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We study quench dynamics in the many-body Hilbert space using two isolated systems with a finite number

of interacting particles: a paradigmatic model of randomly interacting bosons and a dynamical (clean) model of

interacting spins-1/2. For both systems in the region of strong quantum chaos, the number of components of

the evolving wave function, defined through the number of principal components Npc (or participation ratio),

was recently found to increase exponentially fast in time [Phys. Rev. E 99, 010101R (2019)]. Here, we ask

whether the out-of-time ordered correlator (OTOC), which is nowadays widely used to quantify instability in

quantum systems, can manifest analogous time-dependence. We show that Npc can be formally expressed as

the inverse of the sum of all OTOC’s for projection operators. While none of the individual projection-OTOC’s

shows an exponential behavior, their sum decreases exponentially fast in time. The comparison between the

behavior of the OTOC with that of the Npc helps us better understand wave packet dynamics in the many-body

Hilbert space, in close connection with the problems of thermalization and information scrambling.

I. INTRODUCTION

There is currently great interest in the study of non-

equilibrium quantum dynamics of isolated systems with many

interacting particles. This is partially justified by significant

experimental progress that makes possible the study of the

coherent evolution of many-body quantum systems for long

times [1–3]. Yet, despite important analytical and experimen-

tal advances, several questions remain open. A timely discus-

sion refers to the conditions [4, 5] and timescales [6–8] for

the onset of equilibration and thermalization that can emerge

without the influence of an environment. When studying these

topics, one should distinguish systems at the thermodynamic

limit, addressed by mean-field theories [9], from systems with

a finite number of particles. The latter situation emerges in ex-

periments with cold atoms and ion traps, where the number of

particles can be small and controlled.

Analytical breakthroughs in the study of many-body quan-

tum dynamics have been recently achieved in high energy

physics [10], where quantum systems without gravity are

equated to classical gravitational systems in a higher spatial

dimension. A quantity that became central in many of these

studies is the out-of-time-order correlator (OTOC), first in-

troduced in the semiclassical analysis of superconductivity in

Ref. [11]. Existing analytical results for the evolution of the

OTOC have been obtained by taking the average in the canon-

ical ensemble [12–15], thus assuming implicitly the thermo-

dynamic limit. The present work focuses on the dynamics of

finite isolated systems with interacting Bose or Fermi parti-

cles and employs the OTOC to describe the gradual spreading

of the initial wave packet in the many-body Hilbert space.

The OTOC can be measured experimentally with nuclear

magnetic resonance platforms and ion traps [16–18]. Among

various applications, it has been used to quantify the spread of

quantum information [19] and the exponential instability of

quantum systems that have a chaotic classical counterpart, as

supported by semiclassical analysis [20–23]. This has given

birth to another method to detect chaos in quantum dynamics,

a goal pursued by several earlier works [24–28].

The quantum-classical correspondence between the expo-

nential growth rate of the OTOC and the classical Lyapunov

exponent has being numerically corroborated for finite sys-

tems with few degrees of freedom, such as one-body chaotic

systems [29, 30] and the Dicke model with two degrees of

freedom [31]. However, little is known about this correspon-

dence for finite quantum systems with many interacting par-

ticles. Studies of the OTOC have contributed to a significant

renewed interest in the problem of the quantum-classical cor-

respondence for chaotic systems, which is a study initiated

about 40 years ago with the investigation of one-body chaos.

In the paradigmatic Kicked Rotator (KR) model, it was

found numerically [32] and explained analytically [33, 34]

that there are two timescales on which one can speak of the

quantum-classical correspondence for the dynamics of wave

packets. One is the timescale due to the Ehrenfest theorem

according to which the center of the wave packet in phase

space follows, for some time, the corresponding classical tra-

jectories. In the case of strong chaos, the timescale tE for this

correspondence was analytically studied in Refs. [35, 36] and

shown to be proportional to ln(1/~), where ~ stands for an

effective dimensionless Planck constant. The other timescale,

tD, is due to the dynamical localization occurring in the mo-

mentum space of the KR [32, 33, 37, 38]. The second moment

of the wave packet in momentum space nicely mimics clas-

sical diffusion on the timescale tD ∝ 1/~2, which is much

longer than tE . It was later argued that this localization may

be compared with the Anderson localization in 1D disordered

models with long-range hopping [39] and the localization in

quasi-1D random models described by band random matrices

[40–44].
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The importance of these old results obtained for the KR is

