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Compression stiffening, or an increase in shear modulus with increasing compressive strain, has
been observed in recent rheometry experiments on brain, liver, and fat tissues. Here, we extend
the known types of biomaterials exhibiting this phenomenon to include agarose gel and fruit flesh.
The data reveal a linear relationship between shear storage modulus and uniaxial pre-stress, even
up to 40% strain in some cases. We focus on this less familiar linear relationship to show that two
different results from classic elasticity theory can account for the phenomenon of linear compression
stiffening. One result is due to Barron and Klein, extended here to the relevant geometry and pre-
stresses; the other is due to Birch. For incompressible materials, there are no adjustable parameters
in either theory. Which one applies to a given situation is a matter of reference state, suggesting
that the reference state is determined by the tendency of the material to develop, or not develop,
axial stress (in excess of the applied pre-stress) when subjected to torsion at constant axial strain.
Our experiments and analysis also strengthen the notion that seemingly distinct animal and plant
tissues can have mechanically similar behavior at the quantitative level under certain conditions.

I. INTRODUCTION

The effect of pre-stress on a biological tissue’s elastic
moduli and related sound velocities, etc. is an interest-
ing question, given that a living tissue confined in volume
generically develops pre-stress in the form of homeostatic
pressure. This condition is characterized by a steady-
state of cell division and death processes [1]. For vas-
cularized tissue, an upper limit on homeostatic pressure
is set by the ∼ 10 kPa blood pressure. Ex vivo shear
stiffness of mammalian brain matter is ∼ 1 kPa, for com-
parison [2, 3]. One might naturally ask how, or whether,
the latter value would be different in the case of living
or otherwise pre-stressed tissue. Very recent results us-
ing magnetic resonance elastography indicate the shear
modulus of living brain tissue increases linearly with in-
tracranial (homeostatic) pressure [4].

A series of recent parallel-plate rheometry experi-
ments have explored pre-stress effects in animal tissue
and biopolymer network samples of characteristic size
∼ 1 cm, by subjecting them to a combination of static
axial compression and ∼ 1 Hz torsional oscillations [5–
10]. To avoid slippage during torsion, and also to fa-
cilitate axial tension, adhesive contact is typically made
between the rheometer plates and the ends of the cylin-
drical sample [11]. It has been pointed out that such ad-
hesive boundary conditions effectively constrain the lat-
eral dimensions of a sufficiently thin sample, resulting in
a volume change when axial force is applied [8, 9]. In
this thin film limit, one expects stresses within a fluid-
containing tissue sample are redistributed into a state of
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near hydrostatic pressure. Thus, by adjusting the sam-
ple geometry and/or boundary conditions, parallel-plate
rheometers provide a convenient way to measure the ef-
fect of various states of pre-stress on the shear storage
and loss moduli of tissues.

These recent experiments have studied, in particular,
the shear response of brain tissue (both normal and that
isolated from human glioma tumors), as a function of pre-
stress levels expected in vivo from homeostatic pressure
considerations as well as increased vascularization of the
tumors [5]. Similar measurements were also carried out
on liver tissue (both normal and that affected by fibro-
sis) [6]. In all four of these cases, shear storage modulus is
reported to increase with applied uniaxial compression.
The authors refer to this phenomenon as compression
stiffening. Interestingly, when essentially the same ex-
periment is done with the biopolymer network materials
collagen and fibrin (major components of the extracellu-
lar matrix), the opposite effect is found: shear storage
modulus decreases with uniaxial compression, otherwise
known as compression softening, but increases with ex-
tension [7, 8].

One potentially unifying feature of the diffferent tis-
sue results, however, is an observed linear relation-
ship between shear storage modulus and uniaxial pre-
stress [6, 8]. This specific linear relationship has yet to
be a focus of modelers. And yet it is this very relation-
ship that clues us in on several potential new mechanisms
for compressional stiffening depending on the slope, as we
will detail below. And while some of the deformations in-
volved in these experiments are typically what one would
consider to be well outside the regime of linear elasticity
— on the order of 40% strain or more — the compression
stiffening behavior also shows up in (and is qualitatively
similar in) the small deformation regime where strains
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are less than ∼10%. This point is not addressed in prior
theoretical work, which focuses on explaining compres-
sion stiffening from within the framework of hyperelastic
models, such as Ogden models, presumably because such
models are the most realistic ones available for captur-
ing biomaterials undergoing physiologically-relevant de-
formations [6, 10]. However, such models contain mul-
tiple parameters that may be difficult to relate to any
specific structure or signature.

