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The statistical analysis of the collective neural activity known as avalanches provides insight into
the proper behavior of brains across many species. We consider a neural network model based
on the work of Lombardi, Herrmann, De Arcangelis et al. that captures the relevant dynamics of
neural avalanches, and we show how tuning the fraction of inhibitory neurons in this model alters
the connectivity of the network over time, removes exponential cut-offs present in the distributions
of avalanche size and duration, and transitions the power spectral density of the network into
an “epileptic” regime. We propose that the brain operates away from this power law regime of
low inhibitory fraction to protect itself from the dominating avalanches present in these extended
distributions. We present control strategies that curtail these power law distributions through either
random or, more effectively, targeted disabling of excitatory neurons.

I. INTRODUCTION

Neurons are the ubiquitous cells found in all intelligent
animals, whose operations and dynamics are responsible
for cognition. Individually the dynamics of neurons are
well known [1–5], but neurons are connected dynamically
in ensembles of billions, and the collective behavior of
these networks of neurons that gives rise to high-level
cognitive functions such as memory and consciousness is
only partially understood.

A common method for analyzing the collective behav-
ior of biological neural networks is through the study
of neural avalanches. An avalanche is a period of con-
tinuous neural activity in the network where signals are
continually transmitted from neuron to neuron. Distri-
butions of various quantities associated with these neu-
ral avalanches, such as the avalanche size, duration, and
power spectral density, are observed to follow power laws,
and the exponents of these power laws appear to govern
the govern the proper functioning of the network [6–8].

In this paper we discuss a model based on the work
of Lombardi, Herrmann, De Arcangelis et al. [9–15] of
an avalanching neural network, that correctly reproduces
the power law behavior of the avalanche size distribution,
duration distribution, and power spectral density of neu-
ral activity. We show how these power laws are affected
by modifying the fraction of inhibitory neurons, neurons
that serve to suppress signals in the network, and observe
intriguing extended power law behavior indicative of crit-
icality in the avalanche size and duration distributions,
as well as exponents suggestive of epileptic behavior in
the power spectral density at low inhibitory fractions.
We also monitor how the outgoing connectivity distribu-
tion of the network evolves under the effects of different
inhibitory fractions.

Finally, we present two distinct strategies to control
and remove the extended tails of the avalanche size and
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duration distributions in networks with low inhibitory
fractions through the disabling of either random or highly
connected neurons. Removing these extended tails serves
to protect these networks from the extreme avalanches
that occur in these extended distributions.

A. Neurons

Biological neural networks are composed of individual
neurons connected to each other by synapses. Synapses
are small gaps between neighboring neurons where neu-
rons can release and receive neurotransmitters: chemicals
that cause the receiving neuron to open or close ion gates
and pumps in order to increase or decrease its membrane
potential, depending on the neurotransmitter received.
Some neurons solely release inhibiting neurotransmitters,
and will be referred to as “inhibitory neurons.” These
neurons serve to suppress signals in brain, and make up
20-30% of the neurons in the human cortex [15, 16]. As a
matter of definition, the neuron releasing the neurotrans-
mitters will be referred to as the “pre-synaptic” neuron,
and the neuron receiving the neurotransmitters will be re-
ferred to as the “post-synaptic” neuron [1]. A schematic
of a synapse is shown in Fig. 1.

If the membrane potential of the post-synaptic neu-
ron is increased beyond a threshold value then the post-
synaptic neuron generates a spiking potential that trav-
els down the length of the post-synaptic neuron’s axon.
Synapses that this signal reaches will release neurotrans-
mitters of their own, to be picked up by other neurons.
This signal is referred to as an “action potential,” and
this process will summarily be called “firing.” It is im-
portant to note that the connections between neurons are
not symmetric. It is not necessarily true that if neuron
A can transmit to neuron B, then neuron B can transmit
to neuron A [1].

Pre-synaptic neurons that have just fired lock down
their ion channels for a period of 3-4 ms [2]. During
this period, the neuron cannot respond to any received
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FIG. 1: A schematic of a synapse. The upper half of
the image represents the pre-synaptic neuron, while the
lower half represents the post-synaptic neuron. The gap

between the pre- and post-synaptic neurons is the
synapse. Neurotransmitters (small red circles) are

collected in the synaptic vesicles (circular cavities in the
pre-synaptic neuron). When the neuron fires, the

synaptic vesicles are transported to the surface of the
neuron at the synapse and expel their

neurotransmitters. The neurotransmitters propagate
through the synapse and bind to receptors on the
surface of the post-synaptic neuron (red-orange

half-circles). These receptors activate ion channels
(paired green rectangles) on the post-synaptic neuron

which cause the membrane potential of the
post-synaptic neuron to change as ions are transported
into or out of the post-synaptic neuron’s cell body [1, 2].

neurotransmitter, and is for our purposes dormant. This
period of quiescence is referred to as the “refractory pe-
riod,” and serves (among other purposes) to enforce that
action potentials propagate unidirectionally down axons
[1].

The strength of signals transmitted across synapses is
determined by the combination of several different fac-
tors from both the pre- and post-synaptic neurons, such
as the quantity of neurotransmitters produced by the pre-
synaptic neuron, and the number of neurotransmitter re-
ceptors available on the post-synaptic neuron’s surface.
The strength of these signals can change over time [3–5].

One such mechanism for the change in synaptic
strength is Hebbian plasticity, a rule which states that
synapses which successfully perpetuate signals, i.e., when
the pre-synaptic neuron causes the post-synaptic neu-

ron to fire, increase their strength [17]. This increase
in synaptic strength and efficiency can be affected by a
variety of processes, which include the increased produc-
tion of neurotransmitters in the pre-synaptic neuron [3]
or an increase in the number of receptors on the post-
synaptic neurons [4]. Other types of neural plasticity
can be present in synapses, but the model devised and
described in detail in Refs. [9–15] only attempts to repro-
duce Hebbian plasticity in the pursuit of constructing a
simplified, minimally complex model system that still re-
produces many pertinent non-trivial observed features.

B. Avalanches

In the context of neural networks, avalanches are de-
fined as a period of continuous neural activity. The name
is chosen in analogy to Abelian sandpile models, where a
column of sand can topple sending sand down onto lower
columns causing more grains to topple, and so forth, cre-
ating a literal avalanche of sand. Sandpile avalanches are
a classic example of “self-organized criticality,” where the
balance between the addition to and cascading depletion
of the sandpiles appears to drive the system to a criti-
cal point without any obvious external tuning or adjust-
ment [18, 19]. It is however now well-understood that
the assumed time scale separation in the model between
instantaneous toppling and external driving constitutes
a relevant control parameter in the system, and the cor-
responding ratio of rates in fact needs to be tuned to zero
to observe dynamic critical behavior. The collective dy-
namics of the avalanching system are then characterized
by a set of universal power laws, as is typical of critical
systems. Among other system quantities, the avalanche
size and duration distributions both follow algebraic de-
cay with exponents −3/2 and −2, respectively [18].

