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Morphogen protein gradients play an essential role in the spatial regulation of patterning during
embryonic development. The most commonly accepted mechanism of protein gradient formation in-
volves the diffusion and degradation of morphogens from a localized source. Recently, an alternative
mechanism has been proposed, which is based on cell-to-cell transport via thin, actin-rich cellular
extensions known as cytonemes. Very little is currently known about the precise nature of the con-
tacts between cytonemes and their target cells. Important unresolved issues include how cytoneme
tips find their targets, how they are stabilized at their contact sites, and how vesicles are transferred
to a receiving cell and subsequently internalized. It has been hypothesized that cytonemes find
their targets via a random search process based on alternating periods of retraction and growth,
perhaps mediated by some chemoattractant. This is an actin-based analog of the search-and-capture
model of microtubules of the mitotic spindle searching for cytochrome binding sites (kinetochores)
prior to separation of cytochrome pairs. In this paper, we develop a search-and-capture model of
cytoneme-based morphogenesis, in which nucleating cytonemes from a source cell dynamically grow
and shrink along the surface of a one-dimensional array of target cells until making contact with
one of the target cells. We analyze the first passage time problem for making contact, and then
use this to explore the formation of morphogen gradients under the mechanism proposed for Wnt
in vertebrates. That is, we assume that morphogen is localized at the tip of a growing cytoneme,
which is delivered as a “morphogen burst” to a target cell when the cytoneme makes temporary
contact with a target cell before subsequently retracting. We show how multiple rounds of search-
and-capture, morphogen delivery, cytoneme retraction and nucleation events lead to the formation
of a morphogen gradient. We proceed by formulating the morphogen bursting model as a queuing
process, analogous to the study of translational bursting in gene networks. In order to analyze the
expected times for cytoneme contact, we introduce a new efficient method for solving first passage
time problems in the presence of sticky boundaries, which exploits some classical concepts from
probability theory, namely, stopping times and the strong Markov property. We end the paper by
demonstrating how this method simplifies previous analyses of a well-studied problem in cell biology,
namely, the search-and-capture model of microtubule/kinetochore attachment. Although the latter
is completely unrelated to cytoneme-based morphogenesis from a biological perspective, it shares
many of the same mathematical elements.

I. INTRODUCTION

Cytonemes are thin, dynamic, actin-rich cellular exten-
sions with a diameter of around 100 nm and lengths that
vary from 1 to 100 µm. There is growing experimental
evidence that cytonemes can form direct cell-to-cell con-
tacts, thus allowing the active transport of morphogens
or their cognate receptors to embryonic cells during de-
velopment [1–10]. Recent modeling studies have inves-
tigated how the number of morphogens or receptors de-
livered to a cell depends on the flux of particles along
a cytoneme, the number of cytonemes that form a sta-
ble contact with the target cell, and the duration of each
contact [11–13]. However, very little is still known about
the precise biochemical and physical nature of the con-
tacts between cytonemes and their target cells. Impor-
tant unresolved issues include how cytoneme tips find
their targets, how they are stabilized at their contact
sites, and how vesicles are transferred to a receiving cell
and subsequently internalized. It has been hypothesized
that cytonemes find their targets via a random search
process based on alternating periods of retraction and
growth, perhaps mediated by some chemoattractant [5].
Indeed, imaging studies in Drosophila [3] and chick [4]
show that cytonemes actively and rapidly expand and

contract. This is analogous to the search-and-capture
model of microtubules of the mitotic spindle searching
for cytochrome binding sites (kinetochores) prior to sep-
aration of cytochrome pairs [14–16], although one major
difference is that cytonemes are actin-based rather than
tubulin-based.

Once a cytoneme contact has been established, a num-
ber of different mechanisms have been proposed for how
vesicles containing morphogens (or their cognate recep-
tors) are delivered to the target cell. In the wing imaginal
disc of Drosophila vesicles appear to be actively trans-
ported along the cytonemes in a bidirectional fashion,
probably via myosin motors that actively “walk” along
the actin filaments of a cytoneme [1–3]. The amount
of morphogen delivered to a cell will then depend on
the flux of particles along a cytoneme and the number
of cytonemes that form a stable contact with the tar-
get cell. Increasing experimental evidence indicates that
cytonemes also mediate morphogen transport in verte-
brates [7, 10]. Examples include sonic hedgehog (Shh)
cell-to-cell signaling in chicken limb buds [4] and Wnt
signaling in zebrafish [8, 9]. The latter is thought to
involve a different morphogen transport mechanism, in
which Wnt is clustered at the membrane tip of grow-
ing signaling filopodia. When the filopodia make contact
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with target cells, the morphogens are delivered to the
cells and the filopodia are pruned off within 10 minutes of
making contact. In this case, the amount of morphogen
delivered to a cell will depend on the rate of filopodia
growth, the concentration of morphogen at the tips, and
the frequency of contacts between source and target cells.

Dynamic instabilities in microtubules are much better
understood than in cytonemes. Microtubules grow by
the attachment of guanosine triphosphate (GTP)-tubulin
complexes at one end. In order to maintain growth, the
end of the microtubule must consist of a “cap” of con-
secutive GTP-tubulin monomers. However, each poly-
merized complex can hydrolyze into guanosine diphos-
phate (GDP)-tubulin such that if all the monomers in
the cap convert to GDP, then the microtubule is destabi-
lized, and there is rapid shrinkage due to detachment of
the GDP-tubulin monomers. The competition between
attachment of GTP-tubulin and hydrolysis from GTP to
GTD is thought to be the basic mechanism of alternating
periods of growth and shrinkage [17, 18]. The search-and-
capture model of cell mitosis involves the nucleation of
microtubules in random directions, which then grow and
shrink dynamically in order to search space and even-
tually encounter a target kinetochore [14–16]. A num-
ber of recent modeling studies have analyzed search-and-
capture in terms of a first passage time problem for a
velocity jump process [19–22]. One of the interesting
features addressed by several of these studies is the pres-
ence of so-called sticky boundaries [19, 20]. For example,
when a growing microtubule hits the cell membrane it
can stick to the wall until it transitions to a catastrophe
state after some exponentially distributed waiting time.
One can also take into account the finite time for nucle-
ation of a new growing microtubule by imposing a sticky
boundary condition at the nucleation site [19]. (Very
similar mathematical models arise in the case of bacte-
rial chemotaxis, where sticky boundary conditions reflect
the fact that bacteria can temporarily stick to the sides
of a container [23].)

One of the difficult features of a sticky boundary con-
dition from a mathematical perspective is that when cal-
culating a mean first passage time (MFPT), for exam-
ple, it is necessary to keep track of each time the system
hits the sticky boundary before eventually exiting. As in
the case of diffusion processes [24], there are two stan-
dard and complementary approaches to calculating the
MFPT. The first is to determine the Green’s functions
of the forward differential Chapman-Kolmogorov (CK)
equation (the analog of the Fokker-Planck equation) us-
ing Laplace transforms, and to express the conditional
FPT distributions in terms of these Green’s functions.
In the presence of sticky boundaries, it is necessary to
sum over all possible paths, after indexing them accord-
ing to the number of times they visit the sticky boundary
[19]. The second method is to introduce an appropriate
set of splitting probabilities and conditional MFPTs and
to derive differential equations for these various quanti-
ties using the backward CK equation [20]. Although the

latter direct method neatly avoids the need to sum over
paths in the case of sticky boundaries, the analysis is still
quite involved, particularly when extended to more com-
plicated first passage time problems, such as those that
arise in the search-and-capture model of cell mitosis.

In this paper we develop a search-and-capture model
of cytoneme-mediated morphogen gradient formation,
in which nucleating cytonemes from a source cell dy-
namically grow and shrink along the surface of a one-
dimensional array of target cells until making contact
with one of the target cells. We analyze the first passage
time problem for making contact, and then use this to
explore the formation of morphogen gradients under the
mechanism proposed for Wnt in vertebrates. That is, we
assume that morphogen is localized at the tip of a grow-
ing cytoneme, which is delivered as a “morphogen burst”
to a target cell when the cytoneme makes temporary con-
tact with a target cell before subsequently retracting. We
then show how multiple rounds of search-and-capture,
morphogen delivery, cytoneme retraction and nucleation
events lead to the formation of a morphogen gradient. We
proceed by formulating the morphogen bursting model as
a queuing process, analogous to the study of translational
bursting in gene networks [25].

Although the search-and-capture models of cytoneme-
based morphogenesis and cell mitosis are completely un-
related from a biological perspective, they share several
of the same mathematical elements. In particular, deter-
mining the MFPT for a single cytoneme to make contact
with a target cell requires solving a first passage time
problem in the presence of sticky boundaries, very similar
to the MFPT for a microtubule to find a target kineto-
chore. In this paper we introduce a new efficient method
for solving this class of first passage time problems, which
exploits some classical concepts from probability theory,
namely, stopping times and the strong Markov property
[26]. We have previously used this approach within the
context of diffusion in domains with randomly switching
boundaries [27, 28]. For example, consider a Brownian
particle diffusing in a two-dimensional bounded domain
with a finite number of small O(ǫ) pores distributed on
the boundary of the domain. Furthermore, suppose that
the pores are stochastically gated so that they randomly
and independently switch between an open and a closed
state. This means that one has to solve a boundary value
problem in which the bulk of the boundary is reflecting,
but each O(ǫ) pore randomly switches between an ab-
sorbing and a reflecting boundary. Hence, in order to
determine the MFPT to escape through an open pore, it
is necessary to keep track of all prior visits to each pore
when it is in a closed state. This is analogous to keeping
track of visits to a sticky boundary.