Here, we take the “minimal modeling” approach of try-
ing to gain a theoretical understanding of compression
stiffening at small strains, and then test how well this
linear approach does (or does not) reproduce experimen-
tal data at larger strains, fully aware that in doing so
we are pushing the limits of the theory’s validity. Never-
theless, our results suggest that the essential physics of
compression stiffening is captured by linear elasticity the-
ory; higher-order corrections are clearly needed at larger
deformations. Thus, our interpretation of the leading-
order compression stiffening mechanism is extremely sim-
ple, and relies on no hyperelastic fitting parameters. We
demonstrate the predictive power and universality of our
approach by showing that it agrees with data from five
different classes of biomaterials, including animal tissue
(previously published in Refs. [5, 6, 10]), as well as some
plant tissue and agarose gel samples, newly reported here.

That plant tissue should behave similarly to animal
tissue in these pre-stressed rheometry experiments is not
immediately obvious, given that plant cells contain cell
walls, vacuoles, and chloroplasts, which animal cells do
not. Plant cell walls allow the cells to withstand turgor
pressures on the scale of megaPascals [12] and presum-
ably result in plant tissue typically having larger storage
moduli than animal tissue at the many cell scale. While
plant tissue has long been modeled as an elastic solid [13]
as has animal tissue, it is interesting to quantitatively
compare the two at both small and large strain.

To provide an interpretation for the observed compres-
sional stiffening, we point out a subtlety concerning the
measurement of elastic constants of a material under pre-
stress, and argue that certain instances of linear compres-
sion stiffening can be explained by properly accounting
for pre-stress in the rheometry experiments. The theory
involved was developed in the context of condensed mat-
ter at high pressure [14], and has not commonly been
applied to soft matter at physiologically relevant pres-
sures. While pre-stresses in soft matter systems may be
small in absolute terms, they can be large in comparison
to the elastic moduli, as already mentioned. Our pre-
stress calculation emphasizes the role of boundary condi-
tions in determining whether the applied uniaxial stress
remains uniaxial within the sample, or is redistributed
into an isotropic stress. Meanwhile, other instances of
linear compression stiffening are not readily explained
by the pre-stress theory. Instead, they are consistent
with a conceptually different theory in which hydrostatic
compression and shear are superposed on a zero-stress

reference state. Thus the present work argues that both
theories are applicable to linear compression stiffening;
which one works in a given situation depends upon the
nature of the reference state.

II. EXPERIMENTS: MATERIALS AND
METHODS

Animal tissue samples: The dependence of shear mod-
ulus on compressive strain has previously been reported
for mouse brain [5], liver [6], and fat [10], as has the rela-
tion between axial stress and axial strain. Here we replot
these data to show shear modulus as a function of axial
stress. Details of the sample preparation and rheological
methods are provided in Refs. [5, 6, 10]. Briefly, animal
tissues were cut into disk-shaped samples using an 8 mm
diameter stainless steel punch. Fibrin gel, with a shear
modulus greater than that of the tissues, was used to glue
the sample to the rheometer plate, and a normal force of
1 g was applied to ensure contact between the top of the
sample and the upper plate. This state was assumed to
approximate the zero stress state. The shear modulus of
the samples was measured on a strain-controlled Rheo-
metrics fluids spectrometer III (Rheometrics, Piscataway,
NJ), which can also measure normal forces simultane-
ously with torque. Axial strain was applied by changing
the distance between the parallel plates, and the resulting
axial stress was measured 30 s after changing the gap.

Mango samples: Mango fruit flesh was obtained from
a ripe mango. Samples were cut into 10 mm high and 20
mm wide disks, with the long axis parallel to the seed ori-
entation, using a 20 mm tissue punch. All samples were
from the same fruit. The shear elastic and viscous modu-
lus of mango flesh was measured using a Malvern Kinexus
lab+ rheometer and rSpace software (Westborough, MA)
using a 20 mm parallel plate geometry. Because mango
is slippery, 20 mm sandpaper discs were used to ensure
contact between the plates and the sample. Shear modu-
lus was measured at 1 rad/sec and 5% oscillatory strain.
Triplet mango samples were measured under increasing
compression, up to 20% of the original sample height, in
steps of 4% each.