The same cascading process can happen among neu-
rons, where at least one neuron fires, sending signals to
other neurons and causing them to fire, etc. until the
system reaches a time where no neurons in the network
can exceed the firing threshold. This period of continu-
ous neuron firing constitutes a neural avalanche, and the
system’s dynamics displays (near-)critical behavior when
the characteristic time scale for internal firing cascading
is again assumed much shorter than that of external stim-
uli, as is indeed implemented in the model of Refs. [9–15].

The dynamics of neural avalanches were studied by
Beggs and Plenz in rat cortex cultures, and various prop-
erties of avalanches in these cultures were found to follow
power law distributions [6]. The observables investigated
included the avalanche size: the sum of all signals sent
by firing neurons; and the avalanche duration: the length
of time that the avalanche persists. The avalanche size
and duration distributions followed the same exponents
of −3/2 and −2 that are expected in the Abelian sand-
pile models [6, 18]. These results for avalanche size have
since been replicated in macaque monkeys [8].

Additionally, power law behavior has been recorded
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in the power spectral density of neural activity in hu-
mans using electroencephalography and electrocorticog-
raphy [7], and avalanche models have been shown to repli-
cate this behavior, even matching exponents seen exper-
imentally [12].

II. NEURAL NETWORK MODEL

Our numerical model is based on the work of Lom-
bardi, Herrmann, De Arcangelis et al. [9–15], and in ad-
dition to modeling key features of biological neural net-
works; namely firing at a threshold potential, refractory
periods, and Hebbian learning [17], the model accurately
reproduces several experimentally determined distribu-
tions related to avalanches of neural activity in biological
neural networks [6, 7].

We note that an extension to this model developed
by Lombardi, Herrmann, De Arcangelis et al. also recre-
ates the avalanche waiting time distributions is described
in Appendix A. The following simplified model variant
however does not attempt to address these waiting time
distributions, and hence this extension is excluded in the
present study to reduce the complexity of the system. Ta-
ble I lists the various parameters used in our model. We

TABLE I: The network parameters used in the
avalanching neural network model.

Parameter Description Value

N Number of neurons in the network 64000

t Time step 4-6 ms

pinh Fraction of inhibitory neurons in the network —

Jij(t) Weight of connection from ith to jth neuron —

gij(t) Weight scaled by degrees of connectivity —

Jmin Minimum weight strength 0.001

Jmax Maximum weight strength 2

ni(t) Potential of ith neuron —

si(t) Action potential of ith neuron —

nmax Threshold potential -55 mV

kini
(t) Number of incoming connections to ith neuron —

kouti
(t) Number of outgoing connections from ith neuron —

would like to emphasize that the following model is def-
initely a very simplified representation of true neuronal
networks and certainly does not grasp the full complex-
ity of such systems, but still reproduces crucial pertinent
power law features that are our focus in this study.

A. Neuron dynamics

The model consists of a number of neurons N , each
neuron i defined by its potential ni. At the beginning
of the simulation, each neuron is randomly designated as
inhibitory, with probability pinh, or excitatory with prob-
ability 1−pinh. This will determine whether signals from

this neuron increase (excitatory) or decrease (inhibitory)
the potentials of other neurons.

The neuron is then randomly assigned an out-degree
kouti from a truncated power law distribution, formed
such that P (kout) ∼ k−2

out for kout ∈ [2, 100]. This range
was chosen to mimic the distribution of connectivity ex-
perimentally observed in human cortices, which demon-
strates power law behavior across two decades of con-
nectivity, following an exponent of -2 [20]. Additionally,
the truncated nature of the power law also allows this
distribution to be normalized. The kouti neurons are
then chosen from a uniform distribution, and connec-
tions between them and the ith neuron are established
by assigning each synapse an initial weight Jij uniformly
distributed on the interval (0, 1). Connections from a
neuron to itself are not allowed in the model. Once the
initial network topology is established, the in-degree kini

is tabulated for each neuron.
The network is initialized such that the potential of

each neuron is set to 90% of the threshold potential
nmax ∼ −55 mV to facilitate and accelerate the initial
building-up of network activity.

The system dynamics are discretized into time steps
t. A single time step is taken to be the length of time
an individual neuron takes to fire, which is in the range
of 4-6 ms. During each time step t, any neuron whose
potential has increased past the system’s firing threshold,
ni(t) ≥ nmax, fires, sending an action potential si(t) to
each of the kouti(t) connected neurons. If the potential of
the ith neuron is not above the threshold potential, the
action potential is zero:

si(t) =

{
0, ni(t) < nmax ,

ni(t), ni(t) ≥ nmax .
(1)

After a neuron has fired, its potential is set to zero
for one time step, during which it cannot receive signals
from other neurons. This mimics the refractory period of
real neurons [1]. The signal received by the post-synaptic
neurons not in a refractory period is proportional to the
action potential of the pre-synaptic neuron. This behav-
ior is summarized in Eq. (2),

nj(t+ 1) =

{
0, sj(t) > 0 ,

nj(t)± gij(t)si(t), sj(t) = 0 ,
(2)

where the upper and lower signs are for i excitatory and
inhibitory, respectively, and gij(t) controls how much the
jth neuron is affected by signals from the ith neuron:

gij(t) =
kouti(t)

kinj (t)

Jij(t)∑
k Jik(t)

. (3)

While the strength of the synaptic signal is propor-
tional to the pre-synaptic neuron’s potential, this signal
is scaled by a factor Jij(t)/

∑
k Jik(t) that determines

the relative strength of the connection between the ith

and jth neurons compared to all connections from the
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ith neuron. This is then in turn scaled by the factor
kouti(t)/kinj

(t).
While Jij(t)/

∑
k Jik(t) determines the strength of the

i → j connection relative to all of the ith neuron’s
connections, the factor kouti(t)/kinj

(t) rescales each of
these connections relative to their importance to the net-
work. This is necessary in order to properly compare the
strength of signals from different neurons.
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FIG. 2: An example network of six neurons showcasing
the various possible interactions between neurons. The
colored circles represent six different neurons, labeled
ni, while the arrows connecting them represent the

synaptic connections between neurons with the
corresponding elements of the weight matrix g centered

in each line. The (blue) neurons n2, n4, and n5 have
zero action potential and send no signals through their
connections (the black lines) but receive signals from

firing neurons. The (red) neurons n1 and n6 are firing,
sending their non-zero action potentials through their

outgoing connections (the red dashed lines). The (grey)
neuron n3 is in a refractory period, and can neither

send or receive signals through its synaptic connections
(the grey dash-dotted lines).