The structure of the paper is as follows. In Sect. II
we introduce our probabilistic method for analyzing first
passage time problems with sticky boundaries by consid-
ering a filament undergoing dynamical instabilities in a
bounded interval. We calculate the MFPT to hit one end
of the interval, given a sticky or nucleating boundary at
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the other end. We show how the MFPT can be straight-
forwardly expressed in terms of the splitting probabil-
ities and conditional MFPT obtained when the sticky
boundary is replaced by an absorbing boundary. In sec-
tion III we introduce our search-and-capture model of a
single cytoneme nucleating from a source cell and mak-
ing contact at some point along a one-dimensional array
of target cells. We extend the analysis of section II in
order to determine the MFPT for forming such a con-
tact. In section IV, we use queuing theory to analyze
a bursting model of morphogen gradient formation. Fi-
nally, in section V we show how the probabilistic methods
introduced in the paper can be used to simplify previ-
ous analyses of the search-and-capture model of micro-
tubule/microtubule attachment. A basic introduction to
stopping times and strong Markov property is presented
in appendix A, and various formulae used in section III
are derived in appendix B.

II. FIRST PASSAGE TIME PROBLEM FOR A
DYNAMIC FILAMENT.

Consider a filament fixed at one end (x = 0) of a
bounded domain [0, L] and let X(t) ∈ [0, L] be the po-
sition of the filament tip or, equivalently the filament
length. Suppose that the filament can randomly switch
between a growing state with tip velocity v+ and a
shrinking state with tip velocity −v−, v± > 0. Let
N(t) denote the current velocity state, with N(t) = − if
v(t) = −v− and N(t) = + if v(t) = v+. In other words,
the position of the tip evolves according to the piece-
wise deterministic differential equation (velocity jump
process)

dX(t)

dt
= vn, N(t) = n. (2.1)

Eq.(2.1) holds between jumps in the velocity state N(t),
which are taken to occur via a two-state Markov chain:

{−}
α+

⇋
α−

{+}.

In the physics literature, this is known as a dichotomous
noise process [29]. Let pn(x, t) be the probability density
that at time t we have x < X(t) < x+ dx and N(t) = n.
That is, for a given set of initial conditions, pn(x, t) =
p(x, n, t|y,m, 0), where

p(x, n, t|y,m, 0)dx

= P[x ≤ X(t) ≤ x+ dx,N(t) = n|X(0) = y,N(0) = m],

and pn(x, 0) = δ(x − y)δn,m. The density pn evolves
according to the differential Chapman Kolmogorov (CK)
equation [30, 31]

∂p+
∂t

= −v+
∂p+
∂x

+ α+p− − α−p+ (2.2a)

∂p−
∂t

= v−
∂p−
∂x

− α+p− + α−p+. (2.2b)

for x ∈ [0, L]. Eqs. of the form (2.2a) and (2.2b) arise
in a wide range of biological applications. First, it has
been used to model dynamic instabilities of microtubules
known as catastrophes [18, 32], which is the closest to
the application considered in this paper, namely the
growth and shrinkage of cytonemes during morphogen-
esis. Alternatively, X(t) could represent the position of
a bacterium undergoing a 1D version of run-and-tumble
[23, 33, 34], or a molecular motor performing bidirec-
tional transport along a microtubule filament [31].
In the case of confined growth and shrinkage, it is nec-

essary to specify the boundary conditions at x = 0, L.
Following previous studies of microtubular catastrophes
[19, 20], we will assume that there is a reflecting bound-
ary at x = L, so that

v+p+(L, t) = v−p−(L, t), (2.3)

and a sticky boundary at x = 0, see Fig. 1. The latter
takes into account the finite time for nucleation of a new
growing filament at x = 0, which occurs at some rate r0.
The sticky boundary condition is given by

v+p+(0, t) = r0P0(t), (2.4)

where P0(t) is the probability that the filament has
shrunk to zero and is in the nucleating state at time t.
The latter evolves according to the equation

dP0

dt
= v−p−(0, t)− r0P0(t), (2.5)

The normalization condition for the total probability is

∫ L

0

p(x, t)dx+ P0(t) = 1. (2.6)

A natural quantity of interest is the MFPT to hit the
boundary at x = L, say, given an initial state X(0) = y
and a sticky boundary at x = 0, see Eq. (2.4) and Fig.
1. One of the difficult features of a sticky boundary is
that it is necessary to keep track of each time the parti-
cle hits x = 0 before eventually exiting at x = L, since
the particle spends an exponentially distributed time τ̃n
in the state before reentering the growth phase. One

v+

v-

α− α+

x = 0 x = L

r0

N

FIG. 1. Schematic representation of a sticky boundary at
x = 0, with r0 the nucleation rate for switching to a growth
state.
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approach to calculating the MFPT is to analyze the for-
ward CK Eqs. (2.2a) and (2.2b) using Laplace transforms
and to sum over all possible paths that eventually escape
at x = L [19]. However, this is a non-trivial calcula-
tion, particularly when extended to a search-and-capture
model. A more direct approach, which avoids the need
to perform a sum-over-paths, is to start from the back-
ward CK equation and to derive differential equations
for various splitting probabilities and conditional MFPTs
[20]. In this section we show that a more efficient direct
method for calculating the MFPT is to use some clas-
sical concepts from probability theory, namely, stopping
times and the strong Markov property, which are sum-
marized in appendix A. This will allow us to express the
MFPT in terms of the splitting probabilities and con-
ditional MFPT obtained when the sticky boundary at
x = 0 is replaced by an absorbing boundary; we consider
this latter problem first, see also [20].

A. MFPT to hit the wall at x = L with an
absorbing boundary at x = 0.

We begin by calculating the conditional MFPT that
the particle hits the wall at x = L before ever reaching
zero. This means imposing absorbing boundaries at x =
0, L,

p+(0, t) = p−(L, t) = 0,

and defining

Tm(y) = inf{t ≥ 0;X(t) = L | 0 /∈ {X(s), 0 ≤ s ≤ t},

X(0) = y,N(0) = m}

for 0 < y < L, with T+(L) = 0 (immediate absorption
if the particle starts out at x = L and is in the velocity
state v+). The probability flux through the end x = L is

Jm(y, t) = v+p+(L, t|y,m, 0).

It follows that for 0 < y < L, the probability Πm(y, t)
that the particle exits at x = L after time t, having
started in state (y,m) is

Πm(y, t) =

∫ ∞

t

Jm(y, t′)dt′. (2.7)

Differentiating with respect to t gives

∂Πm(y, t)

∂t
= −Jm(y, t) =

∫ ∞

t

∂Jm(y, t′)

∂t′
dt′.

Hence, using the backward CK equation leads to the pair
of equations

∂Π+

∂t
= v+

∂Π+

∂y
− α−[Π+ −Π−], (2.8a)

∂Π−

∂t
= −v−

∂Π−

∂y
+ α+[Π+ −Π−], (2.8b)

In order to determine the boundary conditions at x =
0, L note that if the particle starts out in the negative
velocity state at x = 0, it never reaches x = L, whereas
if it starts out at x = L in the positive velocity state
it is immediately absorbed. Hence, Π−(0, t) = 0 and
Π+(L, t) = 1.
We can now define the hitting or splitting probability

that the particle hits x = L before x = 0 according to
πm(y) = Πm(y, 0). Since ∂tΠm(y, t)|t=0 = −Jm(y, 0) = 0
for 0 < y < L, we see that πm satisfies the steady-state
equations

0 = v+
∂π+

∂y
− α−[π+ − π−], (2.9a)

0 = −v−
∂π−

∂y
+ α+[π+ − π−], (2.9b)

with boundary conditions π−(0) = 0 and π+(L) = 1.
It also follows that the probability that the particle hits
x = L after time t, conditioned on not reaching zero, is
P[Tm(y) > t|Tm(y) < ∞] = Πm(y, t)/Π,(y, 0). Since the
conditional MFPT satisfies

ωm(y) := E[Tm(y)|Tm(y) < ∞]

= −

∫ ∞

0

t
∂P[Tm(y) > t|Tm(y) < ∞]

∂t
dt

=

∫ ∞

0

Πm(y, t)

Πm(y, 0)
dt,

Integrating Eqs. (2.8) with respect to t then gives

−π+ = v+
∂π+ω+

∂y
− α−[π+ω+ − π−ω−], (2.10a)

−π− = −v−
∂π−ω−

∂y
+ α+[π+ω+ − π−ω−],(2.10b)

with boundary conditions π−(0)ω−(0) = π+(L)ω+(L) =
0. A similar analysis can be carried out for exit through
the other end x = 0. We denote the corresponding
splitting probability and conditional MFPT for escape
at x = 0 by πm(y) and ωm(y). Note that explicit ex-
pressions for the various splitting probabilities and con-
ditional MFPTs can be found in Ref. [20].

B. MFPT to hit the wall at x = L with a sticky
boundary at x = 0.

Now suppose that we include a sticky boundary at x =
0 and impose the sticky boundary condition (2.4), see
Fig. 1. We introduce the following set of FPTs:

T = inf{t ≥ 0;X(t) = L},

S = inf{t ≥ 0;X(t) = 0},

R = inf{t ≥ 0;X(S + t) = L},

where we have suppressed the dependence on the initial
condition (y,m). Introducing the set Ω = {S < T }, we
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0  L

N

y

splitting

paths

=

+

FIG. 2. Schematic diagram illustrating how the unconditional
MFPT (gray arrow) for a particle to reach the boundary at
x = L, starting at position y, can be split into two conditional
MFPTs. The first involves all direct paths (black arrows)
from y to the boundary at L (ie paths that never hit x =
0), whereas the second involves all paths that shrink to zero
length without reaching the boundary at x = L, spend some
time in the state N , and then attempt to reach the boundary
at x = L, starting unconditionally from zero.

can decompose the MFPT to escape at x = L according
to

τ := E[T ] = E[T 1Ωc ] + E[T 1Ω]

= E[T 1Ωc ] + E[(S + τ̃n +R)1Ω]. (2.11)

Here Ωc is the complementary set of Ω and 1Ω is an
indicator function which ensures that expectation is only
taken with respect to events that lie in Ω. Note that
E[T 1Ωc ] is the MFPT that the particle hits x = L before
ever hitting x = 0, and E[S1Ω] is the MFPT that the
particle hits x = 0 before ever hitting x = L. Moreover,

E[τ̃n1Ω] = E[τ̃n]P(Ω) = r−1
0 P(Ω),

where r0 is the nucleation rate and P(Ω) is the splitting
probability to hit x = 0 before x = L. Incorporating
the dependence on the initial conditions, we thus find
P(Ω) = πm(y) and

τm(y) = πm(y)ωm(y)+πm(y)

[
ωm(y) +

1

r0

]
+E[Rm(y)1Ω].

