〉 ≈ 1

N
W−1〈X,X〉W−∗ − 1

N

[
{Se,Se}

qe
0

0 {Si,Si}
qi

]

(9)
where {Sb, Sb}(f) is the average power spectral density
of spike trains in population b = e, i. While the first term
in Eq. (9) arises purely from externally generated correla-
tions, the second term in accounts for effects of both ex-
ternally and internally generated correlations. For exam-
ple, networks with deterministic and time-constant exter-
nal input have 〈X,X〉 = 0, but still generate correlated
variability that is at least partly captured by the second
term in Eq. (9) (see Fig. 7(d)).
Eq. (9), which is only valid when W is non-singular,

has been previously derived for the integrate-and-fire net-
work models considered here (see equation S.22 in the
supplement to [40]). Similar expressions have been de-
rived for networks of binary neuron models (see equations
38-39 in the supplement to [31], equation 38 in [46], and
equation 23 in [41]) and related expressions have been
derived for various models in other work [5, 14, 47, 48].
The expression derived in [31] is directly analogous to
Eq. (9) and was derived under an assumption that corre-
lations are inherited solely from external inputs whereas
other studies [5, 46] contain additional terms (including
terms of order O(N−3/2)) that account for intrinsically
generated correlations and are not included in Eq. (9).
Some of this previous work has also been extended to spa-
tially extended networks with distance-dependent con-
nection probabilities and to networks with several sub-
populations [40, 41]. The overall finding in this previ-
ous work is that spike train correlations in balanced net-
works areO(1/N) whenW is non-singular. Exceptions to
this O(1/N) scaling have been demonstrated in spatially
extended networks with distance-dependent connection
probabilities and in networks with singular mean-field

connectivity matrices [39–42, 46], a topic to which we
return in Section VI.
To demonstrate these results, we first simulated a

network of N = 104 randomly and recurrently con-
nected neurons receiving feedforward input from a pop-
ulation of Nx = 2000 uncorrelated Poisson-spiking neu-
rons (Fig. 1(a),(b)). As predicted, spiking activity in
the recurrent network was asynchronous and irregular
(Fig. 1(c); mean spike count correlation between neurons
with rates at least 1 Hz was 5.2×10−4) with approximate
balance between external (X) and recurrent (R) synaptic
input sources (Fig. 1(d)). Varying the network size, N ,

demonstrates the O(
√
N) growth of mean external (X)

and recurrent (R) synaptic input currents that cancel to
produce O(1) mean total input current (T ) (Fig. 1(e)),
as predicted by the mean-field theory of balance (Eq. (5)
and surrounding discussion). As a result, firing rates
converge toward the limiting values predicted by Eq. (5)
(Fig. 1(f)).

As predicted by the analysis of the asynchronous
state, the mean covariances between individual sources
of synaptic inputs appear O(1) (Fig. 1(g)), but cancel
to produce total input covariance and spike count covari-
ance that vanish as network size, N , increases (Fig. 1(g)–
(i)).

Applying the approximation in Eq. (9) requires knowl-
edge of neurons’ mean-field power spectral densities,
{Se, Se}(f) and {Si, Si}(f). While numerical methods
for approximating power spectral densities in networks
of integrate-and-fire neurons have been developed using
Fokker-Planck techniques [8, 9, 11, 12, 49], these ap-
proaches require a diffusion approximation that is not
justified for our model (see Discussion). Instead, we con-
sidered two ways to test Eq. (9) that do not require a
diffusion approximation or Fokker-Planck techniques.
First, we noted that the first term,

(1/N)W−1〈X,X〉W−∗, in Eq. (9) only involves
known parameters and does not require knowledge of
{Se, Se} or {Si, Si}. Therefore, we were able to directly
compare the exact value of this term to spike count
covariances computed from simulations, demonstrating
a relatively close match (compare solid and dashed blue
in Fig. 1(i)).
Next, we noted that the contribution of the second

term in Eq. (9) can be estimated empirically from simu-
lations by computing the average spike count variance in
the recurrent network (since {Sb, Sb}(0) is proportional
to spike count variance over large window sizes). This
yields a semi-analytical approach to testing the accuracy
of Eq. (9) with only the O(N−3/2) term ignored. This ap-
proach improved the approximation to mean inhibitory-
inhibitory spike count covariances at large N (compare
solid and dotted in Fig. 1(i)), but left some error even at
N = 2× 104.
Previous work showed that intrinsically generated cor-

relations can dominate in large balanced networks [46],
but in our simulations external input correlations cap-
tured by the first term in Eq. (9) dominated over a range
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of N values. We conclude that the relative contribution
of the three terms in Eq. (9) can depend on model de-
tails and parameters. This is clarified by noting that a
sufficiently large reduction in the external input covari-
ance, 〈X,X〉, would necessarily prevent the first term in
Eq. (9) from dominating because the first term is propor-
tional to 〈X,X〉, but the second term should remain non-
zero even for vanishing 〈X,X〉. At the extreme, when
〈X,X〉 = 0, the first term is zero, but the second term is
non-zero for such networks due to intrinsically generated
variability.

To demonstrate these ideas, we followed a procedure
from [46] by varying Nx while scaling feedforward con-
nection probabilities, pex and pix, so as to keep the av-
erage number of external inputs, pexNx = pixNx = 200,
fixed. All other parameters, including the size, N , of the
recurrent network were kept fixed. In this scenario, an in-
crease in Nx causes a decrease in 〈X,X〉 because it leads
to fewer overlapping external inputs (as evidenced by the
appearance of q−1

x = N/Nx in Eq. (8); but note that Wx

is fixed as we change Nx). In addition, we simulated
a version of the network in which each neuron received
uncorrelated input from a private external population so
that external input had the same univariate statistics as
our previous simulations, but these external inputs were
uncorrelated, 〈X,X〉 = 0. This represents the Nx → ∞
limit of the previous simulations. Finally, we simulated a
deterministic version of the network in which external in-
puts were replaced by time-constant input, Xa

j (t) = Xa,
which also implies 〈X,X〉 = 0 with mean external input
unchanged.

Examining these simulations, the magnitude of spike
train covariance is non-monotonic with increasing Nx

(Fig. 1(j)) because it changes sign and becomes increas-
ingly negative at larger values of Nx (Fig. 1(k)). The
first term in Eq. (9) dominates the other two terms (the
dashed, solid, and dotted curves are close) for smaller
values of Nx because external input covariance is larger
in this regime. However, at larger values of Nx, the first
term no longer dominates (Fig. 1(k), inset, the dashed
curve is far from the solid curve) because external input
covariance is small. Moreover, even accounting for the
second term in Eq. (9) produces a somewhat inaccurate
approximation when external input covariance is small
(Fig. 1(j),(k), compare dotted to solid at larger Nx), con-
sistent with previous findings that the O(N−3/2) term
can contribute significantly at large but finite N [46].

When external input is noisy but independent, simula-
tions produce weak, but non-zero spike train correlations
(Fig. 1(j),(k), filled circles) representing the Nx → ∞
limit of the previous simulations [46]. In this regime, the
first term in Eq. (9) is zero, but the second term pro-
duces a relatively accurate approximation to excitatory-
excitatory and inhibitory-inhibitory spike count covari-
ances (Fig. 1(j),(k), compare filled circles to asterisks),
but note that the second term in Eq. (9) is zero for
excitatory-inhibitory pairs. Similar results are observed
when external input is deterministic and constant in

time (Xa
j (t) = Xa; Fig. 1(j),(k), compare open circles

to crosses), but spike count variances (and therefore the
{Sb, Sb}(0) terms) are smaller when input is determin-
istic. Repeating the simulation from Fig. 1(i),(j) with
different connectivity parameters showed similar overall
results (see Appendix B and Fig. 7(a),(b)). See [5, 8–
12, 14, 41, 43, 46, 47] for other studies of correlated vari-
ability in networks with uncorrelated external input.

So far we have focused on spike count covariance
over large window sizes, which is proportional to low-
frequency CSD. We next computed the full spike train
CSDs from simulations with N = 104 and Nx = 2000.
The first two terms in Eq. (9) accurately capture most of
the low-frequency CSD for these parameters (Fig. 1(i)–
(l)), but simulations show a high-frequency peak in the
mean CSD that is not captured by these terms (Fig. 1(l)).
To understand why Eq. (9) becomes inaccurate at

higher frequencies for the network considered here, recall
that the derivation of Eq. (9) relies on the assumptions
made by Eqs. (6) and (7), which posit that neural transfer
is O(1). However, for EIF and many other neuron mod-
els, sufficiently high-frequency input fluctuations cannot
be reliably transferred due to the filtering imposed by
membrane potential dynamics. More specifically,

lim
f→∞

〈Ta, Ub〉(f)
〈Sa, Ub〉(f)

= ∞.