A neuron with many outgoing connections will be more
important to the network than a neuron with few, and so
its outgoing signals will be scaled by the neuron’s number
of outgoing connections, kouti(t). A neuron that receives
signals from many different neurons will be less excited
by any one connection, so any incoming signals to it will
be scaled by its number of incoming connections, kinj

(t).
Indeed, this factor kouti(t)/kinj

(t) is responsible for the
power law distribution of the avalanche sizes, though it
has no bearing on the waiting time or duration distribu-
tions. The change in potential in Eq. (2) is referred to

as the depolarization of j due to i for this time step.
A series of successive time steps during each of which

at least one neuron fires constitutes an avalanche.
Figure 2 shows a schematic of a simple, six neuron

network with examples of different possible connections
and neuron behavior.

B. Hebbian learning and pruning

After each avalanche, the strength of connections be-
tween neurons is adjusted according to Hebbian-like rules
[17], and then pruned (set to zero) if the strength of con-
nection drops below a threshold Jmin.

Due to the variable length of each avalanche, it is
convenient to index avalanches on a separate variable τ
where each avalanche has beginning and ending times
ti(τ) and tf(τ). At the end of each τ th avalanche,
we implement Hebbian-like plasticity rules in parallel
across the synaptic connections between all neurons. The
strength of each synapse Jij is increased proportional to
the sum of all signals sent through the synapse during
the avalanche, and decreased by the average increase in
synaptic strength. We cap each Jij to a maximum value
of Jmax in order to ensure stability in the network. The
change in synaptic strength is summarized in Eq. (4):

Jij(τ) = Jij(τ − 1) +
δnij(τ)

nmax
−∆J(τ) , (4)

where δnij(τ) is the sum of magnitudes of all signals sent
from neuron i to neuron j during the τ th avalanche,

δnij(τ) =

tf(τ)∑
t=ti(τ)

kouti(t)

kinj (t)

Jij(t)∑
k Jik(t)

si(t) , (5)

and ∆J(τ) is the average increase in connection strength
after the τ th avalanche,

∆J(τ) =
1

NC(τ)

N∑
i=1

N∑
j=1

δnij(τ)

nmax
. (6)

Here, NC(τ) is the number of non-zero connections in the
network,

NC(τ) =
∑
i,j

Θ(Jij(τ)) ,

where Θ represents Heaviside’s step function. The com-
petition between the second and third terms of Eq. (4)
causes used connections to increase in strength, while
unused connections weaken. If any connection is lowered
below a threshold Jmin, the connection is permanently
removed as that element Jij is set to zero. This removal
of weak connections is called “pruning.”

To prevent over-pruning, we impose an upper bound
of Jmax on the strength of any given connection. This
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strengthening procedure can saturate this bound, but not
exceed it. This rule forces the network to prioritize those
connections which are most often used, as in biological
neural networks [17].

Between avalanches, the system is stimulated via small
(∼ 1% of the threshold potential) constant noise applied
to randomly chosen neuron potentials. This noise tends
to drive the system towards another avalanche.

III. DISTRIBUTIONS OF AVALANCHE
PARAMETERS

Several different parameters of neural avalanches can
be studied through statistical analysis, and have been
shown to be important to the proper operation of bio-
logical neural networks [6–8, 21]. These observables are
the avalanche size, the avalanche duration, and the power
spectral density of neural activity. In this section we de-
scribe each of these quantities in turn, and our methods
for modeling and recording them.

A. Avalanche size distribution

The size of the τ th avalanche is defined to be the sum of
absolute values of all signals sent between neurons during
the avalanche.

Biologically, this is the sum of all neuron action po-
tentials. This has been recorded experimentally through
the careful placement of electrodes on both in-vivo and
in-vitro neural networks [6, 8]. The size of many dif-
ferent avalanches can be collected to form a probability
distribution describing the likelihood of a given avalanche
having a certain size PS , where S is the size of a given
avalanche. This distribution PS has been found to follow
a power law of PS(S) ∼ S−1.5 [6, 8].

We calculate the total avalanche size by summing each
signal sent between neurons during an avalanche. If each
avalanche has beginning and ending times ti(τ) and tf(τ)
respectively, we define the size of the avalanche as:

S(τ) =

tf(τ)∑
t=ti(τ)

N∑
i=1

N∑
j=1

kouti(t)

kinj
(t)

Jij(t)∑
k Jik(t)

si(t) . (7)

B. Avalanche duration distribution

The duration of an avalanche is the length of time that
the avalanche persists. This has been recorded experi-
mentally in the same manner as the avalanche size, and
has been collected into a distribution PD describing the
likelihood of a given avalanche duration. Experimentally,
this distributions has been observed to follow a power
law, PD(D) ∼ D−2.0 followed by an exponential cut-off
[6].

The duration of the τ th avalanche, D(τ), is taken to
be the number of time steps that the avalanche persists
for. This can be written as

D(τ) = tf(τ)− ti(τ) , (8)

where ti(τ) is the initial time step of the τ th avalanche,
and tf(τ) is the final time step of the τ th avalanche.

C. Avalanche power spectral density

The power spectral density (PSD) of a signal describes
the distribution of power in the signal as a function of fre-
quency. This is a common form of analysis done on the
measurements of in-vivo neural activity via techniques
such as electroencephalography and electrocorticography.
Electroencephalography and electrocorticography both
measure the action potentials of neurons firing in living
brains through the placement of electrodes either out-
side (electroencephalography) or inside (electrocorticog-
raphy) the skull. The time series measurement of electri-
cal activity can be decomposed into their power spectral
density and has been suggested as a means to diagnose
epilepsy [7, 21]. Healthy non-epileptic brains display a
PSD exponent in the range of (−1.5,−0.8) (at large fre-
quencies f) [15], while brains undergoing epileptic events
have been recorded with PSD exponents in the range of
(−2.2,−1.8) [7, 15].

In our simulations the sum of all depolarizations is cal-
culated after each time step in an avalanche. This sum
is then appended to a time series as xn, the nth sum
of depolarizations. We perform this summation for each
time step in every avalanche until the series {xn} con-
tains the sum of depolarizations for every time step of
every avalanche.

The power spectral density of time series data can
be determined by computing this series’ discrete Fourier
transform. The average of the square of the contribution
of each frequency in the discrete Fourier transform gives
the power spectral density of that frequency,

PSD(f) =
1

N

∣∣∣∣∣
N∑
n=1

xne
−ifn

∣∣∣∣∣
2

, (9)

where PSD is the power spectral density as a function of
the frequency f , xn is the sum of depolarizations in the
nth time step, and N is the total number of time steps
that these depolarizations were recorded for. We com-
pute the PSD across the entire frequency range using
Welch’s method [22] and record it in a histogram using
logarithmic binning to smooth out fluctuations that oc-
cur at the lower frequency ranges due to their limited
occurrence in our data. This limited occurrence is due to
the power law nature of the model’s PSD (see Fig. 6).
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IV. RESULTS

For each of the following results, with the exception
of the finite-size effects plot shown in Fig. 4, we sim-
ulated 100 different networks of 64,000 neurons, each
randomly initialized according to the methods described
in Sec. II A. Each network was allowed to operate for
10, 000 − 100, 000 separate avalanches, after which the
various distributions described in Sec. III were calculated
and averaged across the 100 separate networks. The av-
eraged distributions are recorded below.