We now exploit an important property of the velocity-
jump process, namely, it satisfies the strong Markov
property, which is defined in appendix A. In terms of
our current example, the strong Markov property implies

that even though the stopping time S is random, the

stochastic process X̂(t′) = X(t− S) with times t′ ≥ 0 is
identical to the original stochastic process X(t) with the

initial condition X̂(0) = X(S). In particular, the MFPT

for X̂ to reach the boundary at x = L is simply τ+(0),
so that

E[Rm(y)1Ω] = πm(y)τ+(0).

Hence,

τm(y) = πm(y)ωm(y) + πm(y)

[
ωm(y) +

1

r0
+ τ+(0)

]
.

(2.12)
The unknown constant τ1(0) can be determined self-
consistently by setting y = 0 and m = +:

τ+(0) = π+(0)ω+(0) + π+(0)

[
ω+(0) +

1

r0
+ τ+(0)

]
.

Rearranging the equation and using π+(0) + π+(0) = 1
yields

τ+(0) = ω+(0) +
π+(0)

π+(0)

[
ω+(0) +

1

r0

]
.

We thus recover Eqs. (43) and (44) of Ref. [20], which
completely determine the MFPT. Following [20], the in-
terpretation of Eq. (2.12) can be summarized diagram-
matically, as illustrated in Fig. 2.

III. SEARCH-AND-CAPTURE MODEL FOR A
SINGLE CYTONEME AND MULTIPLE

TARGETS

Consider a one-dimensional array ofK+1 cells of size l
labeled by k = 0, 1, · · ·K, see Fig. 3. A source cell k = 0
projects a cytoneme that actively grows and shrinks until
it forms a contact with one of the target cells. We assume
that one end of the cytoneme is fixed at x = 0 (a site
on the source cell), and the position of the other end is

k = 0 k = K

source cell target cell

cytoneme

FIG. 3. One-dimensional search-and-capture model of a single
cytoneme with multiple targets. For simplicity, the cytoneme
is taken to dynamically grow and shrink along the surface
of a one-dimensional array of cells until it eventually forms
a contact with the kth cell. If the cytoneme shrinks to zero
then a new cytoneme starts to grow following a nucleation
waiting time.
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taken to be a stochastic variable X(t), which can also be
identified as the length of the cytoneme. We take X(t)
to evolve according to a slightly modified version of the
two-state velocity process considered in section II. Let
pn(x, t) be the probability density that at time t the end
of the cytoneme is at X(t) = x and in the discrete state
N(t) = n. The corresponding CK equation is taken to
be

∂p+
∂t

= −v+
∂p+
∂x

− [α− + α0]p+ + α+p−, (3.1a)

∂p−
∂t

= v−
∂p−
∂x

+ α−p+ − [α+ + α0]p−, (3.1b)

for 0 < x < L where L = Kl. Here v+ and v− are the
average speeds of growth and shrinkage. In contrast to
the standard Dogterom-Leibler model, we also allow for
the possibility that the cytoneme can be captured by a
target cell anywhere in the domain [0, L] with a capture
rate α0. For the moment we treat this capture event
as irreversible, that is, the search-and-capture process is
terminated. (When we consider a multi-cytoneme model,
we will need to keep track of the subsequent retraction
of the cytoneme.)
We will impose the same boundary conditions as sec-

tion II, namely, the reflecting boundary condition (2.3) at
x = L and the sticky boundary condition (2.4) at x = 0.
First, we assume that if the cytoneme shrinks to zero,
then a new growing cytoneme is formed following an ex-
ponentially distributed waiting time due to nucleation.
Note that we could also include a sticky boundary at
x = L, in order to account for the possibility that when
the cytoneme hits the boundary, its growth velocity v+
drops to zero and it sticks to the wall until transitioning
to a shrinkage state at some rate rL. Another gener-
alization would be to take the search domain to extend
beyond the array of cells (L > lK). The probability Pk(t)
that the cytoneme is captured by the kth target at time
t satisfies the equation

dPk

dt
= α0

∫ kl

(k−1)l

p(x, t)dx, p = p+ + p− (3.2)

Summing Eqs. (3.1a) and (3.1a) and then integrating
with respect to x over the interval [0, L] shows that

d

dt

∫ L

0

p(x, t)dx = − [v+p+(x, t) − v−p−(x, t)]|
L

0

− α0

∫ L

0

p(x, t)dx

Given the boundary conditions (2.3) and (2.4), it follows
that

d

dt

∫ L

0

p(x, t)dx +

N∑

k=0

dPk

dt
= 0,

which ensures conservation of total probability over all

events, that is

∫ L

0

p(x, t)dx +

N∑

k=0

Pk(t) = 1. (3.3)

We would like to determine the splitting probability ρk
that the cytoneme is eventually captured by the kth tar-
get, where

ρk = lim
t→∞

Pk(t),
K∑

k=1

ρk = 1. (3.4)

Another quantity of interest is the conditional mean first
passage time τk for capture by the kth target.

A. Conditional MFPT to reach x = 0.

We first consider the conditional MFPT for a cytoneme
to shrink back to the boundary at x = 0, having started
in state (y,m) at time t = 0 with m ∈ {+,−}. For the
moment, assume that there is no nucleation effect and
impose an absorbing boundary condition at x = 0, that
is, p−(0, t) = 0. We will use the backward version of Eqs.
(3.1a) and (3.1b), which are given by

∂q+
∂t

= v+
∂q+
∂y

− α−[q+ − q−]− α0q+, (3.5a)

∂q−
∂t

= −v−
∂q−
∂y

+ α+[q+ − q−]− α0q−, (3.5b)

where qm(y, t) = p(x, n, t|y,m, 0) for a given final condi-
tion. We introduce the FPT

T 0
m(y) = inf{t ≥ 0;X(t) = 0, N(t) = −|X(0) = y,

N(0) = m}.

Note that T 0
m(y) = ∞ means the cytoneme never shrinks

back to the source cell before being captured by a target
cell.

In order to calculate the conditional MFPT τ0m :=
E[T 0

m(y)|T 0
m(y) < ∞], we need to determine the corre-

sponding splitting probability. Since the probability flux
through the end x = 0 is J0

m(y, t) = v−p(0,−, t|y,m, 0), it
follows that for 0 < y < L, the probability Π0

m(y, t) that
the particle exits at x = 0 after time t, having started in
state (y,m), is

Π0
m(y, t) = P[t < T 0

m(y) < ∞] =

∫ ∞

t

J0
m(y, t′)dt′. (3.6)

Differentiating with respect to t gives

∂Π0
m(y, t)

∂t
= −J0

m(y, t) =

∫ ∞

t

∂J0
m(y, t′)

∂t′
dt′.
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Hence, using the backward CK equation leads to the pair
of equations

∂Π0
+

∂t
= v+

∂Π0
+

∂y
− α−[Π

0
+ −Π0

−]− α0Π
0
+,

(3.7a)

∂Π0
−

∂t
= −v−

∂Π0
−

∂y
+ α+[Π

0
+ −Π0

−]− α0Π
0
−.

(3.7b)

In order to determine the boundary conditions at x =
0, L, note that if the cytoneme starts out in the shrinking
phase at x = 0, it is immediately absorbed, whereas if it
starts out at x = L in the growing phase it immediately
transitions to the shrinkage phase. Hence, Π0

−(0, t) = 1
and Π0

+(L, t) = Π0
−(L, t).

We can now define the hitting or splitting probability
that the particle exits at x = 0 rather than being cap-
tured by a target cell according to π0

m(y) = Π0
m(y, 0).

Since

∂Π0
m(y, t)

∂t

∣∣∣∣
t=0

= −J0
m(y, 0) = 0

for 0 < y < L, we see that π0
m satisfies the steady-state

equations

0 = v+
∂π0

+

∂y
− α−[π

0
+ − π0

−]− α0π
0
+, (3.8a)

0 = −v−
∂π0

−

∂y
+ α+[π

0
+ − π0

−]− α0π
0
−, (3.8b)

with boundary conditions π0
−(0) = 1 and π0

+(L) =
π0
−(L). It also follows that the probability that the cy-

toneme tip hits x = 0 after time t, conditioned on not
being captured by a target cell, is P[t < T 0

m(y)|T 0
m(y) <

∞] = Π0
m(y, t)/Π0

m(y, 0). Hence, the conditional MFPT
satisfies

ω0
m(y) := E[T 0

m(y)|T 0
m(y) < ∞]

= −

∫ ∞

0

t
∂P[t < T 0

m(y)|T 0
m(y) < ∞]

∂t
dt

=

∫ ∞

0

Πm(y, t)

πm(y, 0)
dt,

Integrating Eqs. (3.7a) and (3.7b) with respect to t then
gives

−π0
+ = v+

∂π0
+ω

0
+

∂y
− α−[π

0
+ω

0
+ − π0

−ω
0
−]− α0π

0
+ω

0
+,

(3.9a)

−π0
− = −v−

∂π0
−ω

0
−

∂y
+ α+[π

0
+ω

0
+ − π0

−ω
0
−]− α0π

0
−ω

0
−,

(3.9b)

with boundary conditions π0
−(0)ω

0
−(0) = 0 and

π0
+(L)ω

0
+(L) = π0

−(L)ω
0
−(L).