Hence, while Eqs. (6) and (7) might be true for any fixed
f , the O(1) term on the right side of Eq. (6) diverges with
f . Analogously, when f is large, larger values of N must
be considered before the ratio in Eq. (7) is close to zero.
Mathematically speaking, the limit in Eq. (7) convergeces
pointwise but not uniformly in f . This caveat is techni-
cally inconsequential for any fixed f in the N → ∞ limit
analyzed in the derivation of Eq. (9), but all networks
are finite. For any finite-sized network, the derivation of
Eq. (9) is not justified at sufficiently high frequencies. In
Appendix A, we show that for finite N our derivations
are accurate at frequencies for which

∣∣∣∣
〈T ,U〉

W 〈S,U〉

∣∣∣∣ ≪
√
N (10)

for U = X,S where the division is applied element-wise
to the matrices. As noted above, for any fixed f , this
condition is satisfied in the N → ∞ limit, but for any
fixed N the condition is violated at sufficiently large f .
The left-hand-side of Eq. (10) is difficult to compute

for networks of integrate-and-fire neurons because we do
not know the values of 〈T ,U〉 or 〈S,U〉, but we next
show that linear response theory can provide a useful
rough approximation.
In the context of the model considered here, linear

response theory is defined by making the approxima-
tion [6, 8, 50–55]

〈S,U〉 ≈ A〈T ,U〉 (11)
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for U = S, T,X where

A(f) =

[
Ae(f) 0

0 Ai(f)

]

and Aa(f) is the average “susceptibility function” of neu-
rons in population a = e, i. Eq. (11) provides an accurate
approximation of correlation transfer whenever correla-
tions in the network are not too strong.
Combining Eq. (10) with Eq. (11) gives the condition

|WA| ≫ 1/
√
N

which can be written element-wise in terms of scalars as

|wab(f)|2|Ab(f)|2 ≫ 1/N

for a, b ∈ {e, i}. For the exponentially decaying synapses
considered here, we have |wab(f)|2 = w2

ab/(1 + 4π2f2τ2b )
where wab = jabpabqb and τb is the synaptic time con-
stant. However, we do not know the susceptibility func-
tions, Ab(f). Much like the power spectral densities,
{Sb, Sb}(f), the susceptibility functions, Ab(f), in net-
works of integrate-and-fire neurons are difficult to com-
pute without a diffusion approximation that is not jus-
tified for our model (see Discussion). Due to the linear-
ity of sub-threshold membrane dynamics, however, EIF
neurons in a fluctuation dominated regime have suscep-
tibility functions that are approximated by |Ab(f)|2 ≈
g2/(4π2f2τ2m) at moderately large f [52, 56, 57] where
τm = Cm/gL is the membrane time constant and g =
Ab(0) is the gain of the neuron, i.e., the derivative of
the neuron’s f-I curve. Putting this all together gives the
condition

4π2f2τbτm ≪ g|wab|
√
N

so we can expect that Eq. (9) is accurate for frequencies
sufficiently lower than

f0 =

√
g|wab|

2π
√
τbτm

N1/4. (12)

To obtain a conservative estimate that will be valid for all
combinations of a, b ∈ {e, i}, we chose the smallest value
of wab used in Fig. 2(l), which is wee = 2CmmV/ms
(where Cm is the arbitrary membrane capacitance), and
the largest value of τb, which is τe = 8ms. The membrane
time constant for the neurons used in our simulations is
τm = 15ms and N = 104 in Fig. 1(l). The only quantity
missing from Eq. (12) is the gain, g. To obtain a rough
estimate of g, we fit a rectified quadratic function to the
relationship between all neurons’ firing rates and mean
total inputs (rj and T j), then computed the derivative of
the fitted quadratic at the mean input value. The same
approach was used in previous work [40, 58] to estimate a
mean-field gain. In doing so, we obtained a gain approxi-
mation of g = 0.014(CmmV )−1. Combining these values
gives an approximate cutoff frequency of f0 = 24Hz. In-
deed, Fig. 1(l) shows that Eq. (9) starts to become inac-
curate somewhere just below this value of f , particularly

for excitatory-excitatory (red) and excitatory-inhibitory
(purple) neuron pairs.

In summary, when spike trains in the external popula-
tion are uncorrelated, the first two terms in Eq. (9) give
an accurate approximation to spike count covariances
over long time windows (equivalently, low-frequency
CSDs), but the second term can be difficult to compute
directly and the equation loses accuracy when evaluating
the CSD at higher frequencies. We next extend these
results to networks in which spike trains in the external
population are correlated.

IV. THE CORRELATED STATE IN BALANCED
NETWORKS

Above, we reviewed the asynchronous state in
which uncorrelated spike trains in the external layer,
〈Sx, Sx〉 = 0, produce moderate external input covari-
ance, 〈X,X〉 ∼ O(1), and weak spike train correlations,
〈S,S〉 ∼ O(1/N). We next show that moderate corre-
lations between spike trains in the external population
(Fig. 2(a)),

〈Sx, Sx〉 ∼ O(1),

leads to large covariance between neurons’ external in-
puts, 〈X,X〉 ∼ O(N), and moderate correlations be-
tween spike trains in the recurrent network, 〈S,S〉 ∼
O(1).
We outline the derivation of correlations in such net-

works here and give a more detailed derivation in Ap-
pendix A. In addition to the assumption made by Eqs. (6)
and (7), all of our derivations follow from a few simple
arithmetical rules that rely on the bilinearity of the op-
erator 〈·, ·〉. Specifically,

〈T ,U〉 = 〈R,U〉 + 〈X,U〉 (13)

〈R,U〉 =
√
NW 〈S,U〉 (14)

〈X,U〉 =
√
NWx〈Sx,U〉 (15)

〈U ,Z〉 = 〈Z,U〉∗ (16)

for any U ,Z = E, I,X,R,S, Sx,T where A∗ is the
conjugate-transpose of A and where we omit smaller or-
der terms here and below (the derivations in Appendix A
keep track of these terms). Eq. (13) follows from the fact
that total input is composed of recurrent and external
sources, T = R+X. Eqs. (14) and (15) follow from the
fact that recurrent and external inputs are composed of
linear combinations of O(N) spike trains, c.f. Eq. (1),

and that synaptic weights are O(1/
√
N). Eq. (16) is sim-

ply a property of the Hermitian cross-spectral operator.
We first derive the CSD between external inputs to

neurons in the recurrent network. Applying Eqs. (15)
and (16) gives

〈X,X〉 =
√
NWx〈Sx,X〉

= NWx〈Sx, Sx〉W ∗
x

∼ O(N).
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FIG. 2. The correlated state in densely connected balanced networks. (a)–(i) and (k) Same as Fig. 1(a)–(i) and (l)
respectively except spike trains in the external population, X, were correlated Poisson processes with spike count correlation
c = 0.1 and Eq. (19) was used for the dashed lines in panels (i) and (k). (j) Mean spike count covariance between neurons
in the recurrent network as a function of the correlation, c, between spike trains in the external population. Dashed curves
are from Eq. (19) and dotted are from Eq. (9). (l) Mean cross-covariance functions between neurons in the recurrent network
(units ms−2; N = 104). Synaptic time constants were τe = 8, τi = 4, and τx = 10ms in all simulations and the correlation time
constant for the spike trains in the external population was τc = 5ms. In all simulations, recurrent and feedforward connection
probabilities are all pab = 0.1 for a = e, i and b = e, i, x.

Hence, O(1) covariance between the spike trains in the
external population induces O(N) covariance between
the external input currents to neurons in the recurrent
network. This is a result of the effects of “pooling”
on covariances, namely that the covariance between two
sums of N correlated random variables is typically O(N)
times larger than the covariances between the individual
summed variables [31, 59, 60].
We next derive the CSD between spike trains and ex-

ternal inputs. First note that

〈T ,X〉 = 〈R,X〉+ 〈X,X〉
=

√
NW 〈S,X〉+ 〈X,X〉

(17)

from Eqs. (13) and (14). It follows from our assumption
that neuronal transfer isO(1) (see Eq. (6)) that 〈T ,X〉 ∼
〈S,X〉 which, combined with Eq. (17), gives

〈S,X〉 ∼
√
NW 〈S,X〉+ 〈X,X〉.

Because 〈S,X〉 appears on both sides of this equation

with a
√
N coefficient on one side and not the other,

this is only consistent if there is a cancellation between

the two terms on the right hand side. Specifically, this
cancellation implies that

〈S,X〉 = − 1√
N

W−1〈X,X〉 ∼ O(
√
N) (18)

since 〈X,X〉 ∼ O(N). We can now calculate the CSD
between spike trains in the recurrent network. First note
that

〈S,T 〉 = 〈S,R〉 + 〈S,X〉
=

√
N〈S,S〉W ∗ + 〈S,X〉

=
√
N〈S,S〉W ∗ − 1√

N
W−1〈X,X〉

which follows from Eqs. (13), (14), and (18). The as-
sumption of O(1) transfer from Eq. (6) implies that
〈S,T 〉 ∼ 〈S,S〉 so we may conclude that

〈S,S〉 ∼
√
N〈S,S〉W ∗ − 1√

N
W−1〈X,X〉,

which is only consistent if there is cancellation between
the terms on the right hand side. This cancellation can
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only be realized if

〈S,S〉 = 1

N
W−1〈X,X〉W−∗

= W−1Wx〈Sx, Sx〉W ∗
xW

−∗
(19)

which isO(1) and where we have omitted terms of smaller
order.
In summary, O(1) covariance between spike trains in

the external population produces O(N) covariance be-
tween neurons’ external inputs, but O(1) covariance be-
tween spike trains in the recurrent network on average.
We hereafter refer to this state as the “correlated state”
since it produces moderately strong spike train correla-
tions in contrast to the asynchronous state character-
ized by extremely weak spike train correlations. The
reduction from O(N) external input covariance to O(1)
spike train covariance arises from the same cancellation
mechanism that reduces O(1) external input correlation
to O(1/N) spike train correlations in the asynchronous
state.
Notably, evaluating Eq. (19) does not require knowl-

edge of neurons’ power spectral densities or spike count
variances, but only depends on synaptic parameters and
external spike train statistics. This is beneficial because
the direct numerical computation of power spectral den-
sities or spike count variances in networks of integrate-
and-fire neurons can be difficult (see discussion in Sec-
tion III). This contrasts to Eq. (9) that depends on mean
power spectral densities or spike count variance through
the second term. Note that Eq. (9) is also valid in the cor-
related state (see Appendix A). Specifically, Eq. (19) can
be obtained from Eq. (9) by taking 〈X,X〉 ∼ O(N) and
ignoring smaller order terms. Hence, Eq. (9) is more ac-
curate at finite N , but requires knowledge of mean power
spectral densities whereas Eq. (19) is accurate as N → ∞
in the correlated state.
To demonstrate these results, we simulated a network

of N = 104 neurons identical to the network from Fig. 1
except that spike trains in the external population were
correlated Poisson processes (Fig. 2(a),(b)) with