two-fold. First, they show that the classical diffusion coeffi-

cient is related to the localization length of the quasienergy

eigenfunctions in momentum space [33, 45], which is a pure

quantum concept. Second, they demonstrate that the timescale

for the quantum-classical correspondence can be very differ-

ent for different observables. As mentioned above, global ob-

servables, such as the second moment of the probability distri-

bution in momentum space, can coincide with their classical

counterparts on a timescale much larger than that defined by

the Ehrenfest theorem. This point is of special relevance for

studies of the evolution of observables in many-body systems.

A question of particular interest is how the numberN of quan-

tum particles enters the characteristic timescales involved in

the scrambling of information, equilibration, and thermaliza-

tion [6–8].

It was shown in [6] that when the eigenstates of a many-

body quantum system are strongly chaotic, the number of

principal components Npc (or participation ratio) involved

in the dynamics of the wave function in the many-body

Hilbert space increases exponentially fast in time. The growth

rate was found to be 2Γ, where Γ is the energy width of

the strength function. This function, introduced in nuclear

physics and known in solid state physics as local density of

states (LDOS), is defined by projecting an unperturbed many-

body state onto the basis defined by the total Hamiltonian

that includes the inter-particle interaction. Knowledge of the

LDOS is very important in the analysis of quench dynamics,

since its Fourier transform is the survival probability, which

describes the decay of the initial state.

The exponential growth of Npc lasts for some time tS be-

fore the saturation of the dynamics, which happens due to the

finite size of the many-body Hilbert space. It was found in [6]

that, for a large number of particles, N ≫ 1, the saturation

time is approximately given by tS ∝ N~/Γ. Since tS is pro-

portional to the number of particles N , it can be much larger

than the characteristic time for the depletion of the initial state

given by ~/Γ. The timescale tS represents the time for ther-

malization [6], according to which an initial wave packet er-

godically fills the energy shell [46–48]. The spread of the ini-

tial state reflects the delocalization of the energy eigenstates,

which is due to the strong inter-particle interactions [49, 50].

These states do not fill the whole Hilbert space, just the part

defined by the inter-particle interaction.

In the present work, we explore the relationship between

Npc and a particular kind of OTOC. Contrary to previous stud-

ies about the connection between the second order Rényi en-

tropy for reduced density matrices and the OTOC [51, 52], our

analysis does not involve any trace over degrees of freedom.

The Npc quantifies the number of unperturbed many-body

states that contribute to the evolution of the wave packet, while

the OTOC measures the degree of non-commutativity in time

between two different Hermitian operators. In the literature,

these operators are usually taken as local in real space [53].

Here, we use instead projection operators in the many-body

Hilbert space, which are local in this space. We show that the

inverse of the sum of all OTOC’s coincides with Npc.

In our analysis, we distinguish between two categories of

OTOC’s: the autocorrelator, where both projections are made

on the initial state, and the case involving a projection onto

a many-body state other than the initial state, referred to as

projection-OTOC. While the autocorrelator decays exponen-

tially as e−2Γt, we find that a single projection-OTOC does

not exhibit exponential behavior. However, when we look at

the sum of all projection-OTOC’s, we find a non-monotonic

behavior in time, where an initial growth is followed by an

exponential decay. This decay happens within the time inter-

val of the exponential increase of Npc.

We consider two models, the well-known two-body random

ensemble (TBRE) with a finite number of bosons interacting

randomly and a dynamical (deterministic) one-dimensional

(1D) spin-1/2 model with nearest and next-nearest neigh-

bor couplings only. The TBRE (also known as two-body in-

teraction (TBRI) random model) falls into the broader cate-

gory of the so-called embedded ensembles, which have been

thoroughly studied since the 1970’s in the context of nuclear

physics and quantum chaos [54–56]. The Sachdev-Ye-Kitaev

(SYK) models [57, 58], which have received increasing atten-

tion in high energy physics, are also examples of embedded

random ensembles. For both models that we study, we choose

parameters for which the eigenstates involved in the dynamics

are composed by a very large number of unperturbed many-

body states.