B. Conditional MFPT to be captured by a target
before reaching x = 0.

Next we consider the MFPT for the cytoneme tip to
be captured by the kth target cell while in the grow-
ing phase, having started in state (y,m) at time t = 0
and m ∈ {+,−}. It is convenient to introduce a new
stochastic variable K(t) ∈ {0, 1, . . .K} with K(t) = k,
1 ≤ k ≤ K indicating that the cytoneme is attached to
the kth target cell at time t and K(t) = 0 indicating that
the cytoneme is not attached to any target cell. Follow-
ing a similar sequence of steps as the previous case, we
first introduce the FPT

T k
m(y) = inf{t ≥ 0; (k − 1)l < X(t) ≤ kl,

K(t) = k|X(0) = y,N(0) = m}.

The probability flux into the kth target cell is

Jk
m(y, t) = α0

∫ kl

(k−1)l

p(x, n, t|y,m, 0)dx,

so that

Πk
m(y, t) := P[t < T k

m(y) < ∞] =

∫ ∞

t

Jk
m(y, t′)dt′,

where Πk
m(y, t) is the probability that the cytoneme tip

is captured by the kth target cell after time t, having
started in state (y,m). Integrating Eqs. (3.5a) and (3.5b)
over the interval (k − 1)l < x ≤ kl yields equation with
the same structure as (3.7a) and (3.7b):

∂Πk
+

∂t
= v+

∂Πk
+

∂y
− α−[Π

k
+ −Πk

−]− α0Π
k
+,

(3.10a)

∂Πk
−

∂t
= −v−

∂Πk
−

∂y
+ α+[Π

k
+ −Πk

−]− α0Π
k
−.

(3.10b)

The boundary conditions at x = 0, L can be determined
using similar arguments to the previous example. The
main difference is that if the cytoneme starts out in the
shrinkage phase at x = 0, then it is never captured by a
target cell. Hence, Πk

−(0, t) = 0 and Πk
+(L, t) = Πk

−(L, t).

The splitting probability that the cytoneme tip is cap-
tured by the kth target cell rather than exiting through
x = 0 or being captured by another target cell is given
by πk

m(y) = Πk
m(y, 0). Since

∂Πk
m(y, t)

∂t

∣∣∣∣
t=0

= −Jk
m(y, 0) = −α0χk(y),

where χk(y) is the indicator function χk(y) = 1 if
(k − 1)l < y ≤ kl and zero otherwise, it follows that
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FIG. 4. Splitting probabilities of the search-and-capture model for a single cytoneme. (a,b) Plots of ρk(0) against k, see
Eq.(3.14), for various dimensionless growth and shrinkage rates v±/α0L. (c,d) Corresponding plots for the relative transition
rates α±/α0. Parameter values are as follows: v±/α0L = 0.2, α±/α0 = 1, and K = 40.

0 10 20 30 40
0

2

4

6

8

0
 

k
(0

)

v
+
/

0
L

0.20

0.25

0.15

0 10 20 3 0
0

2

4

6

8

v
-
/

0
L

0.20

0.25

0.15

0 10 20 30 40
0

2

4

6

8

+
/

0

1.0

1.5

0.5

0 10 20 30 40

cell index, k

0

2

4

6

8

-
/

0

1.0

1.5

0.5

0 10 20 3 0
0

2

4

6

8

r
0
/

0

1.0

1.5

0.5

0 4

0 4

(b)(a)

(c) (d) (e)
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α0τk(0) against k, see Eq. (3.17), for various dimensionless growth and shrinkage rates v±/α0L. (c,d,e) Corresponding plots
for the relative transition rates α±/α0 and r0/α0, respectively. Parameter values are the same as Fig. 4.

πk
m satisfies

−α0χk(y) = v+
∂πk

+

∂y
− α−[π

k
+ − πk

−]− α0π
k
+,

(3.11a)

−α0χk(y) = −v−
∂πk

−

∂y
+ α+[π

k
+ − πk

−]− α0π
k
−,

(3.11b)

with boundary conditions πk
−(0) = 0 and πk

+(L) =

πk
−(L). The conditional probability that the cytoneme

tip hits the kth target cell after time t is P[t <
T k
m(y)|T k

m(y) < ∞] = Πk
m(y, t)/Πk

m(y, 0). Hence, the
conditional MFPT satisfies

ωk
m(y) := E[T k

m(y)|T k
m(y) < ∞] =

∫ ∞

0

Πk
m(y, t)

πk
m(y)

dt.
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Integrating Eqs. (3.11a) and (3.11b) with respect to t
yields equations identical in form to Eqs. (3.9a) and
(3.9b):

−πk
+ = v+

∂πk
+ω

k
+

∂y
− α−[π

k
+ω

k
+ − πk

−ω
k
−]− α0π

k
+ω

k
+,

(3.12a)

−πk
− = −v−

∂πk
−ω

k
−

∂y
+ α+[π

k
+ω

k
+ − πk

−ω
k
−]− α0π

k
−ω

k
−,

(3.12b)

together with the boundary conditions πk
−(0)ω

k
−(0) = 0

and πk
+(L)ω

k
+(L) = πk

−(L)ω
k
−(L).

C. Conditional MFPT to be captured by a target
with nucleation at x = 0.

Now suppose that we include a nucleating state at x =
0 and impose the boundary conditions (2.3) and (2.4).
We also assume that the cytoneme starts at y = 0 in the
growing phase m = 1 and is eventually captured by the
kth cytoneme with k fixed. Consider the following set of
FPTs:

Tk = inf{t > 0; (k − 1)l < X(t) ≤ kl,N(t) = 0},

T0 = inf{t > 0;X(t) = 0, N(t) = −},

Rk = inf{t > 0; (k − 1)l < X(T0 + t) ≤ kl,N(T0 + t) = 0},

for k = 1, 2, · · · ,K, where we have suppressed the ex-
plicit dependence on the initial condition (y,+). Next
we introduce the sets

Ωk = {Tk < ∞}, Γk = {T0 < Tk < ∞} ⊂ Ωk.

That is, Ωk is the set of all events for which the cytoneme
is eventually captured by the kth target cell, and Γk is the
subset of events in Ωk for which the cytoneme nucleates
at least once. It immediately follows that

Ωk\Γk = {Tk < T0 = ∞}.

In other words, Ωk\Γk is the set of all events for which
the cytoneme is captured by the kth target cell without
any nucleation.
In order to deal with the sticky boundary at x = 0,

we will proceed along similar lines to section II. First,
the splitting probability ρk(y) of capture by the kth cell,
starting at position y in the growth phase, can be decom-
posed as

ρk(y) := P[Ωk] = P[Ωk\Γk] + P[Γk] = πk
+(y) + P[Γk].

(3.13)
Moreover,

P[Γk] = P[T0 < ∞] · P[Rk < ∞] = π0
+(y)P[Rk < ∞].

We are assuming that the nucleation waiting time is fi-
nite. The strong Markov property means that P[Rk <
∞] = ρk(0), so that Eq. (3.13) becomes

ρk(0) = πk
+(0) + π0

+(0)ρk(0).

Rearranging, we find that

ρk(0) =
πk
+(0)

1− π0
+(0)

, (3.14)

Second, we introduce the MFPT zk(0) := E[Tk1Ωk
],

which we decompose as

zk(0) = E[Tk1Ωk\Γk
] + E[Tk1Γk

]

= πk
+(0)ω

k
+(0) + E[(T0 + T̂ +Rk)1Γk

],

= πk
+(0)ω

k
+(0) + π0

+(0)ρk(0)

[
ω0
+(0) +

1

r0

]

+E[Rk1Γk
], (3.15)

where r0 is the rate of nucleation. From the strong

Markov property, the conditional MFPT for X̂(t) to be
captured by the kth target is zk(0)/ρk(0), so that

zk(0) = πk
+(0)ω

k
+(0) + π0

+(0)ρk(0)

[
ω0
+(0) +

1

r0
+

zk(0)

ρk(0)

]
.

(3.16)

Rearranging the above equation and using Eq. (3.14)
yields

zk(0) = ρk(0)

[
ωk
+(0) +

π0
+(0)

1− π0
+(0)

[
ω0
+(0) +

1

r0

]]
.

(3.17)
The corresponding conditional MFPT is then τk(0) =
zk(0)/ρk(0).
In Fig. 4 and Fig. 5 we show example plots of the

splitting probability and conditional MFPT as a func-
tion of the target cell index k. One major observa-
tion is that both statistical quantities are quite robust
with respect to changes in the dimensionless growth and
shrinkage rates v±/α0L, and the relative transition rates
α±/α0. There is, however, a greater sensitivity to vari-
ations in v+/α0L and α−/α0. Note that parameters are
chosen to be consistent with experimentally measured
values obtained in studies of cytoneme-mediated trans-
port of Wnt morphogens zebrafish [8] and Shh in chicken
[4]. Changes in the length of cytonemes are of the order
0.1µm/s and contacts are made every 102−103 seconds.
Taking a typical cytoneme length of L − 100µm, we ob-
tain the following range for the dimensionless quantities
v±/α0L ∼ 0.1− 1.