A. Avalanche size distribution

Using the network described in Sec. II A and Eq.
(7) we measured the distribution histogram of avalanche
sizes. Figure 3 shows the avalanche size distributions
for two different networks, each made of 64,000 neurons.
The two networks differ only in their inhibitory fraction
pinh. The (blue) dots represent the avalanche size distri-
bution of a network with pinh = 0.04 and the (orange)
triangles represent the avalanche size distribution of a
network with pinh = 0.10. The (green) dashed line indi-
cates a power law with exponent −1.55. In both cases the
early avalanche size distributions (S ∈ [101, 105]) follow
a power law of PS ∼ S−1.55, which agrees well with the
distributions found in rat and macaque monkey cortices
[6, 8].

For larger inhibitory fractions, the power law behav-
ior reaches an exponential cut-off at high avalanche sizes
as the network is unable to sustain the activity nec-
essary for massive avalanches. Again, as seen in the
avalanche duration distributions, as the inhibitory frac-
tion decreases the network becomes better able to sus-
tain increasingly larger avalanches, and at a inhibitory
fraction of pinh = 0.04 we see the exponential cut-off dis-
appear as the power law behavior is extended for several
more decades. This extension of the power law behavior
due to these massive avalanches suggests the system is
approaching a critical regime as the inhibitory fraction is
lowered.

The “hump” displayed in both sets of data is a finite-
size effect related to the total number of neurons in the
network. Because the network is stimulated by small
constant noise between avalanches, every neuron in the
network will, on average, be very close to firing when
an avalanche begins. This allows avalanches to initially
propagate more easily through the network, until ev-
ery neuron has fired at least once. After this, this ini-
tial “supply” of neuron potential has been exhausted,
and avalanches must be self-sustaining to continue past
this point. Many avalanches are not strong enough to
continue propagating without many neurons in the net-
work having highly elevated potentials, and so many
avalanches end with this value of size, creating a broad
local maximum in the distribution. The dependence on
the location of this hump to system size is shown in Fig.

FIG. 3: Avalanche size distributions for two 64,000
neuron networks with differing inhibitory fractions pinh.
All other network parameters are as described in Sec.

II A. The x axis represents the avalanche size as defined
in Sec. III A. The y axis represents the probability of
an avalanche occurring with that size. The (blue) dots

are the distribution of avalanche size for a network with
pinh = 0.04 inhibitory fraction. The (orange) triangles

are the distribution of avalanche size at pinh = 0.1. The
(green) dashed line indicates a power law with exponent
−1.55. Note that for pinh = 0.04 the exponential cut-off

seen at S = 5 · 105 in the pinh = 0.1 data disappears,
and the power law behavior extends to much larger

avalanche sizes. Avalanches were recorded with sizes up
to S ∼ 1010, but these were excluded from the figure due

to poor statistics. The bump seen at S ∼ 106 in both
distributions is a finite-size effect that is proportional to

the simulation value of the neuron firing threshold
multiplied by the number of neurons in the network.

This relation is shown in greater detail in Fig. 4.

4. This finite-size effect is also apparent in the avalanche
duration distribution, Fig. 5.

B. Avalanche duration distribution

Using the network described in Sec. II A and Eq. (8)
we measured the distribution histogram of avalanche du-
rations. Figure 5 shows the avalanche duration distribu-
tions for two networks of 64,000 neurons. The (blue) dots
represent the distribution of a network with inhibitory
fraction pinh = 0.10, while the (orange) triangles repre-
sent the distribution of a network with inhibitory fraction
pinh = 0.04. The (green) dashed line indicates a power
law with exponent −2.1.

For short avalanche durations both distributions agree
well with the experimental results for the avalanche du-
ration distribution which follows a power law with expo-
nent of −2.0 followed by an exponential cut-off [6]. The
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FIG. 4: The avalanche size distribution for four
different system sizes, each with inhibitory fraction of
0.09. The data for each system size was averaged from

fifty different randomly initialized instances of the
network. The (blue) circles, (orange) inverted triangles,

(green) squares, (red) diamonds each represent the
distribution of avalanche size for networks with
N = 100, N = 1000, N = 10000, and N = 64000

neurons, respectively. Each distribution follows a power
law before reaching a “hump” that is followed by a

cut-off. In each case the location of this hump is very
close to the system size (number of neurons) multiplied
by the simulation value of neuron threshold potential.
These humps form because in between avalanches we
repeatedly stimulate randomly chosen neurons with a
small increase in the neuron’s potential until a neuron

fires. This small stimulation guarantees that on
average, when the first neuron in an avalanche fires a

neuron fires many neurons will have a potential close to
the threshold potential. These stimulated potentials

will help sustain the avalanche until either the
avalanche ends through some fluctuation in the system,

or until all neurons have on average fired once.

distribution with higher inhibitory fraction, pinh = 0.10,
matches the experimental results very well, while the dis-
tribution from the network with low inhibitory fraction
pinh = 0.04 does not show the experimentally found ex-
ponential cut-off, and instead displays continued power
law behavior at the same exponent for several more
decades before statistics of the measured events becomes
too poor. This increase in available avalanche dura-
tions is due to the inability of the network to suppress
signals because there are few inhibitory neurons in the
network. This generates very long lasting avalanches
that in turn give rise to the extended power law regime
seen in the avalanche size distribution shown in Fig. 3.
These long-lasting avalanches ultimately dominate the
dynamics of the network, because while they are rare,
these avalanches can be up to 104 time steps longer than

FIG. 5: Avalanche duration distributions for two
64,000 neuron networks with different inhibitory

fractions pinh. The x axis represents the duration D of
an avalanche in time steps of single neuron firing

periods, which are in the range of 4− 6 ms. The y axis
represents the probability of this avalanche duration.

The (blue) dots represent the distribution of avalanche
durations with pinh = 0.04. The (orange) triangles

represent the distribution of avalanche durations with
pinh = 0.1. The (green) dashed line indicates a power
law with exponent −2.1. As with the avalanche size

distributions (see Fig. 3) the exponential cut-off seen at
D = 3 · 102 time-steps when pinh = 0.1 disappears and
the power law behavior persists for several decades at
the same exponent, before the statistics of the events

become too poor. This extended tail for the lower
inhibitory fraction ultimately dominates the dynamics
of the system, as the avalanches in this regime last for
orders of magnitude more time steps than the original
regime. This tail continues for several more decades,

but these data points have been trimmed from the plot
due to poor statistics. The hump seen in both the high
and low inhibitory fraction data around D ∼ 5 · 102 is a
finite-size effect related to the duration necessary for all

neurons in the network to fire, on average, once.

avalanches seen in a network with a higher inhibitory
fraction.