The paper is organized as follows. In Sec. II, we describe

the two models considered. Section III presents the relation-

ship between OTOC and Npc. In Sec. IV, we show analytical

as well as numerical results for both the TBRE and the spin

model. In Sec. V, we summarize our results and discuss some

possible future directions.

II. MODELS AND QUENCH DYNAMICS

We consider a bosonic TBRE and a 1D spin-1/2 system,

both of them described by the Hamiltonian

H = H0 + V, (1)

where

H0 =
∑

k

E0
k |k 〉 〈k |

stands for the unperturbed (integrable) part of the total Hamil-

tonian H , with

H =
∑

α

Eα |α 〉 〈α | ,

and V represents the two-body interactions. In what follows

we set ~ = 1. We focus on the case where the perturbation V
is sufficiently strong, so that a large part of the energy spec-

trum of H contains chaotic eigenstates.

Since our study concentrates on the dynamics occurring in

the unperturbed many-body space of chaotic systems, a def-

inition of what we mean by quantum chaos is in order. For

one-body systems, it is common lore to associate quantum

chaos with level statistics described by full random matrices.
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However, in realistic finite many-body models, not all eigen-

states are random vectors, as in full random matrices, and not

all of them are involved in the dynamics. Therefore, spec-

trum statistics obtained by taking into account all eigenvalues

is not the best way to characterize the dynamics, which is only

due to those eigenstates that are present in an initially excited

wave packet. Our approach to quantum chaos is linked with

the structure of the eigenstates. They are called chaotic when

they are fully delocalized in the energy shell and are com-

posed of many uncorrelated components (see, for example,

Refs. [49, 50]).

A. Two-body random ensemble

The TBRE describes N identical bosons occupying M
single-particle levels; the latter are specified (and reordered)

by random energies ǫs. The mean spacing 〈ǫs−ǫs−1〉 ≡ δ = 1
sets the energy scale defining the width of the unperturbed

energy spectrum, NMδ. The choice to have random single-

particle energies is not a necessary condition for the results

obtained below. It is used to remove the degeneracy in the

unperturbed many-body spectrum.

The Hamiltonian of the TBRE is written as,

H =

M
∑

s=1

ǫs a
†
sas +

M
∑

s1,s2,s3,s4=1

Vs1s2s3s4 a
†
s1
a†s2as3as4 , (2)

where as (a†s) is the annihilation (creation) operator on the

single-particle energy level ǫs, so the number operator ns =
a†sas gives the probability for the occupation of the s-th
single-particle energy level, ns/N . The two-body matrix ele-

ments Vs1s2s3s4 are Gaussian random entries with zero mean

and variance V2. The Hamiltonian conserves the total num-

ber of bosons, so the analysis is done for a single subspace of

dimension

D =
(N +M − 1)!

N !(M − 1)!
.

Throughout the paper, we fix the number of single-particles

levels, M = 11, and we vary the number of particles N
from 4 to 8. That corresponds to a size D of the many-body

space ranging from 1001 up to 43758. The strength V of the

inter-particle interaction is chosen so that V = 0.4 to have

a large energy region with strongly chaotic eigenstates [59].

The eigenstates |k 〉 of H0 constitute the unperturbed many-

body basis (also called mean-field basis) in which we study

the dynamics of the wave packets and in second quantized

form they can be written as |n1, ..., ns, ..., nM 〉 where ns is

the number of bosons in the s-th single-particle energy level.

The TBRE Hamiltonian matrix is very sparse, because only

a fraction of the unperturbed many-body states of H0 are di-

rectly connected by the two-body interaction V . The num-

ber of non-zero off-diagonal matrix elements N depends on

the particularly chosen matrix line, but it is generally much

smaller than the total matrix dimension D. It is not possible

to give a general analytical expression for N , but upper and

lower bounds as a function of N,M have been estimated as

follows [59],

(M − 1)(M + 2)

2
≤ N ≤ N(M−1)

[

1 +
(N − 1)(M − 2)

4

]

.

(3)

In particular, the minimal number of directly coupled states,

which is independent of N , is obtained when all N particles

occupy only one single-particle energy level. Another fea-

ture of the TBRE matrices is their band-like structure, which

causes the eigenstates close to the ground state to be much less

delocalized than the states closer to the center of the spectrum.