IV. MULTIPLE SEARCH-AND-CAPTURE
EVENTS

In section III we focused on the search-and-capture of a
single cytoneme by a target cell, without specifying how
morphogen is delivered to the cell once contact has been
made. Motivated by the transport mechanism of Wnt in
vertebrates [9], we will assume that a certain amount of
morphogen (presumably loaded in vesicles) is located at
the tip of the cytoneme, which is delivered to the target
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(i) random search

(ii) nucleate

(iii) deliver and retract

morphogen burst

time

target cell k 

FIG. 6. Stages of a single search-and-capture process culmi-
nating in delivery of a burst of morphogen to the kth target
cell. (i) Alternating periods of growth, shrinkage. (ii) Nu-
cleation whenever the cytoneme shrinks to zero (iii) When a
cytoneme is captured by a target cell, it delivers a morphogen
burst and then retracts back to the nucleation site.

cell once contact is established. We will refer to this as
a morphogen “burst.” After some fixed delay, the cy-
toneme then retracts back to the source cell, see Fig. 6.
We wish to analyze how multiple rounds of search-and-
capture, morphogen delivery, cytoneme retraction and
nucleation events lead to the formation of a morphogen
gradient. For simplicity, we will take the amount of mor-
phogen transported by each nucleated cytoneme to be of
fixed size d. (One could relax this assumption by model-
ing the loading of morphogens at the tip of a nucleated
cytoneme as a stochastic process so that d is itself a ran-
dom variable.)
Following section III, if a cytoneme starts at x = 0

in the growth phase, then the probability that a single
search-and-capture event delivers morphogen to the kth
cell is ρk(0) and the conditional MFPT for the event is
τk(0) = zk(0)/ρk(0). The other K − 1 target cells do
not receive any morphogen. Now suppose that we have
multiple search-and-capture events, under the simplify-
ing assumptions that a captured cytoneme delivers its
cargo without any delay, and then retracts back to x = 0
at fixed time τd, which is taken to be independent of the
location of the target cell. (One could relax this assump-
tion by taking τd to be length dependent.) Let n = 1, . . .
label the nth burst event and denote the target cell that
receives the jth burst of morphogen by kn. If Tn is the
time of the nth burst, then

Tn = τd + Tkn
+ Tn−1, n ≥ 1 (4.1)

The corresponding inter-arrival times are

∆n = τd + Tkn
, n ≥ 1.

In order to simplify the notation, we assume that the
first round of search-and-capture starts with a cytoneme
retracting back to x = 0. Finally, given an inter-arrival
time ∆, we denote the identity of the cell that captures
the cytoneme by K(∆).
Consider a specific target cell k = k. The cell will re-

ceive a sequence of morphogen bursts of size dn at times
Tn with dn = 0 if kn 6= k and dn = d if kn = k. We

also include the effects of degradation, that is each mor-
phogen delivered to the target cell degrades at a rate κ.
We would like to determine the steady-state amount of
morphogen in the long-time limit. We will proceed by
reformulating the multiple search-and-capture model as
a queuing process, see Fig. 7, analogous to the study of
translational bursting in gene networks [25].
Queuing theory concerns the mathematical analysis of

waiting lines formed by customers randomly arriving at
some service station, and staying in the system until
they receive service from a group of servers. Different
types of queuing process are defined in terms of (i) the
stochastic process underlying the arrival of customers,
(ii) the distribution of the number of customers (batches)
in each arrival, (iii) the stochastic process underlying the
departure of customers (service-time distribution), and
(iv) the number of servers. The above model of mor-
phogen bursting can be mapped to a queuing process
as follows: individual morphogens are analogous to cus-
tomers, morphogen bursts correspond to customers arriv-
ing in batches X(t), and the degradation of morphogens
is the analog of customers exiting the system after being
serviced. Thus, the waiting-time density for morphogen
degradation is the analog of the service-time distribu-
tion. Finally, since the morphogens are degraded inde-
pendently of each other, the effective number of servers in
the corresponding queuing model is infinite, that is, the
presence of other customers does not affect the service
time of an individual customer.
The particular queuing model that maps to the model

of morphogen bursting is the G/M/∞ system. Here the
symbol G denotes a general inter-arrival time and tar-
get cell distribution F (t, k) for the cytoneme tip search-
and-capture process. (In this section t denotes a waiting

(i) arriving

customers
(ii) queue

(iii) exiting

customers
server

(a)

(i) morphogen bursts

(b)

(ii) accumulation of

morphogen in cell

(iii) degradation

FIG. 7. Diagram illustrating the mapping between queuing
theory and morphogen bursting. (a) Example of a single-
server queue. (b) Morphogen bursting. Multiple search-and-
capture events of a cytoneme generates a sequence of mor-
phogen bursts within a target cell that is analogous to the
arrival of customers in the queuing model. This results in
the accumulation of morphogen within the cell, which is the
analog of a queue. Degradation corresponds to exiting of cus-
tomers after being serviced by an infinite number of servers.
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time.) The symbol M stands for a Markovian or ex-
ponential service-time distribution H(t) = 1 − e−κt for
morphogen degradation, and ‘∞’ denotes infinite servers.
Before proceeding we need to specify how F (t, k) relates
to the quantities calculated in section III. We can write

F (t, k) = P[∆ < t,K(∆) = k]

= P[∆ < t, |K(∆) = k]P[K(∆) = k]

= ρk(0)

∫ t

0

fk(τ)dτ (4.2)

where fk(τ) is the FPT density for the conditional MFPT
of a single search-and-capture event that terminates at
the kth cell. In particular,

∫ ∞

0

τfk(τ)dτ = τk(0) + τd. (4.3)

A. Moments of G/M/∞ queuing model

Let N(t) be the number of busy servers at time t. This
corresponds to the number of morphogens in the labeled
cell k̄ that have not yet degraded. In terms of the se-
quence of arrival times Tn and cell identities kn, we can
write

N(t) =
∑

n,0≤Tn≤t

χ(t− Tn)δknk̄
, (4.4)

where

χ(t− Tn) =

d∑

i=1

I(t− Tn, Sni), (4.5)

for

I(t− Tn, Sni) =

{
1 if t− Tn ≤ Sni

0 if t− Tn > Sni
. (4.6)

Here Sni, i = 1, . . ., is the service time of the ith member
of a burst delivered to the cell k̄.
Introduce the generating function

G(z, t) =

∞∑

l=0

zlP[N(t) = l], (4.7)

and the binomial moments

Br(t) =
∞∑

l=r

l!

(l − r)!r!
P[N(t) = l], r = 1, 2, · · · . (4.8)

Suppose that the system is empty at time t = 0. We now
derive an integral equation for the generating function
G(z, t). Conditioning the first arrival time by setting
T1 = y, we have

N(t) =

{
χ(t− y)δk1,k̄

+N∗(t− y) if y ≤ t
0 if y > t

,

whereN∗(t) has the same distribution asN(t). Note that
χ(t− y)δk1,k̄

and N∗(t− y) are independent. Moreover,

P[I(t− y, S1i) = j] = [1−H(t− y)]δj,1 +H(t− y)δj,0,

so it follows that
∑

j=0,1

zjP[I(t− y, S1i) = j] = z + (1 − z)H(t− y).

Since I(t − y, S1i) for i = 1, 2, · · · , d are independent
and identically distributed, the total expectation theorem
yields

E[zχ(t−T1)δk1,k̄ ] = E

[
E[zχ(t−T1)δk1,k̄ |T1 = y]

]

= E

[
b∏

i=1

E[zδk1,k̄I(t−y,S1i)]

]

=

∫ ∞

0

[z + (1− z)H(t− y)]ddF (y, k̄)).

Another application of the total expectation theorem
gives

G(z, t) = E[zN(t)] = E

[
E[zN(t)|T1 = y]

]

=

K∑

k=1

∫ ∞

t

dF (y, k)

+

∫ t

0

[z + (1 − z)H(t− y)]dG(z, t− y)dF (y, k̄)

+
∑

k 6=k̄

∫ t

0

G(z, t− y)dF (y, k). (4.9)

One can now obtain an iterative equation for the Bino-
mial moments by differentiating Eq. (4.9) with respect
to z and using

Br(t) =
1

r!

drG(z, t)

dzr

∣∣∣∣
z=1

Since

dr

dzr
[z + (1− z)H(t− y)]d

∣∣∣∣
z=1

=

{
d!

(d− r)!
[1−H(t− y)]r if d ≥ r

0 if d < r
,

we obtain the integral equation

Br(t) =
K∑

k=1

∫ t

0

Br(t− y)dF (y, k) +
r∑

l=1

(
d

l

)

×

∫ t

0

Br−l(t− y)[1−H(t− y)]lAldF (y, k̄),

where Al = 1 for l ≤ d and Al = 0 for l > d. This can be
written in the more compact form

Br(t) =
K∑

k=1

∫ t

0

Br(t−y)dF (y, k)+

∫ t

0

Hr(t−y)dF (y, k̄),

(4.10)
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FIG. 8. Distribution of morphogens for multiple search-and-capture events and various target cells. (a) Sample paths (solid
lines) and the steady-state mean (dashed lines) of N(t) for k = 1 (blue/top lines), k = 5 (orange/middle lines), and k = 10
(yellow/bottom lines). (b) Plot of 〈N〉 as a function of k obtained from Eq. (4.14) (solid curve), which is indistinguishable from
the corresponding curve obtained using Monte-Carlo simulations. The gray shaded region indicates the standard deviation of
N(t) as a function of k. Parameter values of a single search-and-capture event are the same as Fig. 4. Additional parameters
of the multiple search-and-capture model are as follows: d = 10, κ/α0 = 0.001, r0/α0 = 1, and τd = 0.
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FIG. 9. Coefficient of variation (CV) of the steady-state distribution of N(t). (a,b) Plots of CV against k for various dimen-
sionless growth and shrinkage rates v±/α0L. (c,d,e) Corresponding plots for the relative transition rates α±/α0 and r0/α0.
The CVs are calculated by performing Monte-Carlo simulations over 50 trials. Parameters are the same as Fig. 8.

where

Hr(t) =

r∑

l=1

(
d

l

)
AlBr−l(t)e

−lκt.