The inhibitory fraction at which we see these long-
lasting avalanches occur is much lower than the value
observed in human cortices, which is around 0.2 − 0.3
[15, 16]. Milton et al. [23] suggest that the exponential
cut-offs seen in the avalanche distributions exist to pro-
tect the brain from runaway avalanches; our results cor-
roborate this idea, namely that the brain might operate
away from this regime in order to not be dominated by
the incredibly long-lasting avalanches present at low in-
hibitory fractions, so the brain actually ultimately avoids
truly critical behavior, yet still maintains a highly coop-
erative and correlated state.
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FIG. 6: Two power spectral densities of 64,000 neuron
networks with different inhibitory fractions pinh. The
(blue) dots represent the power spectral density of the
network with pinh = 0.04. The (red) squares represent

the power spectral density of the network with
pinh = 0.30. The (blue) dashed line indicates a power

law with exponent −2.04, an exponent in the regime of
epileptic behavior seen in humans [7, 15]. The (orange)
dash-dotted line represents a power law with exponent
−1.0, which is in the range of exponents observed in

“healthy” human brains [7, 15]. While there appears to
be a well defined power law for the pinh = 0.04 data, the

power law regime shrinks as we raise the inhibitory
fraction to pinh = 0.30, and we at most observe a brief
period of power law behavior around f ∼ 10−1 where
there is approximately a power law with an exponent

close to −1. To more effectively interpret this data, we
calculated the local derivative between each consecutive
data points and plotted the effective exponents of each

of the two PSDs in Fig. 7(a) and 7(b).

Additionally, both the avalanche size and duration dis-
tributions were found to be very stable with respect
to the noise strength, minimum and maximum weight
strengths, as well as the threshold potential, with changes
in these parameters resulting in little to no modifications
in their dynamics.

C. Power spectral density

Using Eq. (9) we constructed the power spectral den-
sity of our networks of 64,000 neurons for different in-
hibitory fractions. Figure 6 shows two different network
power spectral densities for inhibitory fractions 0.04 and
0.30.

The PSD data for the pinh = 0.04 network is rep-
resented by the (blue) circles, while the data for the
pinh = 0.30 network is represented by the (red) trian-
gles. Both PSDs displayed in Fig. 6 show two distinct

dynamical regimes: a power law regime at mid to low
frequencies, and a semi-constant regime at high frequen-
cies. The PSD’s power law regime is due to long-range
temporal correlations present between neuron firings. It
is an assumption of this model that neurons firings are
uncorrelated across different avalanches, so this power
law regime becomes more pronounced as the inhibitory
fraction decreases, due to the increasing accessibility of
long duration avalanches. This behavior corroborates re-
sults shown by Lombardi et al. [15]. We also observe the
range of power law behavior to shrink as the inhibitory
fraction is increased. While the network with a lower
inhibitory fraction shows a very clear power law follow-
ing an exponent around −2.04, (shown in Fig. 6 as the
blue dashed line), the higher inhibitory network seems to
at most follow a power law with exponent around −1.0
(represented in Fig. 6 by the orange dash-dotted line)
for only a small portion of its frequency range, if at all.

This decrease in the power law regime is most likely
due to the suppression of highly correlated neuron firing
events by the increased fraction of inhibitory neurons.
To investigate the true extent of the power law regime
we extract the effective exponents of each of the PSDs
shown in Fig. 6 and plot the effective exponents as a
function of frequency in Figs. 7(a) and 7(b).

The effective exponents shown in Fig. 7(a) showcase
very clear power law behavior for the low inhibitory net-
work with exponent around −2.0. This value of the expo-
nent is in the regime of experimentally observed epileptic
behavior seen in humans [7, 15] and we observe this be-
havior for the same values of inhibitory fractions where
we observed the extended avalanche size and duration
distributions.

Figure 7(b) displays no true power law behavior, with
only a small possible plateau of the effective exponent
around −1.0. While this value is in the regime of normal
operating brain behavior for human PSDs [7, 15], and
a transition of exponents from a value of −1.0 to −2.0
as the inhibitory fraction of these networks is lowered
was reported by Lombardi et al. [15], we cannot claim
to see true power law behavior at biologically relevant
inhibitory fractions of pinh = 0.30.

D. Neuron connectivity distribution

In addition to the various avalanche distributions, we
can also observe how the connectivity of the network
evolves over time for different inhibitory fractions.

As avalanches occur in the network, the Hebbian plas-
ticity rules defined in Sec. II B will cause the connections
between neurons to change according to their use. Fre-
quently used connection will be strengthened, and infre-
quently employed connections will be weakened or even
“pruned” (i.e., removed) if the connections become too
small. We are interested in observing how the distribu-
tion of outgoing connectivity evolves as function of time
and inhibitory fraction under these effects.
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FIG. 7: Double-logarithmic plot of the local derivative between consecutive pairs of points for the PSD of the (a)
pinh = 0.04 network and (b) pinh = 0.30 network shown above in Fig. 6. The y axes display the effective exponent of
any power law behavior observed across the two data sets, while the x axes represent the average frequency between
the pairs of PSD data points that were used to calculate each local derivative. True power law behavior in the PSDs

will then be displayed on this graph as a plateau in the effective exponent across many different frequencies. This
behavior is clearly visible in (a), where the effective exponent converges to a value around ∼ −2 for much of the

frequency range between 10−2 and 10−1. In contrast we see at most very short-lived power law behavior in (b). The
effective exponent perhaps displays a short-lived plateau around an exponent of approximately ∼ −1, but this

behavior ceases very quickly.

Figure 8 shows the both the initial distribution of out-
going degrees of connectivity for two networks with (a)
pinh = 0.30, and (b) pinh = 0.04, as well as their respec-
tive distributions after 45, 000 avalanches. The horizontal
axis represents the degrees of outgoing connectivity kout
of individual neurons, while the vertical axis displays the
number of observed neurons with a particular kout. The
(gray) squares indicate the initial distributions, while the
(blue) circles represent the number of neurons measured
with all degrees of connectivity except zero, and the (red)
square represents the measured number of neurons with
zero outgoing connections. The (red) square is placed
with some positive offset on the horizontal axis in or-
der to display this data on a double-logarithmic plot.
The (orange) line represents the best fit of a power law
to the distributions measured after 45, 000 avalanches,
which follows an exponent very close to −2.0 in both sit-
uations. The inset is a log-linear graph of the same data,
replotted to highlight the maximum degree of connectiv-
ity in the network, kout = 75 for pinh = 0.04 (a), and
kout = 91 for pinh = 0.04 (b).