Agarose gel samples: 2% agarose solution was prepared
by dispersing the appropriate amount of polymer in dis-
tilled water at 100 deg C, while stirring until complete
dissolution. Agarose gels were prepared by pouring the
above solution into a mold and allowing the gelation for
24 h at room temperature. Samples were cut from one
big chunk into 9.5, 3.8 and 1.8 mm high and 20 mm
wide disks using a 20 mm tissue punch. Rheology mea-
surements were performed using a Malvern Kinexus lab+
rheometer with a 20 mm parallel plate geometry. Shear
modulus measurements were carried out at a frequency
of 1 Hz, shear strain amplitude of 2%, and axial com-
pressive strain increasing in steps of 5% up to maximum
value 25%.



3

(a) (b)

(c) (d)

R

L

Faxial

!

(e) (f)

FIG. 1. (a) Schematic of rheometry experiment. In the limit
L� R and for adhesive boundary conditions, axial compres-
sion induces a volume change ∼ πR2∆L [8, 9]. Outside this
limit, the sample is free to bulge laterally, away from a cylin-
drical geometry [6], and any volume change associated with
the compression is � πR2∆L. Torsion measurements were
carried out at fixed axial strain ∆L/L, generating axial stress
deviations δσ from the zero torsion pre-stress σ, but these
were typically small, i.e., |δσ/σ| � 1. (b) Shear storage mod-
ulus G′ versus axial compressive pre-stress σ for normal liver
tissue and fibrotic liver tissue, two and six weeks after disease
onset, replotted from Figure 5a of Perepelyuk, et al. [6]. The
data points in each series correspond to axial strains of 0, 10,
15, 20, and 25%. (c) Compression stiffening data from nor-
mal mammalian brain tissue. Purple triangles are replotted
from Figure 5c of Pogoda, et al. [5]. Axial strain ranges from
zero to 40%, in 5 and 10% increments, respectively. (d) Com-
pression stiffening data from the fat tissue samples studied
by Mihai, et al. [10]. Axial strain again ranges from 0 to
40%, in 10% increments. (e) Compression stiffening behavior
of 2% agarose gel. Different data series correspond to differ-
ent sample aspect ratios (all have R = 1 cm), with all three
samples having been cut from the same master gel. Strain
goes from 0 to 25% in 5% increments. The horizontal shifts
required to collapse the L=9.5mm and L=3.8mm curves onto
the L=1.8mm curve are a rough measure of the gravitational
stresses present in the thicker samples – see footnote above.
(f) Compression stiffening behavior of mango fruit flesh, with
sample aspect ratio L/2R = 1/2.

III. BARRON-KLEIN APPROACH AND
PARALLEL PLATE RHEOMETRY

A. Background

A 1965 paper by Barron and Klein (hereafter, BK1)
treats rigorously the problem of calculating elastic con-
stants of a solid under pre-stress [15]. Taylor expanding
the energy density around the pre-stressed reference con-
figuration yields

∆U

V
= Sijuij +

1

2
Qijkluijukl + . . . , (1)

where uij is the combined deformation due to the pre-
stress Sij , and any other stresses subsequently applied to
the reference state. In general, this deformation consists
of a symmetric part eij and an antisymmetric part wij ,
i.e., uij = eij + wij . The key point (made 15 years prior
to BK1) is that the presence of the linear term modifies
the symmetry properties of the coefficients Qijkl from
those of the usual rank-four elastic modulus tensor [16].
In particular, invariance of the energy density under a
rigid rotation requires that

Qijkl −Qjikl = Sjlδik − Silδjk, (2)

Qijkl −Qijlk = Sjlδik − Sjkδil, (3)