The TBRE was originally developed to explain the statis-

tical properties of complex systems with interacting Fermi-

particles, such as highly excited nuclei and molecules [54, 60].

It was later applied to systems of interacting bosons, to which,

in the dilute limit, many aspects of energy spectra and eigen-

states are similar to those of systems of random interacting

fermions. To date, it has been extensively investigated for

fermions [61, 62] and for bosons [55, 56, 63, 64]. This model

is a particular case of the embedded ensembles with q-body in-

teractions. When q = 2 we have the TBRE and when q = N ,

we recover the full random matrices.

In contrast to the standard ensembles of full random ma-

trices, TBREs are much closer to realistic physical systems,

since they take into account the two-body nature of the inter-

actions, the type of interacting particles (fermions or bosons),

the strength of the inter-particles interaction, and the proper-

ties of single-particle spectra.

B. Dynamical spin-1/2 model

The 1D spin-1/2 model that we study here is dynamical,

that is it has no random elements. The Hamiltonian is given

by

H =
J

4

L−1
∑

s=1

(

σx
s σ

x
s+1 + σy

sσ
y
s+1 +∆σz

sσ
z
s+1

)

(4)

+ λ
J

4

L−2
∑

s=1

(

σx
sσ

x
s+2 + σy

sσ
y
s+2 +∆σz

sσ
z
s+2

)

. (5)

The first part of this Hamiltonian contains only nearest-

neighbor couplings and it is associated with the mean field

H0. The second part describes next-nearest-neighbor cou-

plings and represents the perturbation V . Differently from the

previous model, V is a local interaction in space. The Pauli

matrices σx,y,z
s act on site s; L is the number of sites which

is chosen even; the coupling constant J = 1 sets the energy

scale; ∆ stands for the anisotropy of the interaction, and λ is

the ratio between next-nearest-neighbor and nearest-neighbor

couplings [65, 66].

The Hamiltonian conserves the total spin in the z-direction,

Sz =
∑L

s=1 σ
z
s/2. In what follows we consider the subspace

Sz = −1, which has N = L/2− 1 excitations (up-spins) and

dimension

D =
L!

N !(L−N)!
.
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The unperturbed Hamiltonian H0 is integrable, but as λ in-

creases, H crosses over to the chaotic regime [49, 50]. For

the parameters considered here, system size L = 16, number

of up-spins N = 7, (so D = 11440), anisotropy ∆ = 0.48,

and λ = 1, the model is strongly chaotic in a large region of

the spectrum.

C. Quench Dynamics

To study the dynamics, we prepare the system in an unper-

turbed state |k0 〉,

|ψ(0) 〉 = |k0 〉 =
∑

α

Cα
k0

|α 〉 , (6)

whereCα
k0

= 〈α|k0〉 and |α 〉 are the exact energy eigenstates.

The initial state |ψ(0) 〉 evolves under the full Hamiltonian H
when the interaction V is turned on. We consider initial states

that have energy Ek0
= 〈k0 |H |k0 〉 away from the edges of

the spectrum of H .

We notice that the initial state for the spin model is not a

site-basis vector (computational basis vector) for which the

spin on each site either points up or down in the z-direction,

but it is instead an eigenstate of H0. In analogy with the

TBRE, we refer to these states as the unperturbed many-body

basis.

The probability to find the evolved state in a basis state |k 〉
at the time t is given by

Pk(t) =
∣

∣〈k|e−iHt|k0〉
∣

∣

2
= |〈k|ψ(t)〉|2 (7)

=
∑

α,β

Cα∗
k0
Cα

kC
β
k0
Cβ∗

k e−i(Eβ−Eα)t. (8)

The particular case where k = k0 corresponds to the survival

probability (also known as return probability), which can be

written as

Pk0
(t) = |〈k0|ψ(t)〉|

2 =

∣

∣

∣

∣

∣

∑

α

∣

∣Cα
k0

∣

∣

2
e−iEαt

∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∫

dE e−iEtρk0
(E)

∣

∣

∣

∣

2

, (9)

where

ρk0
(E) ≡

∑

α

|Cα
k0
|2δ(E − Eα) (10)

is the LDOS, that is the energy distribution weighted by the

components |Cα
k0
|2 of the initial state. The subscript k0 in

Eq. (10) stresses the important point that the LDOS depends

on the initial state |k0 〉. As evident from Eq. (9), the survival

probability is the Fourier transform of the LDOS. The inverse

of the width Γ of the LDOS gives the characteristic decay time

of Pk0
(t).