The power law behavior constructed in the initial
distributions for both (a) and (b) remains relatively
unchanged after the networks’ evolution over 45, 000
avalanches, but there are noticeable differences not only
between the evolved distributions and their initial states,
but also between the two evolved distributions. Notably,
the height of both evolved distributions is lower than
their respective initial configurations, with the distribu-

tion taken from networks with higher inhibitory fractions
of pinh = 0.30 (a) being much lower than the evolved dis-
tribution taken from networks with the lower inhibitory
fraction of pinh = 0.04 (b). Additionally, there are strik-
ing differences in the head and tail of the distribution
after the Hebbian rules have been applied for 45, 000
avalanches. Many of the high degrees of connectivity
have been pruned out of the distribution, and many more
neurons retain either only one or zero outgoing connec-
tions; additionally, no neurons have more than 75 and
91 outgoing connections, respectively, for these two in-
hibitory fractions. The capability of the model to prune
away all connections of a neuron is a noticeable depar-
ture from biological relevancy, and we find that the Heb-
bian rules detailed in Sec. II B have a tendency to “over-
prune” due to the inability for new connections to be
formed, or for old zero-strength “dead” connections to
be reestablished. Future iterations of this model could
be improved by allowing new or dead connections to be-
come established between neurons through some proba-
bilistic rate during the network updates that take place
after each avalanche.

Even with the general decrease in connectivity, the
lower inhibitory fraction network is inherently more
strongly connected than the higher inhibitory fraction
network after a long simulation time allowing for 45, 000
avalanches. The neural network with smaller pinh dis-
plays a higher maximum value of kout, and the number
of neurons with only one or zero outgoing connections is
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FIG. 8: The kout degree distribution for networks with an inhibitory fraction of (a) pinh = 0.30 and (b) pinh = 0.04.
The horizontal axis (kout) represents the number of outgoing connections individual neurons have. The vertical axis
represents the number of neurons that have a particular value of kout. The (gray) squares in (a) and (b) represent

the represent the respective initial distributions, while the (blue) circles are the data points we measured and
averaged from 100 networks with (a) pinh = 0.30, and (b) pinh = 0.04 after 45, 000 avalanches, and represent the

number of neurons with each degree of connectivity except zero. The (red) squares represents the data points for the
number of neurons with zero outgoing connections. These data points are plotted with some offset along the

horizontal axis in order to display it on a double-logarithmic plot. The (orange) line is the best fit to the power law
regime of the evolved connectivity distribution, with exponents −2.04 (a) and −2.06 (b). The inset represents a

log-linear graph of the same data, replotted to highlight the maximum value of kout for this network, which is 75 (a)
and 91 (b), respectively.

reduced by almost an order of magnitude as compared
with the network with larger pinh.

This difference in connectivity evolution results from
the distinct inhibitory fractions of the networks as fol-
lows: A stronger inhibitory network will result in weaker
signals being transmitted through it. Weaker signals
in turn cause weaker connections between neurons, and
hence an increase in the number of neuron connections
pruned due to the Hebbian rules that govern the sys-
tem. In comparison, the network with a lower inhibitory
fraction cannot suppress the signals in the network as
strongly as the network with a higher pinh. The network
with a lower inhibitory fraction will sustain stronger con-
nections and will consequently not prune away neuron
links as drastically. In general we observe that the prun-
ing mechanism preserves the power law structure of the
initial distribution, and the effects of the pruning are only
visible in the very head and tails of the distribution.

E. Control of avalanche distributions

Figure 3 shows how the avalanche size distribution
changes as the inhibitory fraction of the network is var-
ied. The plot shows two regimes of activity: At higher
inhibitory fractions the distribution follows a power law
behavior terminating in an exponential cut-off; at very

low inhibitory fractions the algebraic decay extends fur-
ther and the exponential cut-off is shifted to very high
avalanche sizes. These extended power laws dominate the
dynamics of the networks they occur in. In the follow-
ing subsection we draw inspiration from work previously
done on the robustness of scale-free networks [24, 25] and
propose two different control strategies to remove these
extended power law tails in networks with low inhibitory
fractions through the disabling of either (1) randomly
picked or (2) specifically selected highly connected exci-
tatory neurons.

1. Control through disabling random excitatory neurons

The first strategy we implemented is disabling ran-
domly chosen excitatory neurons. Disabling a neuron
means that the potential of the neuron is permanently
set to zero from the time step it is disabled. We choose
excitatory neurons only because the goal is to prevent
the large avalanches occurring in the extended tail of
this network’s normal avalanche size distribution. An ac-
tive inhibitory neuron is more effective at stopping these
avalanches than a disabled neuron, so we only pick ex-
citatory neurons. The neurons are selected with equal
probability from all excitatory neurons. We tested sev-
eral different fractions of excitatory neurons to disable
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randomly, and only observed the extended tail present in
the avalanche size distribution to disappear for disabling
fractions greater or equal to 0.30.

Figure 9(a) shows the avalanche size distribution of
a network with inhibitory fraction of pinh = 0.04 after
30% of the excitatory neurons were randomly selected
and disabled, i.e. ni(t) was held at zero for all disabled
neurons in the subsequent evolution. The network was al-
lowed to evolve unperturbed for 60, 000 avalanches before
the excitatory neurons were disabled. The data shown
was averaged over 100 realizations of the network. The
extended tail seen in avalanche size distributions with
this inhibitory neuron fraction has disappeared, due to
the fragmentation of the network caused by disabling so
many neurons. The network is no longer able to sustain
the large network-wide avalanches necessary for the ex-
tended power law tail in the avalanche size distribution.
Disabling fractions of random excitatory neurons less
than 30% does not remove the extended tail. The sys-
tem is thus quite robust against random disablings, which
is not surprising given its scale-free structure. Scale-free
networks are known to be quite stable against the random
removal of nodes, which is analogous to our disabling of
neurons. In order to prevent a signal from being propa-
gated across a generic scale-free network of the same size
as our network, more than 90% of the nodes must be ran-
domly removed [24, 25]. We only need to disable a much
lower fraction of random neurons to see the extended
power law disappear because we are not attempting to
disrupt the entire network activity, but only curtail the
power law regime of these extended avalanches.

However, even with the network’s robustness, disabling
this many neurons from the network is destructive to the
normal dynamics of the network, and we observe a change
in exponent of the power law behavior of the distribution
from −1.5 to −1.74. This lower exponent results in a
much lower probability of strong avalanches, and we see
the cut-off appear several decades below the threshold in
networks with higher inhibitory fractions.

Disabling random neurons consequently is an ulti-
mately successful strategy for removing the long power
law tail in this avalanche distribution; however, it re-
quires a significant portion of the network’s neurons be
disabled, which is certainly not ideal, and very likely
quite detrimental in any biological neural network.

2. Control through disabling highly connected neurons

The second strategy we implemented is the disabling
of the most highly connected excitatory neurons. The
neurons were chosen based on their degree of outgoing
connectivity kout. We tested several different fractions
of the most connected excitatory neurons, and observed
that only the top 1% of highly connected neurons need
to be disabled in order to stop these incredibly large
avalanches.