Qijkl −Qjilk = Sjlδik − Sikδjl, (4)

where the δ’s are Kronecker deltas. However, BK1 shows
that there is a tensor cijkl, that in the special case of
isotropic pre-stress Sij = −Pδij where P is pressure, in-
herits all the symmetries of the usual elastic modulus ten-
sor, and enters the stress-strain relationship and equation
of motion in the usual way. (Homogeneous deformation
is assumed in their analysis.) The cost of this finite pres-
sure generalization of the zero-stress elastic constants is
that cijkl is not equal to the second derivative of energy
density with respect to strain, rather that plus a “pres-
sure correction” term:

cijkl =
1

V

∂2U

∂eij∂ekl
+
P

2
(2δijδkl − δilδjk − δikδjl). (5)

To investigate the potential application of the BK1 ap-
proach to the compressional stiffening experiments re-
ported here and in earlier experiments, we must consider
the same deformations as in the experiments. In doing
so, we study both isotropic pre-stress and anisotropic pre-
stress. For the anisotropic pre-stress, we extend the BK1
approach.

B. Torsion with isotropic pre-stress

Torsional deformation of a cylinder whose axis is situ-
ated at x = y = 0 is equivalent to a symmetric strain exx exy exz

eyx eyy eyz
ezx ezy ezz

 =
γ(R)

2R

 0 0 −y
0 0 x
−y x 0

 , (6)
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plus a rotation wxx wxy wxz

wyx wyy wyz

wzx wzy wzz

 =
γ(R)

2R

 0 −2z −y
2z 0 x
y −x 0

 . (7)

Here γ(r) = rφ/L is the so-called “torsional strain”
which has maximum value at r = R (the cylinder ra-
dius), L is the cylinder length, and φ is the angle of twist
of one cylinder end with respect to the other (see Figure
1a). In order to apply the BK1 formalism, we decom-
pose the solid cylinder into small volume elements, each
of which experiences a local, homogeneous strain and un-
dergoes a rigid rotation. Consider the element located at
(xn = rn, yn = 0, zn) and having volume and energy Vn
and Un, respectively. The only nonzero strain compo-
nent is, switching to Voigt notation, e4 = 2eyz = 2ezy =
γ(rn). Equation 5 then says that

c44 =
1

Vn

∂2Un

∂[γ(rn)]2
− P

2
. (8)

For an isotropic material with Lamé parameters λ(= c12)
and µ(= c44), this result extends to all volume elements,
i.e., the shear modulus is given by

µ =
1

V

∂2U

∂γ2
− P

2
. (9)

C. Torsion with uniaxial pre-stress

Next we consider the case Sij = −σδizδjz. This form
is perhaps easier to justify for the experiments in ques-
tion, as no redistribution of the applied stresses, nor any
volume change, is assumed. Unlike the isotropically pre-
stressed reference state, however, the current one may
have transversely isotropic material symmetry (assuming
the initial, unstressed material was isotropic). In other
words, the cells of the tissue may be flattened in the z-
direction.

The counterpart to Equation 5 is straightforwardly ob-
tained from BK1’s Equation 4.21 for the strain energy
density. We find

cijkl =
1

V

∂2U

∂eij∂ekl
+
σ

4
(4δizδjzδkl − δizδkzδjl − δizδlzδjk

−δjzδkzδil − δjzδlzδik).(10)

Caution is needed here, because while cijkl was guaran-
teed to be a well-defined elastic modulus tensor in the
previous section, it is no longer so. There are two sym-
metry “violations” attributed to the uniaxial pre-stress,
namely cxxzz − czzxx = −σ and cyyzz − czzyy = −σ,
according to BK1’s Equation 4.20. Fortunately, c44 is
not directly affected by these violations and presumably
remains a valid elastic constant. Proceeding under this
assumption, Equation 10 gives

c44 =
1

V

∂2U

∂γ2
− σ

4
, (11)

for an isotropic or transversely isotropic material under
torsion.

D. Apparent shear modulus

Suppose one disregards the pre-stress and defines a
quantity

G′ ≡ 1

V

∂2U

∂γ2
=
τ(R)

γ(R)
. (12)

Here the latter equality involving the maximum shear
stress τ(R) is obtained by integrating the energy density
∆U
V = 1

2G
′γ2(r) over the cylinder, and comparing the

result to Hooke’s Law for torsion. Equation 11 now sug-
gests that a plot of G′ versus applied uniaxial pre-stress
will be a straight line having intercept c44 and slope 1/4,
provided the applied uniaxial pre-stress remains uniaxial
within the sample. But if boundary conditions, geome-
try, or some other factor dictates that the uniaxial pre-
stress is redistributed into a hydrostatic pressure, slope
1/2 is predicted (by Equation 9). Intermediate slope val-
ues are predicted in the more general case where the ap-
plied compression generates a state of pre-stress having
both uniaxial and isotropic components.