〈Sx, Sx〉(f) = crxe
−4f2π2τ2

c . (20)

Here, rx = 10Hz is the same firing rate used in Fig. 1,
c = 0.1 quantifies the spike count correlation coefficient
between the spike trains in the external population over
large counting windows, and τc =5ms quantifies the
timescale over which these correlations occur. See Ap-
pendix C for a description of the algorithm used to gen-
erate the spike trains.
The recurrent network exhibited moderately correlated

spike trains in contrast to spike trains in the asyn-
chronous state (Fig. 2(c), compare to Fig. 1(c); mean
spike count correlation between neurons with rates at
least 1 Hz was 0.077 in the correlated state). As in the
asynchronous state, external and recurrent synaptic in-
put sources approximately canceled (Fig. 2(d)), as pre-
dicted by balanced network theory. Varying N demon-
strates that the network exhibits the same cancellation

between O(
√
N) mean external and recurrent synaptic

input sources and that Eq. (5) for the mean firing rates
is accurate (Fig. 2(e),(f)).
As predicted by the analysis of the correlated state,

the covariance between individual sources of input cur-
rents appear O(N) (Fig. 2(g)), but cancel to produce
much smaller, approximately O(1), total input covari-
ance (Fig. 2(g),(h)). Mean spike count covariances also
appear O(1) and converge toward the limit predicted by
Eq. (19) (Fig. 2(i)). The timescale of correlations be-
tween neurons in the recurrent network is quantified by
their mean cross-covariance functions (Fig. 2(l)). Repeat-
ing the simulation from Fig. 2(i) with different connec-
tivity parameters showed similar overall results (see Ap-
pendix B and Fig. 7(c)).
We next investigated the dependence of spike count

covariance in the recurrent network on the magnitude,
c, of spike train correlations in the external population.
The correlated state is characterized by c 6= 0 and the
asynchronous state by c = 0. This transition is contin-
uous in the sense that, for fixed N , sufficiently small
values of c > 0 generate correlations similar to those in
the asynchronous state. However, the transition between
asynchronous and correlated spiking with increasing c
becomes more abrupt for larger values of N . Specifically
(see Appendix A),

〈X,X〉 ∼ O(cN) +O(1)

and

〈S,S〉 ∼ O(c) +O(1/N).

Hence, when N is large, even very small values of c ≫
1/N should produce much stronger correlations than
those produced in the asynchronous state (c = 0).
Indeed, simulations in which N = 104 is fixed and c is

varied between c = 10−4 and c = 1 show that Eq. (19) is
relatively accurate for c larger than 10−3 (Fig. 2(j), com-
pare solid to dashed). When c is so small that Eq. (19)
is inaccurate, Eq. (9) provides a more accurate approxi-
mation (Fig. 2(j), compare solid to dotted), but requires
the empirical estimation of power spectral densities. The
approximate linear relationship between spike train cor-
relation and external input correlation (at larger values
of c ≫ 1/N) is consistent with data from cultured corti-
cal populations [30], but those data also show moderate
spike train correlations in the absence of external input
correlation, in contrast to our model. These could arise
from pattern forming intrinsic dynamics (see Discussion).
Mean CSDs between spike trains in the recurrent net-

work closely matched the theoretical predictions from
Eq. (19) over a range of frequencies (Fig. 2(k)) even
though our theory only strictly applies to CSDs at suf-
ficiently low frequencies (see Eq. (10) and surrounding
discussion). To understand why this is the case, we
again turn to linear response theory. Under the assump-
tion that neurons’ input CSDs are approximately linearly
transferred to their spike train CSDs (i.e., Eq. (11)) one
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can derive an approximation to spike train CSDs (see [8–
14, 41, 46] for derivations of this and similar approxima-
tions)

〈S,S〉 ≈ [A−1−
√
NW ]−1〈X,X〉[A−1−

√
NW ]−∗ (21)

where recall that A(f) is the matrix of mean-field sus-
ceptibility functions. In the N → ∞ limit for any
fixed f , Eq. (21) reduces to Eq. (19). At finite N ,
the two equations are approximately equivalent when-
ever

√
N |W | ≫ |A|−1. Note that this is equivalent to

the condition in Eq. (10) and the surrounding discussion,
where it was argued that this condition is violated for
sufficiently large f because |A−1(f)| → ∞ as f → ∞.

Therefore, when f is sufficiently large, |A−1| ≫
√
N |W |

and we can ignore the
√
NW terms in Eq. (21) to get

〈S,S〉 ≈ A〈X,X〉A∗. (22)

for sufficiently large f . In other words, at frequencies
too high (timescales too fast) for synapses to track, ex-
ternal input CSD is transferred directly to spike train
CSD through the neurons’ susceptibility functions and
recurrent connectivity plays a vanishing role. For the

simulations in Fig. 2(k), 〈X,X〉 ∼ e−4f2π2τ2

c /f2 at large
N and f , but as discussed in Section III, |A|2 ∼ 1/f2 for
EIF neurons in the fluctuation dominated regime. There-
fore, 〈X,X〉 decays to zero much faster than A for large
f . Hence, for the larger values of f for which Eq. (22)
is accurate, A〈X,X〉A∗ ≈ 0. This explains why the ap-
proximation in Eq. (19) does not lose accuracy at higher
frequencies in Fig. 2(k): because 〈S,S〉 ≈ 0 anyways for
larger values of f .

V. THE CORRELATED STATE PRODUCES
TIGHT BALANCE BETWEEN EXCITATORY
AND INHIBITORY INPUT FLUCTUATIONS

CONSISTENT WITH CORTICAL RECORDINGS

We have so far considered cancellation between pos-
itive and negative sources of input correlations at the
mean-field level, i.e., averaged over pairs of postsynap-
tic neurons (Figs. 1(g),(h) and 2(g),(h)). Previously
published in vivo intracellular recordings from neurons
in rat barrel cortex in reveal that this cancellation oc-
curs even at the level of single postsynaptic neuron
pairs [23]. Specifically, paired intracellular recordings
of spontaneous neural activity were performed between
nearby neurons (distance < 500 µm) in the barrel cor-
tex of lightly anesthetized rats in current-clamp mode.
When one neuron was clamped near its inhibitory re-
versal potential and another neuron is clamped near its
excitatory reversal potential (spiking suppressed with
QX-314), recorded membrane potential fluctuations are
approximately mirror images of one another (Fig. 3(a),
top). Similarly, if both neurons are held near their exci-
tatory reversal potential (Fig. 3(a), middle) or both near
their inhibitory reversal potential (Fig. 3(a), bottom),
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FIG. 3. Excitatory-inhibitory tracking in vivo and in
simulations. (a) In vivo membrane potential recordings
from neurons in rat barrel cortex, reproduced from [23]. Each
pair of traces are simultaneously recorded membrane poten-
tials. Red traces were recorded in current clamp mode near
the reversal potential of inhibition and blue traces near the
reversal potential of excitation (with action potentials phar-
macologically suppressed), so red traces are approximately
proportional to excitatory input current fluctuations and blue
traces approximate inhibitory input current fluctuations. Ver-
tical scale bars are 20mV. For ease of comparison with the
current traces in panels (b)–(f), the red voltage trace in the
top of A was plotted above the corresponding blue trace. (b)-
(c) Excitatory (red) and inhibitory (blue) synaptic input cur-
rents to two randomly selected excitatory neurons in the asyn-
chronous (b) and correlated (c) states. Simulations were the
same as those in Figs. 1(b)-(d) and 2(a)-(d) respectively. (d)
Same as (c), but for a second trial with the same connection
matrix. (e)-(f) Same as (c), but correlations between the ex-
ternal population’s spike trains changed to c = 0.03 and 0.01
respectively (from c = 0 in (b) and c = 0.1 in (c)).

recorded membrane potential fluctuations are highly cor-
related. This implies that fluctuations in the excitatory
and inhibitory synaptic input to one neuron are strongly
correlated with fluctuations in the excitatory and in-
hibitory input to other nearby neurons (see [23] for more
details and interpretation).
To test whether this phenomenon occurred in our simu-

lations, we randomly chose two neurons and decomposed
their synaptic input into the total excitatory (E + X)
and the inhibitory (I) components. In the asynchronous
state, input current fluctuations were fast and largely un-
shared between neurons or between current sources in the
same neuron (Fig. 3(b)), in contrast to evidence from in
vivo recordings. Input current fluctuations in the corre-
lated state were larger and highly synchronized between
neurons (Fig. 3(c)), consistent with evidence from in vivo
recordings. This precise tracking of fluctuations in exci-
tatory and inhibitory synaptic currents is referred to as
“tight balance” [61] (as opposed to the “loose balance” of
the asynchronous state). The results would be similar if
we decomposed inputs into their external (X) and recur-
rent (R = E + I) sources instead of excitatory (E +X)
and inhibitory (I). The large fluctuations in synaptic cur-
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rents in the correlated state are shared between neurons,
but exhibit trial-to-trial variability (compare Fig. 3(c) to
(d)), clarifying that they represent noise correlations in-
stead of signal correlations.