Figure 9(b) depicts the avalanche size of a network with

inhibitory fraction of pinh = 0.04 with the top 1% of the
most highly connected neurons disabled. The network
was again allowed to evolve for 60, 000 avalanches before
the highly connected neurons were disabled. The (blue)
circles are the averaged data points of the avalanche
size distributions from 100 different network realizations.
The (orange) line is the best fit of a power law to the data.
This model is very sensitive to disabling highly connected
neurons, which is also to be expected given its scale-free
structure. In addition to being very robust against ran-
dom disablings, scale-free networks are highly suscepti-
ble to “targeted” disablings, where the most highly con-
nected nodes are removed [24, 25]. A generic scale-free
network of the same size and exponent of the connectiv-
ity distribution needs approximately the top 3% of highly
connected nodes disabled to completely fragment the net-
work and destroy any long-range connectivity [24–26]. In
our system, we need only disable the top 1% of the highly
connected neurons because we do not aim to completely
destroy the network dynamics, yet merely wish prevent
the occurrence of exceedingly strong avalanches.

Permanently disabling these highly connected neurons
does still considerably affect the network dynamics. The
avalanche size distribution follows a power law with ex-
ponent −1.66 instead of the typical −1.5. This is due to
the signals being unable to propagate as strongly through
the network after the highly connected neurons have been
disabled. These weaker avalanches are more likely to die
out earlier than their counterparts in an unsuppressed
network, resulting in a lower exponent and an earlier cut-
off in the avalanche size distribution.

Disabling only the highly connected neurons is hence
demonstrably a very successful control strategy for re-
moving these extended power law tails that dominate the
network. However, this approach does require significant
knowledge about the structure of the network and is still
destructive to the network dynamics because, by defini-
tion, these highly connected neurons are very important
to signal propagation through the system.

3. The disabled fraction of connections

We can also compare the fraction of connections be-
tween neurons that are effectively removed from our net-
works due to each of these two strategies, in addition
to the fraction of neurons. We observed the process of
randomly selecting a certain fraction of neurons in our
networks to select the same fraction of the connections.
Thus when 30% of the excitatory neurons are disabled we
also disable approximately 30% of the network’s connec-
tions. In contrast, when we target the highly connected
neurons we sample the tail of our connectivity distribu-
tion, and we observe that we disable approximately 10%
of the network’s connections even though we disable only
1% of the network’s neurons.

The discrepancy in the fraction of disabled connec-
tions between these two strategies is due to the power
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(a) (b)

FIG. 9: The avalanche size distribution of a network with an inhibitory fraction of pinh = 0.04 after (a) randomly
selected 30% of the excitatory neurons, and (b) the top 1% of highly connected excitatory neurons have been

disabled. In either case, the network was allowed to evolve naturally for the duration of 60, 000 avalanches before
the excitatory neurons were disabled. The (blue) circles represent the probability of an avalanche having a given
avalanche size S, and the (orange) line is the best fit of a power law to the data. The extended tail present in a

normal pinh = 0.04 network has disappeared after disabling (a) a large fraction, (b) a minor fraction of excitatory
neurons. For case (a), disabling 30% of inhibitory of neurons is very destructive to the dynamics of the network, and

a marked change in the power law behavior of the avalanche size distribution is observed: This network follows a
power law with exponent ∼ −1.74, lower than the normal exponent of −1.5. This is the result of signals dying out
more quickly in this heavily diluted network. Disabling random fractions less than 0.30 of the excitatory neurons

retained the power law tails typically seen in the avalanche size distributions of these low inhibitory fraction
networks; indeed, 0.30 is the lowest fraction of random excitatory neurons that must be disabled to curtail these

extended power law tails. For (b), the extended tail present in a normal pinh = 0.04 network has disappeared after
disabling only a minor fraction of the excitatory neurons. Due to the power law structure of the network

connectivity, these top 1% of the excitatory neurons are much more important to the network dynamics than the
vast majority of all other neurons. Disabling these neurons is still destructive to the network dynamics, though less
so than the random disabling case shown in (a), and a change in the power law behavior of the network is observed.

This network follows a power law with exponent ∼ −1.66, again lower than the normal exponent of −1.5. This is
the result of signals being unable to propagate through the most heavily connected neurons, which play a large role
in the network’s transmission capability. 0.01 is the required lowest fraction of highly connected excitatory neurons

that needs to be disabled in order to effectively remove these extended power law tails. Data averaged over 100
independent network realizations.
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law nature of the network’s connectivity distribution,
as well as the self reinforcement of connection strength
that is driven by the Hebbian learning rules detailed in
Sec. II B. With a sufficiently large network, randomly
choosing neurons will access the same fraction of connec-
tions as neurons, but due to the power law connectivity
distribution most of these neurons have a very small de-
gree of connectivity and are relatively unimportant to the
network dynamics. The Hebbian learning rules enforce
that connections that are not often used will grow weaker
than those that are used frequently, and neurons with low
numbers of connections will not use those connections
very often. Thus one needs to disable a large number of
these weak connections that make up the majority of the
network’s connectivity distribution in order to dramati-
cally effect the network dynamics. Conversely, the con-
nections from highly connected neurons will be utilized
frequently and will hence remain inherently stronger than
the connections to neurons with lower kout. In addition to
the highly connected neurons serving as “hubs” that link
many otherwise poorly connected parts of the network to-
gether, their inherently stronger connections will sustain
signals more easily in the network and will be more im-
portant to the propagation of extremely large avalanches.
Thus only approximately 10% of the total connections
need to be removed from the network when taken from
the tail of the connectivity distribution through the dis-
abling of the most highly connected neurons.

V. DISCUSSION

Operating our model with the parameters described
in Sec. II A and an inhibitory fraction of pinh = 0.30,
we observe that the avalanche size distribution of our
model follows a power law of PS(S) ∼ S−1.55, and that
the avalanche duration distribution of our model obeys
a power law of PD(D) ∼ D−2.1, both of which agree
well with experimental results [6, 8] and reproduce the
results shown by Lombardi, Herrmann, De Arcangelis et
al. As we lower the inhibitory fraction of our network
towards an inhibitory fraction of 0.04, we intriguingly
find behavior suggestive of criticality as the exponential
cut-off present previously in the avalanche size and du-
ration distributions disappears, and these distributions
continue to follow power laws for several more decades.
At this value of inhibitory fraction, the network becomes
dominated by long-lasting avalanches that persist for or-
ders of magnitude more time steps than avalanches in the
cut-off distributions. The particular value of inhibitory
fraction at which we see this extension of the distribu-
tions is far below the fraction found in human cortices,
which is closer to 0.2− 0.3 [15, 16].

Additionally, the power spectral density of our network
at low inhibitory fractions (pinh = 0.04) behaves similarly
to power spectral densities of epileptic humans by follow-
ing a power law with exponent −2.0. As the inhibitory
fraction of the network is increased to a more biologically

relevant value of 0.3 the power law behavior in the PSD
vanishes, and we see only a brief minima in the effec-
tive exponent of the PSD near a value of −1.0, though
this value of exponent matches the observed exponent of
healthy human brains [7]. Lombardi, Herrmann, De Ar-
cangelis et al. observed a transition of the exponent from
an “epileptic” value of −2.0 to a “healthy” value of −1.0
[15]; however, we only observe the emergence of power
law behavior at low inhibitory fractions.