E. Analysis

In Figure 1, we compare this predicted range of slopes
(bracketed by solid and dash-dot lines) with compression
stiffening data from normal and fibrotic liver, brain, fat,
agarose gel, and mango fruit flesh. With no fitting pa-
rameters, we find good agreement with fibrotic liver and
reasonable agreement with lean and obese fat, but BK1
predicts too small a rate of increase of G′ for the other
biomaterials. More specifically, we find that 2 week old
fibrotic liver redistributes its internal stresses isotropi-
cally, while 6 week old fibrotic liver redistributes its in-
ternal stresses tranversely to the parallel plates. As fi-
brotic liver ages presumably there is more build up of
extracellular matrix (ECM) material intertwined within
the cells. Perhaps such fibrous material modulates how
stresses are redistributed in the presence of uniaxial com-
pression. The normal liver data, on the other hand, does
not agree as well with either slope 1/4 or 1/2.

Regarding fat tissue, there exists better agreement
with the isotropically redistributed pre-stress calculation
for lean fat than for obese, although for obese fat the data
remain within one standard deviation of slope 1/2 for all
data points except the one at largest axial strain. Fat tis-
sue is typically a tissue of high expandability, however,
in an obese state, adipocytes become hypertrophic as a
result of lipid uptake [17]. Fat tissue also contains ECM
material. As fat tissue approaches the obese state, there
are changes in the ECM, mainly through an increasing
deposition of collagen [18].



5

The shear storage modulus versus axial stress for brain,
agarose gel, and mango fruit flesh data do not appear to
exhibit the predicted BK1 behavior. To explain these,
we turn to a different theory.

IV. BIRCH APPROACH AND THE ROLE OF
THE REFERENCE STATE

A. Background

Several decades prior to BK1, Birch [19] analyzed the
case of hydrostatic compression superposed with shear.
He assumed that for an applied stress of the form Tij =
−Pδij + T ′ij , with T ′ij/P � 1, the strain response takes
the form eij = εδij + e′ij , with e′ij/ε � 1. The quan-
tity T ′ij/e

′
ij then defines a modulus that is amenable to

analytic calculation. While there are several important
differences between the Birch and BK1 treatments, the
one that places them on distinct conceptual footings is
the reference state, i.e., the configuration around which
the energy density is expanded. Birch’s moduli are valid
for a zero-stress reference state, while BK1 addresses the
pre-stressed reference state, as detailed above. Another
important difference is that finite strain elasticity theory
is invoked since the hydrostatic compression may be of
order of the moduli of the material [19]. We will not
here describe Birch’s calculation in detail, because it is
more complicated than BK1 and does not easily admit
Pδij → σδizδjz or other generalizations. Birch’s result
for the shear modulus of an isotropic material is

G = µ+
3(3− 4ν)

2(1 + ν)
P, (13)

where ν is Poisson’s ratio. Unlike the BK1 approach,
this latter approach contains one fitting parameter in the
form of Poisson’s ratio. Should the material be incom-
pressible, then there is no fitting parameter. It is illumi-
nating that ν appears in the Birch approach, but does
not appear in the BK1 approach, and this contrast is at
the heart of the difference between the two approaches.
In BK1, all of the compression that is going to happen
has already happened (to the reference state). There-
fore, the material’s compressibility is irrelevant to any
volume conserving deformations with respect to that ref-
erence state. In Birch, the shear response is coupled to
compressibility insofar as both shear and compression are
applied simultaneously to the reference state.