An intuitive way of understanding the tight bal-
ance produced in the correlated state is to note that
shared fluctuations in neurons’ external synaptic input
is O(cN) +O(1) and these fluctuations are inherited by
the recurrent network so that fluctuations between neu-
rons’ excitatory (E+X) or inhibitory (I) synaptic inputs
are also O(cN) + O(1). Hence, shared fluctuations are
O(N) in the correlated state (c > 0) and O(1) in the
asynchronous state (c = 0). Since connectivity in the
networks is homogeneous, the strongly correlated input
current fluctuations also have a similar magnitude in the
correlated state, so they appear to track each other. In
the asynchronous state, the more weakly correlated fluc-
tuations are “washed out” by uncorrelated variability in
the network, so currents do not appear to closely track
each other. This implies that the transition from the
loose balance of the asynchronous state to the tight bal-
ance of the correlated state occurs continuously as c is in-
creased from zero, but also that tight balance is realized
at small values of c > 0 whenever N is large (compare
to the discussion of Fig. 2(j) above). Indeed, simulations
demonstrate this continuous transition between tight and
loose balance as c is modulated (Fig. 3(b),(c),(e),(f)).

Despite the striking differences between excitatory and
inhibitory synaptic currents in the correlated versus asyn-
chronous states, the distributions of spike count covari-
ances were qualitatively somewhat similar in the two
states (Fig. 4(a)). It is more common in the literature
to report spike count correlations instead of spike count
covariances and it is common to omit neurons with low
firing rates. Therefore, we next computed the distribu-
tion of spike count correlations between excitatory neu-
rons with firing rates of at least 1 Hz (Fig. 4(b)). It
is easier to distinguish between the correlated and asyn-
chronous states from these distributions, but the dis-
tributions are still somewhat similar. Note especially
that, despite the differences between the excitatory and
inhibitory synaptic currents between the c = 0 and
c = 0.03 cases (Fig. 3(b),(e)), the distributions of spike
count correlations are qualitatively similar (Fig. 4(a),(b),
compare light and dark gray). The mean spike count
correlations differed by orders of magnitude across the
two states (mean correlation between excitatory neu-
rons’ spike trains 2.6 × 10−4, 2.4 × 10−2, 6.6 × 10−2 for
c = 0, 0.03, 0.1 respectively) while the standard deviation
of correlations was similar across the states (7.4 × 10−2,
8.1 × 10−2, and 1.2 × 10−1 for c = 0, 0.03, 0.1 respec-
tively). Hence, while the distributions of correlations are
qualitatively somewhat similar, the asynchronous state is
distinguished by having a much larger standard deviation
than mean correlation value [31, 48].

To further quantify differences between covariances in
the asynchronous and correlated states, we first com-
puted the average covariance between the excitatory and

inhibitory input to pairs of (excitatory) neurons in the
network. These averages have the same dependence
on network size, N , as they do when input currents
are broken into external and recurrent sources (compare
Fig. 4(c),(d) to Figs. 1(g) and 2(g)). Specifically, in the
asynchronous state, covariances between individual cur-
rent sources are O(1) on average, but cancel to produce
weak O(1/N) covariance between the total synaptic in-
put to neurons on average (Fig. 4(c)). In the correlated
state, the average covariance between individual input
sources is O(N) and cancellation produces O(1) average
total input covariance (Fig. 4(d)).

Hence, despite the precise cancellation of positive and
negative sources of input covariance at the mean-field
level in the asynchronous state (Fig. 4(c)), the tracking
suggested by this cancellation is apparently not observed
at the level of individual neuron pairs (Fig. 3(c)). To
see why this is the case, we computed the distribution
of input current covariances across all pairs of excitatory
neurons. We found that these distributions were broad
and the distribution of total input covariance was highly
overlapping with the distributions of individual input cur-
rent sources (Fig. 4(e), the black distribution overlaps
with the others). This implies that cancellation does not
reliably occur at the level of individual pairs since, for
example, the total input covariance for a pair of neurons
can be similar in magnitude or even larger than the co-
variance between those neurons’ excitatory inputs.

The distributions of input covariances were strikingly
different in the correlated state. The distribution of total
input covariances was far narrower than the distributions
of individual input current sources and the distributions
were virtually non-overlapping (Fig. 4(f)). Hence, a pre-
cise cancellation between positive and negative sources of
input covariance must occur for every neuron pair, lead-
ing to the tight balance observed in Fig. 3(e).

These results are better understood by computing the
empirical variance of input covariances across neuron
pairs in simulations as N is varied. In the asynchronous
state, the empirical variance of input covariances from
all sources appear to scale like O(1) (Fig. 4(g)). Since
the mean input covariance between individual sources
are also O(1) (Fig. 4(c)), the overlap between distribu-
tions in Fig. 4(e) is expected. In the correlated state, the
empirical variances of input covariances appear to scale
like O(N) except for the variance of the total input co-
variance, which appears to scale like O(1) (Fig. 4(h)). If
the variances scale like O(N), then the standard devia-

tions would scale like O(
√
N). This, combined with the

fact that the mean input covariances between individual
sources scale like O(N), implies that the distributions in
Fig. 4(g) will be non-overlapping when N is large. The
same conclusions would be reached if we decomposed in-
puts into their external (X) and recurrent (R = E + I)
sources instead of total excitatory (X+E) and inhibitory
(I). Note, that the scaling of the variance of covariances
reported here was only computed empirically and we have
not derived these scalings analytically. It is possible that,
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FIG. 4. The scaling of mean and variance of excitatory and inhibitory input covariance in the asynchronous
and correlated states. (a)-(b) Distributions of spike count covariances (a) and correlations (b) between excitatory neurons
in the asynchronous state (c = 0, light gray) and in the correlated state (c = 0.03, dark gray; c = 0.1, black). For spike count
correlations, neurons with firing rates less than 1 Hz were omitted from the analysis. (c)-(d) Same as Figs. 1(g) and 2(g), except
inputs were decomposed into their excitatory (E +X), and inhibitory (I) components instead of external and recurrent. Red
curves show mean excitatory-excitatory input covariance, blue show inhibitory-inhibitory, purple show excitatory-inhibitory,
and black curves show total (same as black curves in Figs. 1(g) and 2(g)). (e)-(f) Histogram of input current covariances across
all excitatory cell pairs for a network of size N = 104. (g)-(h) Same as (c)-(d) except we plotted the variance of covariances
across cell pairs instead of the mean. As above, integrated currents have units CmmV , so input covariances have units C2

mmV 2

and the variance of covariances have units C4

mmV 4 where Cm is the arbitrary membrane capacitance. In panels (d),(f),(h) we
set c = 0.1.

at larger N , the scaling becomes different from how it ap-
pears from our simulations.

VI. CORRELATED VARIABILITY FROM
SINGULAR MEAN-FIELD CONNECTIVITY

STRUCTURE

We have shown that O(1) spike train correlations can
be obtained in balanced networks by including correla-
tions between neurons in an external layer (〈Sx, Sx〉 ∼
O(1)), defining what we refer to as the “correlated state.”
Previous work shows that O(1) spike train correlations
can be obtained in the recurrent network with uncorre-
lated external spike trains (〈Sx, Sx〉 = 0) when the mean-
field connectivity matrix is constructed in such a way
that the recurrent network cannot achieve the cancella-
tion required for these states to be realized [39–41]. This
can be achieved using networks with several discrete sub-
populations or networks with distance-dependent connec-
tivity. We first review these previous results by consid-
ering networks with discrete sub-populations, then show
that excitatory-inhibitory tracking is similar to the asyn-
chronous state in this case.
The recurrent networks considered above have two sta-

tistically homogeneous sub-populations: one excitatory
and one inhibitory and the external population is a sin-
gle homogeneous population. Suppose instead that there
are K sub-populations in the recurrent network, with

the kth population containing Nk = qkN neurons where∑
k qk = 1. Connectivity is random with pjk denot-

ing the connection probability from population k to j,
and jjk/

√
N denoting the strengths of the connections

for j, k = 1, . . .K. All neurons in population k are as-
sumed to have the PSC kernel ηk(t) which is again as-
sumed to have integral 1. Similarly, suppose that the
external network contains Kx sub-populations each with
Nx

k = qxkNx neurons where
∑

k q
x
k = 1. Feedforward con-

nection probabilities and strengths are given by pxjk and

jxjk/
√
N for j = 1, . . .K and k = 1, . . . ,Kx. Assume that

qk, pjk, jjk, q
x
k , p

x
jk, and jxjk are all O(1). We then define

the K × K mean-field recurrent connectivity matrix by
[W ]jk = pjkjjkqkη̃k and the mean-field feedforward con-
nectivity matrix by [Wx]jk = pxjkj

x
jkq

x
k η̃

x
k . For all of the

networks considered above, we had K = 2 and Kx = 1.
When W is an invertible matrix, Eqs. (5), (9), and

(19) are equally valid for networks with several subpop-
ulations as they are for the simpler networks considered
above. Hence, the mean-field theory of firing rates and
correlations extends naturally to networks with several
populations [40, 41, 43–45, 58]. However, when W is
singular, Eqs. (5), (9), and (19) cannot be evaluated. In-
stead, Eq. (5) can be re-written as

Wr = −Wxrx. (23)

When W is singular, this equation only has a solution, r,
when X = −Wxrx is in the range or “column space” of
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W . Otherwise, balance is broken. An in-depth analysis
of firing rates in such networks is provided in previous
work [44, 45, 58] (and extended to spatially continuous
networks in [41, 43, 58]), so we hereafter assume that X
is in the range of W and balance is achieved.
A similar analysis may be applied to spike train CSDs.