In order to obtain the steady-state binomial moments,
we Laplace transform Eq. (4.10) after making the sub-
stitution dF (y, k) = ρk(0)fk(y)dy:

B̂r(s) = B̂r(s)

K∑

k=1

ρk(0)f̂k(s) + Ĥr(s)ρk̄(0)f̂k̄(s),

which can be rearranged to give

B̂r(s) =
Ĥr(s)ρk̄(0)f̂k̄(s)

1−
∑K

k=1 ρk(0)f̂k(s)

=
ρk̄(0)f̂k̄(s)

1−
∑K

k=1 ρk(0)f̂k(s)
(4.11)

×
r∑

l=1

(
d

l

)
AlB̂r−l(s+ lκ).
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Multiplying both sides by s and taking the limit s → 0+

yields

B∗
r := lim

t→∞
Br(t) = lim

s→0+
sB̂r(s)

= lim
s→0+

sρk̄(0)f̂k̄(s)

1−
∑K

k=1 ρk(0)f̂k(s)

r∑

l=1

(
d

l

)
AlB̂r−l(lκ).

Using the l’Hospital rule with respect to s and assuming
the moments of F (t, k) are finite yields

λk̄ := lim
s→0+

sρk̄(0)f̂k̄(s)

1−
∑K

k=1 ρk(0)f̂k(s)
=

ρk̄(0)∑K
k=1 zk(0)

. (4.12)

Hence, our final result is

B∗
r = λk̄

r∑

l=1

(
d

l

)
AlB̂r−l(lκ). (4.13)

Eqs. (4.11) and (4.13) completely determine the
steady-state binomial moments. In particular, since

B0(t) = 1 and B̂0(s) = 1/s, the mean number of mor-
phogen in the target cell k̄ is

B∗
1 ≡ 〈N〉 =

λk̄d

κ
, (4.14)

Hence, we can interpret λk̄ as the mean rate at which
a morphogen burst is delivered to the given target cell.
Similarly,

B∗
2 ≡

1

2
(〈N2〉 − 〈N〉) =

1

λ

(
B̂1(κ)d+

A2d(d− 1)

4κ

)

=
d2λk̄

4κ

(
2ρk̄(0)f̂k̄(κ)

1−
∑K

k=1 ρk(0)f̂k(κ)
+A2

)
−

dA2λk̄

4κ
.

(4.15)

which implies that the variance of the number of mor-
phogens is a quadratic function of d:

〈N2〉 − 〈N〉2 = 2B∗
2 +B∗

1 − (B∗
1)

2

= C2d
2 + C1d, (4.16)

where

C1 =
(2−A2)λk̄

2κ
(4.17)

C2 =
λk̄

2κ

(
2ρk̄(0)f̂k̄(κ)

1−
∑K

k=1 ρk(0)f̂k(κ)
+A2

)
−

λ2
k̄

κ22
. (4.18)

Note that the coefficients are independent of d. The cor-
responding coefficient of variation (CV) satisfies

CV2 = C̃2 +
C̃1

d
, (4.19)

where C̃i = κ2Ci/λ
2
k̄
for i = 1, 2, and is an increasing

function of κ.

(i) more cytonemes

(ii) larger burst size

target cell k 

time-dependent morhpogen level

FIG. 10. Diagram illustrating the steady-state variance of
the morphogen level. The variance is smaller for multiple cy-
tonemes and a small burst size compared to a single cytoneme
with a large burst size.

In Fig. 8 and Fig. 9 we present some example plots
of the steady-state mean and variance of the number of
morphogens in the array of target cells. Stochastic re-
alizations of N(t) generate a noisy morphogen gradient.
This noise is determined by the steady-state variance. In
a similar fashion to the mean, the CV is more sensitive
to changes in v+/α0L and α−/α0.

B. Multiple independent cytonemes and optimal
morphogen gradient amplification

Now suppose that the source cell has M independent
nucleation sites so that multiple cytonemes deliver mor-
phogens independently. Let Nm(t) be the number of
morphogens present in the labeled target cell at time t
that were delivered by the mth cytoneme and set

NΣ(t) =

M∑

m=1

Nm(t).

Since Nm(t) are independent identically distributed ran-
dom variables, we have the steady-state mean

〈NΣ〉 = M〈N〉 =
Mdλk̄

κ
, (4.20)

and variance

σ2[NΣ] = Mσ2[N ] = Md(C2d+ C1). (4.21)

Note that the steady-state mean 〈NΣ〉 depends on the
productMd. Hence, for a given mean, one can reduce the
variance by decreasing d and increasing M such that Md
is fixed. That is, more frequent, smaller bursts generate
a morphogen gradient with a smaller variance. This is
illustrated in Fig. 10.

V. SEARCH-AND-CAPTURE MODEL OF
CHROMOSOME/MICROTUBULE

ATTACHMENT

Having developed an alternative, probabilistic method
for analyzing first passage time problems with sticky
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boundaries in section II, which we applied to our model
of cytoneme-based morphogenesis in section III, we now
show how this method can also be used to simplify previ-
ous studies of search-and-capture models in cell mitosis.
Although the latter are completely unrelated to mod-
els of cytoneme-based morphogenesis, they share some
mathematical features which we highlight in this sec-
tion. A crucial step in prometaphase, which is one of
the major stages of cell mitosis, is the attachment of
each chromosome to a microtubule of the mitotic spin-
dle, which is the macromolecular structure responsible
for segregating chromosomes to two daughter cells. Ac-
cording to the search-and-capture model of Kirschner and
Mitchison [15], the underlying mechanism involves the
nucleation of microtubules in random directions, which
then grow and shrink dynamically in order to search
space and eventually encounter a target kinetochore, see
Fig. 11(a,b). The first theoretical study of the search-
and-capture model was carried out by Holy and Leibler
[35], which was then substantially extended in more re-
cent work by Wollman et al [16]. The latter authors
consider microtubules nucleating from two centrosomes,
which could be located at the two focal points of an ellip-
soid representing the cell shape, see Fig. 11(c). Pairs of
chromosomes are linked together by kinetochores, which
are the fixed targets of searching microtubules, and are
distributed randomly around the equatorial plane. Each
centrosome has hundreds of nucleating sites from which
newly formed microtubules grow and shrink according to
the Dogterom-Leibler model. It is assumed that micro-
tubules from each nucleating site grow within a certain
solid angle ∆Ω, which defines a search cone for the given
nucleation site. It follows that any target falling within
the search cone will subtend a solid angle at a point on
the centrosome, where a is the cross-sectional area of the
target and l is its distance from the centrosome. It fol-
lows that a microtubule originating from the nucleation
site has a probability pc = a/(l2∆Ω) of nucleating in the
correct direction towards the target.

Wollman et al. [16] estimated the MFPT for a single
target to be captured by microtubules nucleating from a
single site under the simplifying assumption that the res-
cue rate following each catastrophe is zero (α = 0). This
simplification avoided the need to deal with sticky bound-
aries.) A more detailed mathematical analysis of first
passage time problems in the search-and-capture model
has been developed by Gopalakrishnan and Govindan
[19]. They allow for microtubule rescue, which means
that one has to keep track of both nucleation events and
collisions of a growing microtubule with the cell wall.
This involves two separate two sticky boundary condi-
tions. The MFPT to capture a target was originally
analyzed using forward methods [19], and subsequently
solved more simply using backward methods [20]. Here
we show how the analysis can be efficiently performed
using the same probabilistic methods as used to study
the cytoneme search-and-capture model.

Suppose that a microtubule is nucleated at a rate rn

MTOC
microtubules

kinetochore(a)

growing filament shrinking filament

β

α

polar microtubules

kinetochore microtubules
(K-fibers)

(b) (c)

ΔΩ

l

FIG. 11. Schematic diagram of the search-and-capture model
based on microtubule dynamic instabilities. (a) During
prometaphase microtubules randomly probe the cellular do-
main by alternating between growth and shrinkage phases
until they capture the kinetochores. (b) At the end of
prometaphase, all the kinetochores are attached to micro-
tubules, one from each pole of the mitotic spindle, and are
co-aligned along the mid-plane. (c) Illustration of the search
cone of a nucleation site on one of the centrosomes of a cell,
with the cell treated as an ellipsoid. A target falls within the
search cone at a distance l from the site.

from a centrosome in an arbitrary direction that lies in
a cone subtending a solid angle ∆Ω. As in the model of
Wollman et al. [16], if the target is located at a distance
d from the centrosome and has a cross-sectional area a,
then it subtends a solid angle ∆c = a/d2 with respect to
the centrosome. Hence, the probability of being nucle-
ated in a direction that finds the target is pc = ∆Ωc/∆Ω.
We will assume that if the microtubule nucleates outside
the target cone, which occurs with probability 1 − pc,
then it can potentially grow until it hits a cell bound-
ary at a distance L from the centrosome. (For simplicity,
the search cone solid angle ∆Ω is taken to be sufficiently
small so that the relevant region of the cell wall is approx-
imately equidistant from the nucleation site.) Analogous
to Fig. 1, whenever the microtubule hits the boundary at
x = L, its growth velocity v+ drops to zero and it sticks
to the wall until it transitions to a shrinkage state at a
rate rb.
Following [19], we decompose the total microtubule

state space Σ as

Σ = N ∪ Ab ∪B ∪Ac,
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where N is the nucleation state, B is the state of being
attached to the cell boundary, Ab are the active states
that the microtubule is outside the target cone and has
length X(t) ∈ (0, L), and Ac are the active states that
the microtubule is inside the target cone and has length
X(t) ∈ (0, l). Let S(t) denote the state of the micro-
tubule at time t. If S(t) ∈ Ab then X(t) evolves accord-
ing to the Dogtorem-Leibler model with sticky boundary
conditions at x = 0, L. On the other hand, if S(t) ∈ Ac

then X(t) evolves according to the Dogtorem-Leibler
model with a sticky boundary condition at x = 0 and an
absorbing boundary condition at x = l. If S(t) = N then
the microtubule transitions to a growing state, which ei-
ther belongs to Ab with probability 1 − pc or belongs to
Ac with probability pc. The time τ̃n spent in state N is
exponentially distributed with mean time r−1

n . Similarly,
the time τ̃b spent in state B is exponentially distributed
with mean time r−1

b A schematic diagram of the search
and capture model previously analyzed in Refs. [19, 20]
is shown in Fig. 12.
Generalizing the analysis of Sect. 3.2, we define the

following set of FPTs, assuming that the microtubule
starts out in the nucleation state:

T = inf{t ≥ 0;X(t) = l},

Tb = inf{t ≥ 0;X(t+ τ̃n) = l|S(τ̃n) ∈ Ab},

Tc = inf{t ≥ 0;X(t+ τ̃n) = l|S(τ̃n) ∈ Ac},

Sb = inf{t ≥ 0;X(t+ τ̃n) = 0|S(τ̃n) ∈ Ab},

Sc = inf{t ≥ 0;X(t+ τ̃n) = 0|S(τ̃n) ∈ Ac},

TL = inf{t ≥ 0;X(t+ τ̃n) = L|S(τ̃n) ∈ Ab},

RL = inf{t ≥ 0;X(t+ τ̃b + TL) = 0}. (5.22)

We also introduce the splitting probabilities and condi-
tional MFPTs for the Dogtorem-Leibler model on the in-
terval [0, L] with absorbing boundary conditions at both
ends, see Sect.3. That is, πL

m(y) and πL
m(y) are the split-

ting probabilities for being absorbed at the ends x = L
and x = 0 respectively, given the initial length y and ini-
tial growth/shrinkage state m = ±. The corresponding
conditional MFPTs are denoted by ωL

m(y) and ωL
m(y).

(We make the length of the domain explicit.)
We immediately note that

τ := E[T ] = (1− pc)E[τ̃n + Tb] + pcE[τ̃n + Tc]

= r−1
n + (1− pc)E[Tb] + pcE[Tc]. (5.23)

Introducing the set

Ωb = {TL < Sb},

0  l

N

+

0

B

 L

pc

1-pc

FIG. 12. Schematic illustration of the search-and-capture
model analyzed in Ref. [19, 20].

we can perform the decomposition

τb := E[Tb] = E[Tb1Ωc
b
] + E[Tb1Ωb

]

= E[Tb1Ωc
b
] + E[(TL + τ̃b +RL + T )1Ωb

].

Using the strong Markov property, we have

τb = πL
+(0)

[
ωL
+(0) + τ

]
+ πL

+(0)

[
ωL
+(0) +

1

rb
+ τ

]

+E[RL1Ωb
] = τ + τL, (5.24)

with

τL := πL
+(0)ω

L
+(0) + πL

+(0)

[
ωL
+(0) +

1

rb
+ τ̂L

]
, (5.25)

and τ̂L := E[RL1Ωb
]. In order to evaluate τ̂L, note that

the microtubule exits the state B in the shrinking phase
and either reaches the state N without returning to B,
which occurs with probability πL

−(L), or returns to B

first with probability πL
−(L). In the latter case it sticks

to the boundary for a time τ̃b before exiting again. Thus,

τ̂L := E[RL1Ωb
] (5.26)

= πL
−(L)ω

L
−(L) + πL

−(L)
(
ωL
−(L) + r−1

b + τ̂L
)
.

The final step is to evaluate E[Tc]. This is similar to the
analysis of τL. Exiting the state N in the growing phase
and within the target search cone, the microtubule either
reaches the target at x = l without first returning to N ,
which occurs with probability πl

1(0), or returns to N first
with probability π+ = 1l(0). In the latter case the search
process restarts. Thus,

τc := E[Tc] = πl
1(0)ω

l
+(0) + πl

+(0)
[
ωl
+(0) + τ

]
(5.27)

Combining our various results gives the following implicit
equation for the MFPT τ :

τ = r−1
n + pc

(
πl
+(0)ω

l
+(0) + πl

+(0)
[
ωl
+(0) + τ

])

+(1− pc)(τL + τ), (5.28)

with τL determined from Eqs. (5.25) and (5.26). Rear-
ranging Eq.(5.28) yields the final explicit result

pcπ
l
+(0)τ = r−1

n + pc
(
πl
+(0)ω

l
+(0) + πl

+(0)ω
l
+(0)

)

+(1− pc)τL. (5.29)

This recovers Eq. (67) of Ref. [20], and expresses the
MFPT in terms of quantities that can be explicitly calcu-
lated. One advantage of our probabilistic approach is the
small number of steps involved in deriving the formula for
τ . However, it does require identifying the appropriate
set of stopping times as given by Eqs. (5.22).

VI. DISCUSSION

In this paper, we developed a search-and-capture
model of cytoneme-based morphogenesis, in which nu-
cleating cytonemes from a source cell dynamically grow
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and shrink along the surface of a one-dimensional array
of target cells until making contact with one of the tar-
get cells. We calculated the splitting probabilities and
the conditional MFPTs of a single cytoneme delivering a
burst of morphogen to a target cell, and then used this
to determine the steady-state mean and variance of the
morphogen gradient in the case of multiple search-and-
capture events. Using the result that the steady-state
mean number of morphogens delivered to a target cell
is given by Eq. (4.20), and assuming that the queuing
process reaches steady-state faster than degradation, our
model can be mapped onto the phenomenological dynam-
ical model of Ref. [11]. That is, if uk(t) is the mean
morphogen level in the kth target cell at time t, then by
taking

duk(t)

dt
=

Md
∑K

l=1 zl
ρk − κuk(t). (6.1)

Here κ is the degradation rate of morphogen in a target
cell and the first term on the right-hand side is the effec-
tive flux into the kth target cell. It follows that the ef-
fective accumulation time to the steady-state mean mor-
phogen level is 1/κ. Recall, however, that the CV is an
increasing function of κ, suggesting that there may be
some intermediate range of degradation rates that allow
robust spatial pattern formation in a sufficiently short
time.
Two more specific results emerged from our analysis.

First, the search-and-capture model is robust with re-
spect to changes in the dimensionless growth and shrink-
age rates v±/α0L and the relative transition rates α±/α0.
Second, given a fixed steady-state mean morphogen dis-
tribution, one can reduce the variance by increasing the
number of cytonemes and reducing the load of each cy-
toneme. This predicts that for robust morphogen gradi-
ent formation, it is preferable for a source cell to extend a
large number of cytonemes with small morphogen loads,
rather than a few cytonemes with larger loads.
One simplifying assumption of our search-and-capture

model is that the retraction time after delivery τd is taken
to be independent of the location of a target cell. If the
retraction speed is constant, then we expect τd to be
inversely proportional to the distance between the nucle-
ation site and the target cell. This space-dependent time
delay could modify the steady-state mean and variance
of the morphogen gradient. A second assumption is that
the number of morphogen in each cytoneme tip is the
same (fixed burst size). However, each time a cytoneme
shrinks back to the source cell and subsequently renucle-
ates, it is possible that morphogen is exchanged with the
source cell so that the amount at the tip changes. This
suggests treating the burst size as another random vari-
able, which means that one has to solve a more general
queueing model with correlated inter-arrival times and
burst size distributions.
Given the complexity of the analysis, we focused on

steady-state solutions of the queuing process in this pa-
per. As in the case of diffusion-based models [36, 37], it is

also important to consider the dynamics of gradient for-
mation, in order to address the question of whether or not
the time to form the morphogen gradient is compatible
with the time required for cell differentiation. For exam-
ple, the latter process involves receptors measuring the
local value of the morphogen concentration and translat-
ing this information into a corresponding change in the
activation of its signaling pathways and gene expression.
If gradient formation is relatively fast, then cell fate is
determined by the steady-state value of the local mor-
phogen concentration, otherwise the cell has to interpret
a time-varying morphogen concentration. In our previous
work on cytoneme-based morphogenesis in invertebrates
[12, 13], which involves a different mechanism, we cal-
culated the analog of the accumulation time considered
in diffusion-based mechanisms, and showed that gradient
formation was sufficiently fast. In future work we hope to
develop a similar theory for the full search-and-capture
model.

Finally note that, for simplicity, we developed our
theory of cytoneme-based morphogenesis by consider-
ing a one-dimensional search-and-capture model. How-
ever, during embryogenesis, cytonemes typically grow
and shrink in a higher-dimensional domain [9], rather
than a one-dimensional array of cells. One such example
is the Wg gradient in the Drosophila wing disc. Although
we expect the search-and-capture model to form a stable
morphogen gradient in higher dimensions, it is likely to
take more time. This could be mitigated by the presence
of a chemo-attractant gradient that guides the higher-
dimensional search process. Indeed, the latter mecha-
nism appears to play a role in the search-and-capture of
kinetochores by microtubules during cell mitosis, which
is a three-dimensional process. Using a combination of
mathematical analysis and computer simulations, Woll-
man et al [16] have shown that unbiased search-and-
capture for multiple chromosomes is not efficient enough
to account for the duration of the prometaphase. On the
other hand, if there exists a spatial gradient in some sta-
bilizing factor that biases MT dynamics toward the chro-
mosomes, then one obtains more realistic capture times
[16]. One candidate molecule for acting as a stabilizing
factor is Ran-GTP [38], which is also known to regu-
late actin polymerization [10]. In light of the possible
role of Ran-GTP in cell mitosis, one prediction of our
cytoneme-based model is that there exists an analogous
cheomattractant present during embryogenesis.