B. Analysis

The Birch approach appears to describe those rheom-
etry data in Figure 1 that are not well-described by
BK1. In particular, the variable Poisson’s ratio can gen-
erate slopes dG/dP ranging from 1 (ν = 1/2) to 9/2
(ν = 0).[20] With the exception of liver and fat, the

rheometry measurements reveal slopes dG′/dσ close to
1 for nearly incompressible (ν ≈ 1/2) materials such as
brain tissue and agarose gel. Mango tissue, like other
fruit, is more compressible due to the internal structure
of gas pockets [21, 22], and we find that mango tissue
exhibits a best fit slope of 2.46. This value is in re-
markably good agreement with Equation 13, upon sub-
stituting Poisson’s ratio of mango (ν = 0.24± 0.05) [23],
which gives dG/dP = 2.47±0.35. That the Birch theory
should work at all for the case of applied uniaxial stress,
as opposed to applied isotropic stress, is perhaps surpris-
ing. Nevertheless, the excellent agreement of Equation
13 with mango, agarose gel, and (at small strains) brain
tissue data, under σ → P , suggests that σ is internally
redistributed into a hydrostatic pressure P , even outside
the thin film limit discussed in the Introduction.

V. DISCUSSION

We extend the list of biomaterials exhibiting compres-
sional stiffening to now include agarose gel and mango
fruit flesh. The ubiquitousness of compressional stiffen-
ing in tissues calls out for an interpretative framework.
By focusing on the observed (but less familiar) linear re-
lationship between shear storage modulus and uniaxial
pre-stress, we provide that interpretative framework via
the application of two different classical elasticity results.
The first is the BK1 approach, which has now been ex-
tended to the relevant experimental geometry, and the
second is the Birch approach. For both approaches the
shear storage modulus increases linearly with increasing
axial stress and which approach applies depends on the
slope of the curve. The liver and fat tissue exhibit BK1
behavior, while the agarose gel, brain, and mango tissue
exhibit Birch behavior.

Materials that exhibit Birch behavior – such that ap-
plied uniaxial stress is internally redistributed as a hy-
drostatic pressure – appear to behave qualitatively like
an elastic bag filled with fluid. This picture is suitable
for both animal and plant tissue, despite the differences
in cell structures, such as organelles unique to plant cells
including cell walls, vacuoles, and chloroplasts. At least
in principle, it should be possible to directly test for this
stress redistribution by including a pressure gauge in the
rheometry apparatus. Importantly, such a redistribution
does not imply that the axial compression modulus ob-
served in the rheometer experiments should be similar to
the tissue bulk modulus. That may be the case in the
thin film limit, but in general, the sample is free to bulge
out laterally during compression and any volume change
is likely � πR2∆L.

The necessity of the two approaches begs the question:
how can we predict which approach (i.e., reference state)
is applicable for a particular sample? It is interesting to
note that the liver and fat tissue contain a fibrous protein
extracellular matrix (ECM), while the brain and mango
tissue and agarose gel do not. Speculatively, the pres-
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ence of this fibrous network could be the origin of the
pre-stressed reference state required for BK1 behavior.
Axial pre-stress might be generating contact changes in
this network, and/or inducing anisotropies or other qual-
itative changes in the distribution of individual fiber ten-
sions, such that the “composite” material’s response to
subsequent shear stresses is altered from what it would
be in the absence of a network component. In fact, Pere-
pelyuk, et al. argue that the interplay of an ECM com-
ponent with a cellular component is what drives com-
pression stiffening [6]. Their proposed mechanism and
conclusions are quite different from ours, as we will mo-
mentarily describe, but we do share a basic premise in
that the fibrous ECM seems to play an important role in
compression stiffening of liver tissue. In any case, a de-
tailed “microscopic” understanding of BK1 and Birch’s
regimes of applicability to the parallel plate rheometry
experiments would be an interesting direction for future
work.