For simplicity, we assume here that spike trains in the
external population are uncorrelated, 〈Sx, Sx〉 = 0, since
this is the case considered in previous work and since this
is the case in which a singularW breaks the asynchronous
state. Eq. (9) can be re-written as

NW 〈S,S〉W ∗ +Wdiag({Sb, Sb}/qb)W ∗ = 〈X,X〉.
(24)

where diag({Sb, Sb}/qb) is a diagonal matrix with ratio
of the mean power spectral density, {Sb, Sb}, divided by
qb = Nb/N on the diagonal, and where we have ignored
smaller order terms. When W is singular, Eq. (24) is not
guaranteed to have a solution, 〈S,S〉. More precisely, a
solution can only exist when the K ×K matrix, 〈X,X〉,
is in the range of the linear operator L defined by

LU = WUW ∗.

In that case, Eq. (24) has a solution so that 〈S,S〉 ∼
O(1/N) and the asynchronous state is still realized. How-
ever, if 〈X,X〉 is not in the range of L, the asynchronous
state cannot be realized because Eq. (24) does not have
a solution.
Using Eqs. (13), (14), and (16), we can write the mean-

field total input CSD as

〈T ,T 〉 = NW 〈S,S〉W ∗ +
√
N(W 〈S,X〉+ 〈X,S〉W ∗)

+ 〈X,X〉.
(25)

IfW is not invertible, thenW ∗ has a non-trivial nullspace.
Let v1, v2, . . . , vn be a basis for the nullspace of W ∗ and
define

P = v1v
∗
1 + v2v

∗
2 + · · ·+ vnv

∗
n

which is a self-adjoint matrix that defines the orthogonal
projection onto the nullspace of W ∗. Note that P is
a Hermitian matrix (P = P ∗) and PW = W ∗P = 0
(the zero matrix). Define the projection A0 = PAP for
any matrix A. Unless 〈X,X〉 is carefully constructed
otherwise, we can expect that

〈X,X〉0 ∼ 〈X,X〉 ∼ O(1).

Then take the projection of both sides of Eq. (25) above
to get

〈T ,T 〉0 = 〈X,X〉0 ∼ O(1). (26)

Hence, the total input CSD is O(1) when 〈X,X〉 is not
in the range of L, even though it is 〈X,X〉/N when W
is invertible (i.e., in the asynchronous state). Moreover,
the structure of 〈T ,T 〉 is given to highest order in N by

〈X,X〉0 = P 〈X,X〉P , which can be computed exactly
from knowledge of the structure of 〈X,X〉 and W .

When neural transfer from T to S is O(1) (see Eq. (6)
and surrounding discussion), this implies that 〈S,S〉 ∼
O(1) so that the asynchronous state is broken when
〈X,X〉 is not in the range of L. While we cannot be
certain that 〈S,S〉 has the same structure as 〈T ,T 〉, it
should have a similar structure as long as neural transfer
of correlations is similar for each sub-population.

Previous work [41] derived similar conditions on the
cancellation required for realizing the asynchronous state
in networks of binary neurons, extended the analysis
to spatially extended networks, and derived analytical
expressions for covariances in these networks. Other
work [39, 40] analyzed singular connectivity in networks
of integrate-and-fire neurons and the extension to spa-
tially extended networks, but only showed when the asyn-
chronous state was broken and did not derive the struc-
ture of covariances when it was broken.

To demonstrate these results, we consider the same
network from above with re-wired feedforward projec-
tions from the external population. Specifically, divide
the excitatory, inhibitory, and external populations each
into two equal-sized sub-populations, labeled e1, i1, x1,
e2, i2, and x2 where population ak contains Na/2 neu-
rons. Hence the network has the same total number of
neurons as before, but we have simply sub-divided the
populations. To distinguish this network from the one
considered in Figs. 1 and 2, we refer to the previous net-
work as the 3-population network and to this modified
network as the 6-population network.

We re-wire the feedforward connections so that x1 only
connects to e1 and i1, and x2 only projects to e2 and
i2. Specifically, we set the connection probabilities to
pajxk

= 2pax if j = k and pajxk
= 0 if j 6= k for a, b = e, i

and j, k = 1, 2, where pab are the connection probabil-
ities for the 3-population network and pajbk for the 6-
population network. This re-wiring assures that neurons
in the recurrent network receive the same number of feed-
forward connections on average from the external popula-
tion. The recurrent connectivity structure is not changed
at all. Specifically, we set pajbk = pab for a, b = e, i.
All connection strengths are unchanged, jajbk = jab for
a = e, i and b = e, i, x and all neurons in the external
population have the same firing rate, rx, as before. See
Fig. 5(a) for a schematic of this network.

The feedforward mean-field connectivity matrix can be
written in block form as

Wx =

[
W 2×1

x 0

0 W 2×1
x

]

where 0 is the 2×1 zero-matrix and W 2×1
x = [wex wix]

T

is the 2 × 1 feedforward connectivity matrix for the 3-
population network. Note that Wx is 4 × 2 since there
are 4 populations in the recurrent network and 2 popu-
lations in the external population. The recurrent mean-
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FIG. 5. Correlated variability in a balanced network with singular mean-field connectivity matrix. (a) Network
schematic. The recurrent network is statistically identical to the networks considered previously, but there are two external
populations that each connect to a different half of the neurons in the recurrent network. (b) Same as Fig. 1(f), but for the
multi-population network from (a). (c) Same as Fig. 1(g), but for the network in (a) and where input covariances are only
averaged over postsynaptic neurons in the same group (both postsynaptic cells in e1 or both in e2). The dashed gray curve
shows the theoretical prediction for total input covariance (the black curve) from Eq. (27). (d) Same as Fig. 1(i), but for the
network in (a) and where spike count covariances are only averaged over postsynaptic neurons in the same group (first cell in
aj and second cell in bj for a, b = e, i and j = 1, 2). (e)-(f) Same as (c) and (d), but covariances are computed between cells
in opposite groups (one cell in a1 and the other cell in b2).

field connectivity matrix is

W =
1

2

[
W 2×2 W 2×2

W 2×2 W 2×2

]

where

W 2×2 =

[
wee wei

wie wii

]

is the 2 × 2 recurrent connectivity matrix for the 3-
population network. Note that W is 4 × 4. Here,
wab = pabjabqbη̃b are the same values used above for an-
alyzing the 3-population network.
Even though W is non-invertible, X = Wx[rx rx]

T is
in the range of W for this example, so firing rates in the
balanced state can be computed using Eq. (23), and are
identical to the firing rates for the 3-population networks
considered above.
The nullspace of W ∗ is spanned by the orthonormal

vectors

v1 =
1√
2
[1 0 − 1 0]T

and

v2 =
1√
2
[0 1 0 − 1]T

so the projection matrix is given in block form by

P =
1

2

[
I2 −I2
−I2 I2

]

where I2 is the 2× 2 identity matrix.
The external input CSD is determined by the aver-

age number of overlapping feedforward projections to any
pair of neurons in the recurrent network (multiplied by
their connection strength and rx), which gives (in block
form)

〈X,X〉 = 2

[
〈X,X〉2×2

0

0 〈X,X〉2×2

]

where 0 is the 2 × 2 zero matrix and 〈X,X〉2×2 is the
external input CSD from the 3-population network, given
by Eq. (8). Therefore, by Eq. (26),

〈T ,T 〉0 = 〈X,X〉0 = P 〈X,X〉P

=

[
〈X,X〉2×2 −〈X,X〉2×2

−〈X,X〉2×2 〈X,X〉2×2

]
.

(27)

In other words, the mean total input CSD between excita-
tory neurons in the same subgroup (two neurons in e1 or
two neurons in e2; diagonal blocks above) is positive and
equal to half the mean external input between the same
neurons. Hence, the cancellation by the recurrent net-
work only reduces the external input CSD by a factor of
1/2, as opposed to the O(1/N) reduction realized in the
asynchronous state (when W is invertible). In contrast,
the mean total input CSD between excitatory neurons in
opposite subgroups (one neuron in e1 and the other in
e2; off-diagonal blocks above) has the same magnitude
as for same-subgroup pairs, but is negative. This rep-
resents a competitive dynamic between the two groups
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since they inhibit one another (recurrent connections are
net-inhibitory in balanced networks [28, 45]), but receive
different feedforward input noise. Interestingly, the aver-
age CSD between all pairs of spike trains is still O(1/N)
in this example, but it is easy to design examples with
singular W in which this is not true.

Simulating this network for varying values of N shows
that firing rates approach those predicted by the balance
equation (23) (Fig. 5(b)), confirming that balance is real-
ized. Pairs of excitatory neurons in the same group (both
neurons in e1 or both neurons in e2) receive positively
correlated external input and recurrent input (Fig. 5(c),
purple and green curves) that are partially canceled by
negative correlations between their recurrent and excita-
tory input (Fig. 5(c), yellow curve). Because the cancella-
tion is only partial, the correlation between the neurons’
total inputs is O(1) (Fig. 5(c), black curve) in contrast to
the asynchronous state (compare to Fig. 1(g),(h) where
cancellation is perfect at large N). The total input co-
variance agrees well with the theoretical prediction from
Eq. (27) (Fig. 5(c), dashed gray line). As a result of
this lack of cancellation between total input covariance,
spike count covariances are also O(1) and positive be-
tween same-group pairs (Fig. 5(d)). For opposite group
pairs (one neuron in e1 and the other in e2), cancellation
is also imperfect, but this leads to negative total input
covariance, in agreement with the theoretical prediction
from Eq. (27) (Fig. 5(e)), and leads to negative spike
count covariances between neurons in opposite popula-
tions (Fig. 5(f)).