APPENDIX A: STOPPING TIMES AND THE
STRONG MARKOV PROPERTY

In this appendix we present the basic definitions and
results from probability theory used in the paper.
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A.1. Probability spaces and σ-algebras

Consider a set of possible outcomes, which is denoted
by the sample space Ω. An event is defined to be a subset
A of Ω, which is some collection of single outcomes or
elementary events ω ∈ Ω. In general not all subsets of Ω
can be treated as events so that the set of events forms
a subcollection F of all subsets. Within a probabilistic
setting, this subcollection is required to be a so–called
σ-algebra, with the following properties:

1. ∅ ∈ F

2. if A1, A2, . . . ∈ F then ∪∞
i=1Ai ∈ F

3. if A ∈ F then Ω\A ∈ F

It can be shown that σ-algebras are closed under the
operation of taking countable intersections. A probability

measure P on (Ω,F) is a function P : F → [0, 1] with

1. P(∅) = 0, P(Ω) = 1

2. if Ai, Aj , . . . ∈ F with Ai ∩ Aj = ∅, i 6= j, then

P (∪∞
i=1Ai) =

∞∑

i=1

P(Ai).

The triple (Ω,F ,P) is called a probability space.
Given a function f on the sample space Ω, we can use

the probability measure P to define the integral of this
function over a set A ∈ F according to

f(A) =

∫

A

f(ω)dP(ω).

If f(ω) = 1 for all ω ∈ Ω, then f(A) = P(A). Note that
for certain choices of σ-algebra, it is necessary to con-
sider measures other than the standard Lebesgue mea-
sure. However, we will not consider this technicality here.
A random variable is a function X : Ω → R such that

{ω ∈ Ω : X(ω) ≤ x} ∈ F , ∀x ∈ R.

If this condition holds, thenX is said to be F-measurable.
If X ∈ R then we have a continuous random variable,
whereas if X belongs to a countable set then it is said to
be a discrete random variable. The distribution function

of a random variable X is the function F : R → [0, 1]
given by

F (x) = Prob(X ≤ x) = P(X−1(−∞, x)),

where X−1(−∞, x) is the set of events ω for which X ≤
x.
A stochastic process involves one or more random vari-

ables evolving in time. Each random variable will have
an additional time label: X → Xn, n ∈ Z

+ for discrete
time processes and X → X(t), t ∈ R

+ for continuous
time processes. Roughly speaking, one can treat n (or
t) as a parameter so that for fixed n, Xn is a random
variable in the above sense.

A.2. Filtrations and stopping times

In the following we fix a probability space (Ω,F ,P) and
take T to be a subinterval of Z+ (discrete time) or R

+

(continuous time). Suppose that there exists a collection
(Ft)t∈T of σ-algebras Ft ⊆ F . The collection is said to
be a filtration if Fs ⊂ Ft for all s ≤ t. A stochastic
process defined on (Ω,F ,P) and indexed by T is called
adapted to the filtration if for every t ∈ T , the random
variable Xt is Ft-measurable:

{ω ∈ Ω : Xt(ω) ≤ x} ∈ Ft, ∀x ∈ R.

One can view a filtration as representing a flow of in-
formation, in the sense that the σ-algebra Ft contains
all possible events that can happen up to time t. The
canonical or natural filtration generated by a stochastic
process (Xt)t∈T is given by

Ft = σ(Xs, s ≤ t),

which is the minimal filtration to which X is adapted. (If
the filtration is not specified explicitly, it will be assumed
to be the canonical filtration.) Roughly speaking, as t
increases, the statistical information about a larger class
of random variables is included within the σ-algebra Ft,
as one might expect from the evolution of a stochastic
process.
A random variable τ ∈ R

+ is called a stopping time

with respect to the filtration (Ft)t∈T if for every t ∈ T ,
the event {τ ≤ T } is Ft-measurable. If τ < ∞ almost
surely, then τ is called a finite stopping time. Heuristi-
cally speaking, τ is a stopping time if for every t ∈ T
we can completely determine whether or not τ has oc-
curred before time t using the information known up to
time t. A common example is the first passage time for
a stochastic process (Xt) in R

d adapted to a filtration
(Ft). Let A be closed subset of Rd and define

τA = inf{t ≥ 0 : Xt ∈ A}

In order to establish that τA is a stopping time, introduce
the sequence {ti}∞i=1 dense on R

+, and the sets

An =

{
x|d(x,A) <

1

n

}
,

where d(x,A) is a distance function (minimum Euclidean
distance of x from the set A). The event

{τA ≤ t} = ∩∞
n=1 ∪ti≤t {Xt ∈ An}

belongs to Ft since each event {Xt ∈ An} ∈ Ft.

A.3. Strong Markov property

A stochastic process (Xt) adapted to a filtration (Ft)
is said to have the Markov property if the conditional
probability distribution of future states of the process
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(conditional on both past and present states) depends
only upon the present state, not on the sequence of events
that preceded it. That is, for all t′ > t we have

P[Xt′ ≤ x|Xs, s ≤ t] = P[Xt′ ≤ x|Xt].

The strong Markov property is similar to the Markov
property, except that the “present” is defined in terms
of a stopping time. That is, given any finite-valued stop-
ping time τ with respect to the natural filtration of X , if
the stochastic process Y (t) = X(t+τ)−X(τ) is indepen-
dent of {X(s), s < τ} and has the same distribution as

Ŷ (t) = X(t)−X(0) then X is said to satisfy the strong
Markov property.

APPENDIX B: EXPLICIT SOLUTIONS OF THE
CONDITIONAL MFPTS

We first find a concise expression for the conditional MF-
PTs to reach x = 0. Non-dimensionalizing (3.7a) and
(3.7b)

0 = v+
∂π0

+

∂y
− a−[π

0
+ − π0

−]− π0
+, (B.1a)

0 = −v−
∂π0

−

∂y
+ a+[π

0
+ − π0

−]− π0
−, (B.1b)

for 0 < y < 1 where

v± =
v±
α0L

, a± =
α±

α0
,

and defining the following operator

L =

[
v+∂y − a− − 1 a−

a+ −v−∂y − a+ − 1

]
.

It follows that

0 = Lπ0(y), (B.2)

where π0(y) = [π0
+(y), π

0
−(y)] with boundary conditions

π0
−(0) = 1 and π0

−(1) = π0
+(1). By solving the systems

of ODE (B.2) gives

π0
+(0) =

(1− θ2)e
Λ2 − (1− θ1)e

Λ1

N
, (B.3)

where Λ1 > Λ2 are the eigenvalues of operator L satisfy-
ing

[v+Λ − (1 + a−)][v−Λ + a+ + 1] + a+a− = 0.

Here θ1,2 = [−v+Λ1,2 + a− + 1]/a− and N = θ1(1 −
θ2)e

Λ2 − θ2(1− θ1)e
Λ1 .

One can write (3.9a) and (3.9b) using the operator

− π0(y) = Lη0(y), (B.4)

where η0 = α0[π
0
+(y)ω

0
+(y), π

0
−(y)ω

0
−(y)] with boundary

conditions η0−(0) = 0 and η0−(1) = η0+(1). Since (B.4)
is an inhomogeneous version of Eq. (B.2), then one can
find the particular solution η0,p(y) by the variation of
parameters with η0,p(0) = 0. Then the corresponding
homogeneous solution η0,h(y) = η0(y) − η0,p(y) satisfies

0 = Lη0,h(y), with boundary conditions η0,p− (0) = 0 and

η0,h+ (1) + η0,p+ (1) = η0,h− (1) + η0,p− (1). It follows that

η0+(0) = η0,h+ (0) =
θ2 − θ1

N

[
η0,p+ (1)− η0,p− (1)

]

=
1

N 2

(
1

v+
+

1

v−

){ [
(1− θ1)

2θ2e
Λ1 + (1− θ2)

2θ1e
Λ2
]
· eΛ2−eΛ1

Λ2−Λ1

−(1− θ1)(1− θ2)(θ1 + θ2)e
Λ1+Λ2

}
. (B.5)

The corresponding conditional MFPT is therefore ω0
+(0) = η0+(0)/[α0π

0
+(0)].

In order to determine an exact solution of the conditional MFPT to be captured by the kth target cell before the
nucleation, we again apply the variation of parameters. Its splitting probability satisfies

− χk(y) = Lπk(y), 0 < y < 1, (B.6)

where πk(y) = [πk
+(y), π

k
−(y)] with boundary conditions πk

−(0) = 0 and πk
+(1) = πk

−(1). Using the variation of

parameters, one can find the particular solution of (B.6) and denote by πk,p(y). It satisfies πk,p(0) = 0. In the same
fashion for (B.5), we have

πk
+(0) = πk,p

+ =
θ2 − θ1

N

[
πk,p
+ (1)− πk,p

− (1)
]
=

1

N

[
E

(
k − 1

K

)
− E

(
k

K

)]
, (B.7)

where

E(y) =
1− θ2
Λ2

(
θ1
v+

+
1

v−

)
eΛ2(1−y) −

1− θ1
Λ1

(
θ2
v+

+
1

v−

)
eΛ1(1−y).
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We determine the corresponding conditional MFPT by following the same method we used to get (B.5). Then one
can have the explicit form of MFPT

ηk+(0) =
πk
+(0)

N (θ2 − θ1)





θ1θ2(2− θ1 − θ2)
(

1
v+

+ 1
v−

)
eΛ1−eΛ2

Λ1−Λ2

−
[
(1− θ1)θ2

(
θ2
v+

+ θ1
v−

)
eΛ1 + (1− θ2)θ1

(
θ1
v+

+ θ2
v−

)
eΛ2

]




+
1

N (θ2 − θ1)

[
Ê

(
k − 1

K

)
− Ê

(
k

K

)]
, (B.8)

where Ê(y) = F12(y) + F21(y) and

Fij(y) = (1− θi)





1
Λi

(
θj
v+

+ θi
v−

)(
θj
v+

+ 1
v−

)(
1− 1

Λi
− y
)
eΛi(1−y)

−
θj
Λj

(
1
v+

+ 1
v−

)(
θi
v+

+ 1
v−

) [
eΛi(1−y)−e

Λj(1−y)

Λi−Λj
− eΛi(1−y)

Λi

]


 .

Its corresponding conditional MFPT becomes ωk
+(0) = ηk+(0)/[α0π

k
+(0)].
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