Given our interpretation of the compression stiffening
phenomenon from within linear elasticity theory, it is in-
teresting to consider the question of what constitutes
novel compression stiffening behavior. Any elastically
isotropic material (according to BK1 theory) should obey
G′(σ) = mσ + µ, with 1/4 ≤ m ≤ 1/2 depending upon
boundary conditions and the material’s ability to redis-
tribute stresses, so biological tissues do not appear to be
special in this regard. What is novel compressional stiff-
ening behavior within the context of parallel plate rheol-
ogy, we suggest, are deviations from this BK1 behavior,
such as, perhaps, the Birch behavior which requires stress
redistribution. Another type of deviation is the compres-
sion softening behavior observed in the biopolymer net-
work materials collagen and fibrin [7, 8]. Intriguingly,
these also stiffen in tension, with the same magnitude of
slope (dG/d|σ| = 5) as that appearing in Mears’ version
of the Birch theory for the appropriate Poisson’s ratio
(ν = 0) [24, 25]. Yet another kind of novelty would be
a transition from one slope value to another over time
(given time-independent boundary conditions). As men-
tioned earlier, the liver tissue data in Figure 1b hints at
this. A possible interpretation is that some structural or
compositional change occurs between two and six weeks
after fibrosis onset that reduces the extent to which in-
ternal stresses are isotropically redistributed.

One prior modeling effort to interpret the observed
compressional stiffening has already been mentioned.
Perepelyuk, et al. propose a phenomenological model for
simultaneous description of compression stiffening, ten-
sion softening, and shear softening [6]. This model in-
volves two components: an incompressible cellular phase
and a compressible filamentous (ECM) phase. Mechani-

cal connections between the two components are allowed
to break under load, and re-connect when the load is re-
moved. Compression is thought to expel fluid through
the porous ECM phase, increasing the number of cell-
cell contacts, and resulting in greater resistance to shear.
While reasonable agreement is obtained with their liver
data (replotted here in Figure 1b), this agreement might
be due to the fact that there are at least five fitting pa-
rameters in the model (counting the power law expo-
nents.) Additionally, the reliance on two components
is at odds with agarose gel and with brain and mango
tissue, the former lacking a cellular component and the
latter lacking a filamentous component, but nonetheless
exhibiting compression stiffening, qualitatively similar
to that of liver tissue. Meanwhile, Mihai, et al. ad-
dress compression stiffening in homogeneous materials
by showing that a subclass of Ogden hyperelastic models
can account for compression stiffening in brain and fat
tissue [10], but again, these models have a large number
of fitting parameters. In contrast, the BK1 and Birch
theories provide a simple, universal explanation for com-
pression stiffening and reasonably agree with available
data spanning five different material types, the sole fit
parameters being a binary choice of reference state (i.e.,
whether to apply BK1 or Birch), and in the case of Birch,
the Poisson’s ratio. For nearly incompressible materi-
als, the latter “fit parameter” is effectively eliminated.
Again, which of the two reference states is appropriate
to a given sample may to be related to the presence or
absence of a fibrous ECM component.

To further test the ideas herein against the models
of Perepelyuk, et al. [6] and Mihai, et al. [10], we sug-
gest that additional high-precision rheometer measure-
ment be carried out for a variety of living and non-living
soft materials, with simultaneous pressure measurement
and supplementary Poisson’s ratio measurement, if pos-
sible. Also, since in the BK1 theory it is c44, not G′,
that appears in the equation of motion and determines
the speed of transverse sound vt =

√
c44/ρ, an indepen-

dent measurement of sound velocity could constrain c44

and verify that any pressure-dependence of vt enters only
through the equation of state, ρ(P ), where ρ is density.
Finally, we mention that in the context of tumor identifi-
cation and visualization, the distinction between c44 and
G′ should be important for certain types of ultrasound
imaging, especially shear wave elastography [26].
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Persson, Rev. Mod. Phys. 84, 945 (2012).
[15] T. H. K. Barron and M. L. Klein, Proc. Phys. Soc. 85,

523 (1965).
[16] K. Huang, Proc. Roy. Soc. A 203, 178 (1950).
[17] K. Sunand, C. Kusminski, and P. Scherer, J. Clin. Invest.

6, 016009 (2009).
[18] N. Alkhouli and et al., Am. J. Physiol. Endocr. Metab.

305, E1427 (2013).
[19] F. Birch, J. Appl. Phys. 9, 279 (1938).
[20] It is worth noting that Mears, et al. construct a shear

modulus from Birch’s result for Young’s modulus, obtain-
ing a result similar to, but not identical to, Equation 13.
In their version, dG/dP ranges from 1 to 5 [24, 25].

[21] Q. T. Ho, P. Verboven, H. K. Mebatsion, B. E. Verlinden,
S. Vandewalle, and B. M. Nicoläı, New Phytologist 182,
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