In summary, we have analyzed two mechanisms to gen-
erate O(1) spike train correlations in balanced networks.
For the first mechanism (Fig. 2), spike trains in the ex-
ternal population are correlated so that external input
correlations are O(N). Cancellation is achieved so that
spike train correlations are reduced to O(1). For the
other mechanism (Fig. 5), external input correlation is
O(1), but precise cancellation cannot be achieved so that
spike trains inherit the O(1) correlations from the input.
How could these two mechanisms be distinguished in cor-
tical recordings? Under the first mechanism, we showed
that fluctuations of inhibitory input to individual neu-
rons closely tracks fluctuations of other neurons’ excita-
tory inputs (Fig. 3(c)). This should not be the case under
the second mechanism because precise cancellation is not
realized. Indeed, plotting the excitatory and inhibitory
input to three excitatory neurons (two in e1 and one in
e2) shows that input fluctuations are not closely tracked
(Fig. 6). This provides a way to distinguish the two mech-
anisms from paired intracellular recordings. Indeed, the
first mechanism (which we refer to as the “correlated
state”) appears more consistent with the cortical record-
ings considered here (compare Fig. 3(a) to Figs. 3(c) and
6).
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FIG. 6. Synaptic input currents in a balanced network
with correlations from singular mean-field connectiv-
ity. Same as Fig. 3(a) except for the network from Fig. 5.
(a) Input currents to two excitatory neurons in population e1
(cells 1 and 2). (b) Input currents to an excitatory neuron in
population e2 (cell 3).

VII. SUMMARY AND DISCUSSION

We analyzed correlated variability in recurrent, bal-
anced networks of integrate-and-fire neurons receiving
correlated feedforward input from an external population.
We showed that correlations between spike trains in the
recurrent network are small (O(1/N)) when spike trains
in the external population are uncorrelated, consistent
with previous work on the asynchronous state [31, 40],
but much larger (O(1)) when spike trains in the exter-
nal population are correlated, giving rise to a “correlated
state.” In both states, strong correlations in the feedfor-
ward input are canceled by recurrent synaptic input due
to the excitatory-inhibitory tracking that arises naturally
in densely connected balanced networks. In the corre-
lated state, this cancellation allows for the derivation of
a concise and accurate closed form expression for mean-
field low frequency spike train CSDs and spike count co-
variances in terms of synaptic parameters alone. Hence
spike count covariances in the correlated state are deter-
mined predominately by synaptic connectivity structure,
not neuronal dynamics. The tracking of excitatory synap-
tic input by inhibition was observable on a pair-by-pair
basis in the correlated state, but not the asynchronous
state, suggesting that the correlated state is more consis-
tent with some in vivo recordings.
In our analysis of the correlated state (c > 0), we

only considered recurrent networks with two, statistically
homogeneous neural populations: one excitatory and
one inhibitory (with the exception of the simple multi-
population model analyzed in Section VI). Our analysis
can be extended to arbitrarily many subpopulations as
long as each sub-population contains O(N) neurons, and
also extends to networks with connection probabilities
that depend on distance, orientation tuning, or other con-
tinuous quantities. This analysis has been developed for
the asynchronous state in previous work [40, 41] and is
easily extended to the correlated state as well. The pri-
mary difference is that 〈X,X〉 is O(N) instead of O(1).
Previous work has shown that networks with multiple

sub-populations and networks with distance-dependent
connectivity can break the asynchronous state in bal-
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anced networks when the network connectivity structure
is constructed in such a way that the recurrent network
cannot achieve the cancellation required for the asyn-
chronous state [39–41], leading to O(1) correlations be-
tween some cell pairs. We showed that the precise track-
ing of excitation by inhibition provides an experimen-
tally testable prediction for distinguishing this mecha-
nism from the one underlying the correlated state (see
Section VI).

Another alternative mechanism for achieving larger
correlations in balanced networks is through instabili-
ties of the balanced state. Such instabilities can cre-
ate pattern-forming dynamics that produce intrinsically
generated spike train correlations [42, 43, 62–68]. Some
recordings show that local circuit connectivity can in-
crease correlations [69], which is consistent with inter-
nally generated correlations, but inconsistent with the
mechanisms that we consider here. In cultured popula-
tions of cortical neurons, moderate spike train correla-
tions and excitatory-inhibitory tracking emerge even in
the absence of correlated external input [30], suggesting
that they are generated intrinsically. Correlations from
pattern forming instabilities can be distinguished from
the externally produced correlations considered here in
at least two ways. Since instabilities generate correla-
tions internally, they should produce weak correlations
between activity in the recurrent network and activity in
the external population(s) providing input to that net-
work [42], in contrast to the mechanisms we consider
here. Also, the presence of pattern forming instabilities
in balanced networks depends on the timescale and spa-
tial extent of excitatory and inhibitory recurrent synap-
tic projections as well as the strength of external input
to the inhibitory population [42, 43, 62, 66, 68]. In cul-
tured populations [30], these parameters can more easily
be measured or modified to help determine the role of
pattern forming instabilities in generating correlations.

We considered correlations produced by near-
synchronous, correlated spiking in an external popula-
tion (see Appendix C), but the correlated state could
also be generated by time-varying firing rates in the
external population. This could be modeled, for exam-
ple, by replacing the homogeneous Poisson processes in
the external population by doubly stochastic Poisson
processed in which the rate fluctuations were shared
across cells. This would produce O(N) external input
covariance to the recurrent network and O(1) spike
train correlation, so the mathematical analysis we
considered applies equally well to this model. Future
work should consider ways to distinguish correlations
arising through shared rate fluctuations from those
generated by near-synchronous spiking in a presynaptic
layer.

In the correlated state, we found that the mean and
empirical standard deviation of correlations is similar
in magnitude, but in some recordings, mean correla-
tions are much smaller than standard deviations [32, 35,
48, 70] suggesting that those circuits were in an asyn-

chronous state, not a correlated state, during record-
ing [48]. More generally, some recordings show very
small mean correlations consistent with the asynchronous
state [32, 48, 70], while others show larger correlation
magnitudes [6, 33, 71]. Indeed, the magnitude of mean
correlations can depend on many factors [6, 71], including
arousal [72], attention [42, 73], stimulus [74], anesthetic
state [31, 32, 35, 38], and cortical area and layer [34, 75–
78].

In summary, spike train correlations and excitatory-
inhibitory tracking likely arise from multiple mechanisms
in different cortical areas, cortical layers, and conditions.
The external input correlations introduced in this work
are one such mechanism. Future studies should work
to enumerate these mechanisms and generate experimen-
tally testable predictions that distinguish them.

In the correlated state, spike train correlations in the
recurrent network are essentially inherited from corre-
lations between spike trains in the external population.
Hence, the O(1) correlations realized by this mechanism
require the presence of another local network with O(1)
correlations. This raises the question of where the O(1)
correlations are originally generated. One possibility is
that they could be generated in a presynaptic cortical
area or layer through the alternative mechanisms dis-
cussed above. Another possibility is that they origi-
nate from a network that is not in the balanced state
at all. Non-balanced networks can easily achieve O(1)
spike train correlations simply from overlapping synap-
tic projections. While cortical circuits are commonly be-
lieved to operate in a balanced state, correlations could
originate in thalamus, retina, or other sub-cortical neural
populations then propagate to cortex.

The cancellation between variances of covariances ob-
served empirically in simulations (Fig. 4(f),(h)) is, to our
knowledge, a novel observation, but we were unable to
prove it analytically. Path integral approaches have re-
cently been applied to compute variances of covariances
in recurrent network models with uncorrelated external
input [48]. Future work should consider the possibility
of extending their analysis to networks with correlated
external input.

Many previous studies of correlated variability in recur-
rent networks rely on linear response theory. In contrast,
our derivation of Eqs. (9) and (19) used a weaker assump-
tion that neural transfer of covariance is O(1) (Eq. (6)
and surrounding discussion). Despite the fact that the
derivation of Eqs. (9) and (19) do not depend on a linear
response assumption, the equations themselves are linear
and are the same that one would arrive at using linear
response theory. Indeed, Eq. (9) and similar equations
have been previously derived for various models using
linear response techniques [5, 14, 31, 41, 46–48]. Hence,
despite the use of neurons’ gains or susceptibility func-
tions in this previous work, the resulting equations for
mean-field covariance in the asynchronous state does not
depend on the gains in the large N limit (see equations
38-39 in the supplement to [31] and equation 38 in [46]).
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Even though the resulting equation is the same, our
derivation of Eq. (9) is more general than derivations
that rely on linear response theory. Specifically, linear
response theory assumes that 〈Sa, Ub〉 ≈ Aa〈Ta, Ub〉, but
our derivation is valid when relationship between 〈Sa, Ub〉
and 〈Ta, Ub〉 is nonlinear, as long as 〈Sa, Ub〉/〈Ta, Ub〉 ∼
O(1) as N → ∞. Our derivation also applies when
〈Sa, Ub〉/〈Ta, Ub〉 depends on the identity of U , e.g., it
is different for U = S versus U = X . Our derivation is
also valid when non-linear neural transfer causes cross-
frequency coupling, i.e., when 〈Sa, Ub〉(f0) depends on
〈Ta, Ub〉(f) for values of f 6= f0. This is an interesting
conclusion because frequencies are de-coupled in Eqs. (9)
and (19), indicating an asymptotic linearity of the re-
lationship between mean-field external input covariance
and mean-field spike count covariance even in a non-
linear system. This is possible because synapses in our
model are linear and synaptic filtering dominates the net-
work response properties at sufficiently large N and low
frequencies (see Eqs. (6), (12), and surrounding discus-
sion).

When input correlations are weak, covariance transfer
for integrate-and-fire neurons is approximately linear so
linear response approaches are justified [8, 53, 54], but
transfer can become nonlinear (but still O(1)) when cor-
relations are stronger [54, 79, 80]. Our results show that,
even when the transfer of input covariance to spike train
covariance is nonlinear, the mean-field relationship be-
tween 〈X,X〉 and 〈S,S〉 is still linear to highest order
in N and is the same relationship one would obtain if
transfer were linear. Note that this linear relationship
only applies at the mean-field level. Individual, pairwise
CSDs between spike trains might still be non-linearly re-
lated to their pairwise external input CSDs. Recent work
has called for looking beyond linear analysis of neuronal
networks [81]. Our analysis shows that, even in networks
where neural transfer of inputs is nonlinear, linear mean-
field analysis can still be accurate and useful.