Low inhibitory fractions allow the network to ac-
cess much higher avalanche durations and correspond-
ing avalanche sizes, because even though the underly-
ing power law distribution of these quantities does not
change, the exponential cut-off disappears allowing the
power law distributions to extends into regimes of greatly
increased duration and size. The incredibly large “black
swan events” that the network can access have corre-
spondingly low probabilities due to the power law distri-
bution, but because they are so large, they dominate the
network for many orders of magnitude more time steps
than avalanches from a “healthy” distribution, once they
occur.

The exponential cut-offs protect the network from
these events, and human cortices may naturally operate
at higher inhibitory fractions in order to avoid a truly
critical point, yet still benefit from wide distributions at
lower intensity avalanche events.

This corroborates the idea proposed by Milton et al.
[23], that critical behavior in the brain, though long
sought after, might be destructive as the long-range cor-
relations introduced by approaching a critical point could
destroy and dominate the short-range interactions neces-
sary for the proper operation of the brain.

We also observe how the outgoing connectivity distri-
bution changes as the network evolves under the Heb-
bian learning rules described in Sec. II B after 45, 000
avalanches have run through the system.

Networks with a high inhibitory fraction (pinh = 0.30)
prune away many connections, as the system is unable
to propagate avalanches strong enough to sustain all
of the links. This results in the tail of the connectiv-
ity distribution being truncated with ultimately no neu-
rons maintaining more than 75 outgoing connections,
while the head of the distribution becomes inflated, as
many neurons end up having only one or zero outgoing
connections. Networks with a lower inhibitory fraction
(pinh = 0.04), prune away fewer connections than net-
works with a higher inhibitory fraction, as they are able
to sustain stronger avalanches in the network. This re-
sults in a extended connectivity distribution tail, with
some neurons having as many as 91 outgoing connections
after 45, 000 avalanches. Additionally these networks dis-
play an order of magnitude fewer neurons with zero or
merely one connection than the networks endowed with
a higher inhibitory fraction.

The combination of the inhibitory neurons and the
Hebbian rules of the system cause networks with high in-
hibitory fractions to evolve into more sparsely connected
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networks than networks with a low inhibitory fraction.
These differences in connectivity reinforce the networks’
ability to sustain or disrupt very large avalanches. Net-
works with high inhibitory fractions will display weaker
avalanches, causing them to be less connected, which in
turn further weakens them in their capability to sustain
large-scale avalanches. Networks with lower inhibitory
fractions will on occasion go through massive avalanches
allowing them to remain more connected, which hence
will assist these systems in permitting further strong
avalanches.

Finally we investigate two different strategies to re-
move these exceedingly large avalanches from networks
with low inhibitory fraction through either the disabling
of randomly selected or carefully chosen highly connected
excitatory neurons, respectively. In order to curtail
these large events through random disablings, 30% of
the networks excitatory neurons must be disabled. This
strategy is therefore ultimately effective, but would be
quite destructive to any biological neural networks. In
contrast, switching off highly connected neurons proves
to be a much more effective strategy, as only the top
1% of these prominently connected excitatory neurons
need to be disabled in order to prevent such large-scale
avalanche events. Both of these strategies provide a
means to circumvent the inherent occurrence of incredi-
bly large “epileptic” avalanches in systems with very low
inhibitory neuron fraction.
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Appendix A: Extended model to reproduce waiting
time distribution

The model described in section II accurately recreates
the avalanche size distribution, the avalanche duration
distribution, and the power spectrum distribution ob-
served in rat and human cortices [6, 21]. In order to
also generate experimentally detected waiting time dis-

tributions, the model must be extended. This extended
model is detailed by Lombardi, Herrmann, de Arcangelis
et al. [12–14] and is briefly summarized here.

The waiting time between avalanches is the time be-
tween the end of the last avalanche and the beginning
of the next. Figure 10 shows experimentally determined
waiting time of seven different slices of rat cortex. This
figure was taken with permission from Lombardi, Her-
rmann, de Arcangelis et al.’s paper The balance between
excitation and inhibition controls the temporal organiza-
tion of neuronal avalanches [12].

FIG. 10: Figure reproduced with permission from Ref.
[12]. This plot shows the avalanche waiting time

distributions for seven different slices of rat cortex. The
inset shows two examples of temporal neural sequences.
The majority of the waiting time distributions display

bimodal behavior, with an initial power law at low
waiting times, followed by a bump at higher waiting

times.

The experimentally determined waiting time distribu-
tions [12] shown in Fig. 10 display bimodal behavior with
an initial power law regime followed by a “bump.”

This bimodal behavior requires that avalanches which
occur within short waiting times should be highly cor-
related to previous avalanches in order to reproduce the
power law behavior at low waiting times. In compari-
son, avalanches with long waiting times need to be un-
correlated to reproduce the exponential behavior seen at
longer waiting times.

These distinct features can be reproduced by introduc-
ing two network-wide macro-states: “up” and “down.”
The up state is defined as a period of high network activ-
ity, during which many neurons are close to firing poten-
tial. Anytime an avalanche occurs, the system transitions
to or remains in the up state.

During an up state, the noise driving the system is
drawn from the distribution (0, Smax/S(τ)], where Smax

is the avalanche size threshold, and S(τ) is the size of the
last avalanche. Additionally, when an avalanche ends in
the up state, each neuron in the network is reset to be
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close to the neuron firing threshold.

ni → nmax(1− S(τ)/Smax) . (A1)

The resetting in Eq. (A1) ensures with high probabil-
ity that avalanches in the up state will have short waiting
times, and the correlations introduced from the up state
noise distribution produces the power law behavior seen
in Fig. 10.

If the size of the last avalanche exceeds the avalanche
size threshold Smax, the system transitions to the down
state. The down state is characterized as a period of
no activity in the network in which the system is slowly
brought back to firing. When the network transitions
from the up state to the down state, each neuron is dras-

tically polarized in opposition of the previous behavior,

ni → ni − h∆ni , (A2)

where ∆ni is the sum of depolarizations during the last
avalanche in the up state, and h is a system parameter
introduced to control the size at which the neuron is anti-
polarized. During the down state, the network is driven
by small (∼ 0.01 · nmax) constant noise.

The hyperpolarization of neurons coupled with the
small constant noise ensures that the waiting times dur-
ing the down state will be very long, and will produce an
approximately Gaussian distribution due to the central
limit theorem.
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(2000).
[25] R. Albert and A.-L. Barabási, Rev. Mod. Phys. 74, 47

(2002).
[26] D. S. Callaway, M. E. J. Newman, S. H. Strogatz, and

D. J. Watts, Phys. Rev. Lett. 85, 5468 (2000).