Despite the fact that Eq. (9) does not depend on neu-
rons’ susceptibility functions or gains, it does depend on
neurons’ mean spike count variance or power spectral
densities. In contrast, Eq. (19) shows that mean-field
covariance in the correlated state does not depend (to
highest order in N) on neurons’ susceptibility functions,
gains, power spectral densities, or spike count variance,
but only involves synaptic parameters. This is similar
to previous work showing that the dominant frequencies
of oscillatory activity in balanced networks depends only
on synaptic parameters [82]. Similarly, previous work
showed that correlations in binary networks of inhibitory
neurons without external drive are independent of con-
nection strengths in the limit of strong connectivity (see
equation 30 in [83] and equation 32 in [46]). The inde-
pendence of spike count covariance on neurons’ suscepti-
bilities and power spectral densities is an important con-
clusion because, for spiking neuron models, power spec-
tral densities and susceptibility functions (or spike count
variances and gains) can depend nonlinearly on the pa-

rameters of the neuron model as well as first, second, and
higher moments of the neurons’ input statistics [84–87]
and they can be difficult to compute numerically.
Numerical methods for approximating power spec-

tral densities and susceptibility functions in networks
of integrate-and-fire neurons have been developed us-
ing a diffusion approximation and Fokker-Planck tech-
niques [8, 9, 11, 12, 49, 88], but this approach assumes
that neurons’ synaptic input is dominated by or well-
approximated by Gaussian white noise. Previous work
satisfies this assumption by including Gaussian white
noise as external input and making input from the re-
current network much weaker than this white noise in-
put (for example, by making recurrent connectivity weak
or sparse). In addition, instantaneous synapses (ηb(t) =
δ(t)) can make the diffusion approximation more accu-
rate (although see [89, 90]). The diffusion approxima-
tion is not valid in our model since our external input
is not well-approximated by Gaussian white noise, our
recurrent input is approximately as strong as external in-
put, and our synapses are not instantaneous. While some
specialized approximations have been developed to avoid
the assumption of Gaussian white noise input in various
models and parameter regimes [1, 15, 55, 90–93], these
approaches are outside the scope of our study since our
central conclusion is that these approximations are un-
necessary for deriving mean-field spike count covariance
in the correlated state.
Three unproven assumptions underly our mean-field

analysis of the correlated state. The first assumption is
that neural transfer is O(1) (Eq. (6) and surrounding dis-
cussion). The third assumption is that mean-field power
spectral densities or spike count variances {Sa, Sa} are
O(1). The third assumption is that variability connec-
tion strengths is not strongly correlated with variability
in individual CSD values (see comment in derivation of
Claim 2 in Appendix A). These assumptions are made
in other work, even if not stated explicitly. We have
been unable to rigorously prove these assumptions for
the model studied here, leaving an open problem for fu-
ture work.
In summary, we showed that correlations in balanced

networks can be caused by feedforward input from a pop-
ulation of neurons with correlated spike trains, defining
the “correlated state.” In this state mean low-frequency
CSD or spike count covariance is determined by a sim-
ple, closed-form equation of known parameters, greatly
simplifying the analysis of spike count correlations in
such networks. The correlated state predicts a precise
balance between the fluctuations in excitatory and in-
hibitory synaptic input to individual neuron pairs, con-
sistent with some in vivo recordings [23].
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Appendix A: Mean-field analysis of correlated
variability in the asynchronous and correlated states

Here, we give a detailed derivation of mean-field CSDs
that applies to both the asynchronous and correlated
states. The only differences between parameters in those
states is that 〈Sx, Sx〉 = 0 in the asynchronous state and
〈Sx, Sx〉 ∼ O(1) in the correlated state. We derive CSDs
in terms of 〈Sx, Sx〉 so that the results can be applied
to either state. To more clearly organize the computa-
tion, we organize the calculation into the derivation of
several claims that are derived separately. We start with
a derivation of the mean-field external input CSD.

Claim 1. Mean-field external input CSD is given by

〈X,X〉 =NWx〈Sx, Sx〉W ∗
x + q−1

x WxrxW
∗
x

− q−1
x Wx〈Sx, Sx〉W ∗

x .
(A1)

Proof. We first compute the external input CSD between
neuron j in population a = e, i and neuron k in popula-
tion b = e, i as

〈Xa
j , X

b
k〉 =

〈
Nx∑

m=1

Jax
jm(ηx ∗ Sx

m),

Nx∑

n=1

Jbx
kn(ηx ∗ Sx

n)

〉

=

Nx∑

m,n=1

Jax
jmJbx

knη̃xη̃
∗
x〈Sx

m, Sx
n〉

=|η̃x|2〈Sx, Sx〉
∑

m 6=n

Jax
jmJbx

kn

+ |η̃x|2rx
Nx∑

m=1

Jax
jmJbx

km.

where we used the bilinearity of the Hermitian cross-
spectral operator, the fact that 〈Sx

m, Sx
n〉 = 〈Sx, Sx〉 for

m 6= n, and 〈Sx
m, Sx

m〉 = rx since external spike trains
are Poisson processes. Note that the convolution with
ηx(t) turned into a multiplication by its Fourier trans-
form, η̃x(f), because the cross-spectral operator, 〈·, ·〉,
takes a pair of stationary stochastic processes (in the time
domain) and returns their cross-spectral density (in the
frequency domain). Averaging over j and k and using

Eq. (2), we get

〈Xa, Xb〉 =|η̃x|2jaxpaxjbxpbxqx
[
(Nx − 1)〈Sx, Sx〉+ rx

]
.

Writing this in matrix form and using wax = η̃xjaxpaxqx
gives Eq. (A1).

Writing 〈Sx, Sx〉 ∼ O(c) so that c = 0 in the asyn-
chronous state and c ∼ O(1) in the correlated state,
Eq. (A1) implies that

〈X,X〉 ∼ O(cN) +O(1).

This expression helps understand the dependence of cor-
relations on both c and N .
A similar derivation gives the mean-field CSD between

neurons’ total and external inputs:

Claim 2. The mean-field CSD between external and to-
tal external inputs is given by

〈T ,X〉 =
√
NW 〈S,X〉+ 〈X,X〉

+
1√
N

WQ−1{S,X}+O
( 〈S,X〉√

N

)
(A2)

where

Q =

[
qe 0
0 qi

]
,

{S,X} =

[
{Se, Xe} 0

0 {Si, Xi}

]
,

and

{Sa, Xa} = avgk〈Sa
k , X

a
k 〉

quantifies the average CSD between neurons’ spike trains
and their own external inputs.

Proof. First break the total input into its constituent
parts T = R +X = E + I +X, so

〈T ,X〉 = 〈E,X〉+ 〈I,X〉 + 〈X,X〉.

To compute the 〈E,X〉 term, we begin with

〈Ea
j , X

b
k〉 =

〈
Ne∑

m=1

Jae
jm(ηe ∗ Se

m), Xb
k

〉

= η̃e

Ne∑

m=1

Jae
jm〈Se

m, Xb
k〉.

Before taking averages, note that whenever b = e, we
need to treat the m = k term separately since it corre-
sponds to the CSD between the spike train of and exter-
nal input to the same neuron, which could scale differ-
ently than the case when b = i or m 6= k. Put another
way, note that the definition of the mean-field values,
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〈Ea, Xb〉 and 〈Se, Xb〉, assumes that m 6= k or b 6= e (see
Eq. (4)). Hence, computing averages separately for each
of b = e, i gives

〈Ea, Xe〉 =
η̃ejaepae√

N
(Ne − 1)〈Se, Xe〉+ {Se, Xe}

=
√
Nwae〈Se, Xe〉+

wae

qe
√
N

({Se, Xe} − 〈Se, Xe〉)

and

〈Ea, Xi〉 =
η̃ejaepae√

N
Ne〈Se, Xi〉 =

√
Nwae〈Se, Xi〉.

Note that this step requires us to assume that individ-
ual values of the random variable, Jae

jm, are not strongly

correlated with individual values of 〈Se
m, Xb

k〉, so that the
expectation of their product can be replaced by the prod-
uct of their expectations. This and similar assumptions
are implicit in derivations in other studies, but are not
typically proven or even explicitly stated.
An identical calculation for 〈Ia, Xb〉 gives

〈Ia, Xi〉 =
√
Nwai〈Si, Xi〉+

wai

qi
√
N

({Si, Xi} − 〈Si, Xi〉)

and

〈Ia, Xe〉 =
√
Nwai〈Si, Xe〉.

This allows us to write the CSD between recurrent and
total input in matrix form as

〈R,X〉 = 〈E,X〉+ 〈I,X〉

=
√
NW 〈S,X〉+ 1√

N
WQ−1{S,X}

+O
( 〈S,X〉√

N

)
.

Now putting together 〈T ,X〉 = 〈R,X〉 + 〈X,X〉 gives
Eq. (A2).

A similar derivation gives the mean-field CSD between
neurons’ total and external inputs:

Claim 3. The mean-field CSD between spike trains and
total external inputs is given by

〈T ,S〉 =
√
NW 〈S,S〉+ 〈X,S〉

+
1√
N

WQ−1{S,S}+O
( 〈S,S〉√

N

)
(A3)

where

{S,S} =

[
{Se, Se} 0

0 {Si, Si}

]

and

{Sa, Sa} = avgk〈Sa
k , S

a
k 〉

quantifies the average power spectral densities of neurons’
spike trains.

Proof. The derivation is identical to the derivation of
Eq. (A2) above, but with X replaced by S.

We now use Claim 2 to derive the asymptotic behavior
of 〈S,X〉.

Claim 4. Under the assumption of O(1) transfer of
mean-field covariance ( i.e., Eq. (7)) and under the as-
sumption that {S,S} ∼ O(1) ( i.e., neurons’ mean power
spectral densities are O(1)), we have that

〈S,X〉 = 1√
N

W−1〈X,X〉+O
( 〈X,X〉

N

)
(A4)

in the limit of large N . For finite N , this approximation
is only accurate whenever

∣∣∣∣
〈T ,X〉

W 〈S,X〉

∣∣∣∣ ≪
√
N (A5)

where the division is performed element-wise.

Proof. Combining the assumption of O(1) transfer of
mean-field covariance (Eq. (6)) with Eq. (A2) gives

〈S,X〉 ∼
√
NW 〈S,X〉+ 〈X,X〉

+
1√
N

WQ−1{S,X}+O
( 〈S,X〉√

N

)
.

(A6)

More rigorously, dividing both sides of Eq. (A2) element-

wise by
√
NW 〈S,X〉 and applying Eq. (7) gives Eq. (A6).

At finite N , note that this derivation of Eq. (A6) from
Eq. (A2) is accurate whenever Eq. (A5) is true.
We do not know the exact scaling of {S,X} with N ,

but applying the Cauchy-Scwartz inequality gives

|{S,X}| ≤
√
{S,S}{X,X} = O

(√
{X,X}

)
(A7)

where we used our assumption that {S,S} ∼ O(1). To
compute {X,X}, we can repeat the derivation in Claim 1
with j = k to get

{X,X} =NWx〈Sx, Sx〉W ∗
x + q−1

x P−1
x WxrxW

∗
x

− q−1
x Wx〈Sx, Sx〉W ∗

x .

where

Px =

[
pex 0
0 pix

]
.

Comparing this to Eq. (A1), we may conclude that

{X,X} ∼ 〈X,X〉

and therefore (using Eq. (A7) and the fact that
{X,X} ≥ O(1) in both the asynchronous and correlated
states), we have that

{S,X} ≤ O(〈X,X〉)
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This allows us to rewrite Eq. (A6) as

〈S,X〉 ∼
√
NW 〈S,X〉+ 〈X,X〉

+O
( 〈X,X〉+ 〈S,X〉√

N

)
.

The only way that this equation can be self-consistent
is if the terms on the right hand side cancel as N →
∞ which implies that 〈S,X〉 ∼ 〈X,X〉/

√
N and, more

specifically, that Eq. (A4) is satisfied as N → ∞.

We now derive the asymptotic values of mean-field
spike train CSDs.

Claim 5. Under the assumptions made in Claim 4, we
have that

〈S,S〉 = 1

N
W−1〈X,X〉W−∗ − 1

N
Q−1{S,S}

+O
( 〈X,X〉

N3/2

) (A8)

in the limit of large N . For finite N , this approximation
is accurate under Eq. (A5) and

∣∣∣∣
〈T ,S〉

W 〈S,S〉

∣∣∣∣ ≪
√
N (A9)

where the division is performed element-wise.

Proof. The proof is similar to that of Claim 4. Combining
the assumption of O(1) transfer of mean-field covariance
(Eq. (6)) with Eq. (A3) gives

〈S,S〉 ∼
√
NW 〈S,S〉+ 〈X,S〉

+
1√
N

WQ−1{S,S}+O
( 〈S,S〉√

N

)
. (A10)

More rigorously, dividing both sides of Eq. (A3)

element-wise by
√
NW 〈S,S〉 and applying Eq. (7) gives

Eq. (A10). At finite N , note that this derivation of
Eq. (A10) from Eq. (A3) is accurate whenever Eq. (A9)
is true for U = S.
Taking the conjugate-transpose of Eq. (A4) gives

〈X,S〉 = 〈X,S〉∗ =
1√
N

〈X,X〉W−∗ +O
( 〈X,X〉

N

)
.

Plugging this into Eq. (A10) gives

〈S,S〉 ∼
√
NW 〈S,S〉+ 1√

N
〈X,X〉W−∗

+
1√
N

WQ−1{S,S}+O
( 〈S,S〉√

N

)

+O
( 〈X,X〉

N

)
.

The only way this equation is self-consistent is if the
terms on the right hand side cancel as N → ∞, which im-
plies that 〈S,S〉 ∼ O(〈X,X〉/N +{S,S}/N) and, more

specifically, Eq. (A8) is satisfied asN → ∞. For accuracy
at finite N , we explicitly needed to assume Eq. (A9), but
also implicitly assumed Eq. (A5) when we used Eq. (A4).

Appendix B: Results from simulations with different
connectivity parameters

So far, all of our simulations used the same con-
nectivity parameters. Here, we consider results with
different parameters. Specifically, we set jee/Cm =
35mV, jei/Cm = −200mV, jie/Cm = 120mV, jii/Cm =
−300mV, jex/Cm = 200mV, and jixCm = 150mV. Note

that jab was scaled by
√
N to produce the true connection

strengths, as indicated in Results. We then repeated the
simulations from Figs. 1(i), 1(j), and 2(i). The results,
shown in Fig. 7(a),(b), and (c) respectively, show simi-
lar overall findings to those reported for the connectivity
parameters used in Results.
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FIG. 7. Results from simulations with different con-
nectivity parameters. (a)-(c) Same as Figs. 1(i), 1(j),
and 2(i) respectively except that connectivity parameters
were changed to jee/Cm = 35mV, jei/Cm = −200mV,
jie/Cm = 120mV, jii/Cm = −300mV, jex/Cm = 200mV,
and jixCm = 150mV. (d) Same as Fig. 1(i) except external
input was deterministic and time-constant (Xa

j (t) = Xa) so
〈X ,X〉 = 0 and only the second term in Eq. (9) is non-zero.
The dotted line shows this second term.

Appendix C: Generation of correlated spike trains
for external inputs.

To generate correlated, Poisson spike trains for the ex-
ternal population in the correlated state we used the mul-
tiple interaction process (MIP) method [84] with jitter-
ing. Specifically, we generated one shared “mother” pro-
cess with firing rate rm = rx/c. Then, for each of the
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Nx “daughter” processes, we randomly kept each spike
in the mother process with probability c. As a result,
each daughter process is a Poisson process with firing rate
crm = rx and a proportion of c of the spikes are shared be-
tween any two daughter processes. To get rid of perfect
synchrony between the daughter processes, we jittered
each spike time in each daughter process by a normally
distributed random variable with mean zero and stan-
dard deviation τc = 5ms. Upon jittering, the daughter
processes remain Poisson and the resulting CSD between
daughter processes is given by Eq. (20). Spike count cor-
relations between the daughter processes over large time
windows are exactly c. The daughter processes were used
as the spike trains, Sx

j (t) in the external population in
the correlated state. See [84] for a deeper analysis of this
algorithm.

Appendix D: Parameter values and details of
computer simulations

All connection probabilities were pab = 0.1 for a = e, i
and b = e, i, x. Synaptic timescales were τe = 8ms,
τi = 4ms, and τx = 10ms. The firing rate of the
external population was rx = 10Hz and, in the corre-
lated state, the correlation was c = 0.1 with a jitter of
τc = 5ms. All covariances and correlations were com-

puted by counting spikes or integrating continuous pro-
cesses over a window of length 250ms. Membrane capac-
itance, Cm, is arbitrary so we report all current-based
parameters in relation to Cm. For convenience, one can
therefore set Cm = 1. Unscaled connection strengths
were jee/Cm = 25mV, jei/Cm = −150mV, jie/Cm =
112.5mV, jii/Cm = −250mV, jex/Cm = 180mV, and

jixCm = 135mV. Note that jab was scaled by
√
N to

produce the true connection strengths, as indicated in
Results. Neuron parameters are gL = Cm/15, EL =
−72mV, Vth = −50mV, Vre = −75mV, Vlb = −100mV,
∆T = 1mV, and VT = −55mV. Synaptic currents in fig-
ures are reported in units CmV/s. Covariances between
synaptic currents are computed between integrals of the
currents (see Eq. (3) and surrounding discussion), so the
covariances have units C2

mmV 2.
The differential equations defining the neuron model

were solved using a forward Euler method with time step
0.1ms. Statistics in Figs. 1(d), 2(c),(d), and 4(e),(f) were
computed from a simulation of duration 50s. Statistics
in Figs. 1(e)-(i), 2(e)–(i), and 4(c),(d),(g),(h) were com-
puted by repeating a simulation of duration 50s over ten
trials for each value of N , then averaging over trials. For
each trial, network connectivity was generated with a
different random seed, so the statistics are averaged over
time and over realizations of the “quenched” variability
of network connectivity.
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[8] Benjamin Lindner, Brent Doiron, and André Longtin, “Theory of oscillatory firing induced by spatially correlated noise
and delayed inhibitory feedback,” Phys Rev E 72, 061919 (2005).

[9] S Ostojic, N Brunel, and V Hakim, “How connectivity, background activity, and synaptic properties shape the cross-
correlation between spike trains,” J Neurosci 29, 10234–10253 (2009).

[10] V Pernice, B Staude, S Cardanobile, and S Rotter, “How structure determines correlations in neuronal networks.”
PLoS Comput. Biol. 7, e1002059 (2011).

[11] Volker Pernice, Benjamin Staude, Stefano Cardanobile, and Stefan Rotter, “Recurrent interactions in spiking networks
with arbitrary topology,” Phys Rev E 85, 031916 (2012).
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