The maximal size of the LDOS, obtained when H0 is neg-

ligible and H ∼ V , defines the energy shell, which is only

a part of the total energy spectrum. The shape of the energy

shell depends on the density of states, which in systems with

few-body interactions typically has a Gaussian form [54]. The

eigenstates of H written in the unperturbed basis are chaotic

when they fill the energy shell completely and the components

Cα
k are random numbers following the Gaussian envelope of

the energy shell [49, 50].

To quantify how the initial state spreads in time, in the

many-body Hilbert space, we compute the number of prin-

cipal components (also known as participation ratio),

Npc(t) =
1

∑

k Pk(t)2
=

1
∑

k |〈k|ψ(t)〉|
4
. (11)

For the TBRE, we use the notation 〈〈Npc(t)〉〉 to indicate av-

erage over the random configurations of the two-body interac-

tion.

III. OTOC FOR PROJECTION OPERATORS AND

NUMBER OF PRINCIPAL COMPONENTS

The OTOC for two Hermitian operators ŵ and v̂ is defined

as,

Fv,w(t) =
〈

ŵ†(t)v̂(0)†ŵ(t)v̂(0)
〉

(12)

where ŵ(t) = eiHtŵ(0)e−iHt is the operator in the Heisen-

berg representation. In the literature, 〈.〉 originally referred

to the average over the canonical ensemble, but later, aver-

ages over all states of an unperturbed Hamiltonian or over one

particular initial state |k0 〉, as we do here, have also been con-

sidered.

Written in terms of the initial state, the OTOC has a clear

physical meaning, which can be explained as follows. Let us

define the two states,

|x(t) 〉 = ŵ(t)v̂(0) |k0 〉

and

|y(t) 〉 = v̂(0)ŵ(t) |k0 〉 ,

which represents the action of the two operators taken in the

reversed order. The state |x(t) 〉 is obtained by first applying

v̂, then evolving forward with the full Hamiltonian for time t,
applying ŵ, and finally evolving backward for the same time

t. For |y(t) 〉, the order is exchanged: first the evolution is

forward, then ŵ is applied, followed by the backward evolu-

tion, and finally the application of v̂. Thus, Fv,w(t) quantifies

the decay of the overlap between these two states, 〈y(t)|x(t)〉,
caused by the exchanged action of the two operators v̂(0) and

ŵ(t). It probes the way v̂ and ŵ inhibit the cancellation be-

tween forward and backward evolution. Equivalently,Fv,w(t)
measures the degree of non-commutativity between the two

operators.

The OTOC is related to the Npc when in Eq. (12) we

use projection operators in the unperturbed many-body states,
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ŵ(0) = |k 〉 〈k |, v̂(0) = |k′ 〉 〈k′ |, and compute the expecta-

tion value in the initial state |k0 〉. This gives,

Fk,k0
(t) = 〈k0 | eiHt |k 〉 〈k | e−iHt |k′ 〉 ×

〈k′ | eiHt |k 〉 〈k | e−iHt |k′ 〉 〈k′ | k0〉

= 〈k0 | eiHt |k 〉 〈k | e−iHt |k0 〉×

〈k0 | eiHt |k 〉 〈k | e−iHt |k0 〉

= | 〈k | e−iHt |k0 〉 |4

(13)

Since v̂(0) |k0 〉 = δk′,k0
|k′ 〉, it is clear that to have a

non-zero correlation function one needs to choose v̂(0) =
|k0 〉 〈k0 |. Comparing the equation above with Eq. (11), one

sees that

[Npc(t)]
−1 =

∑

k 6=k0

Fk,k0
(t) + Fk0,k0

(t) (14)

= Otoc(t) + Pk0
(t)2.

In the above, we separate k = k0 from k 6= k0. We refer to

Fk,k0
(t) for k 6= k0 as projection-OTOC’s, while the autocor-

relation function Fk0,k0
(t) = 〈k0 | e−iHt |k0 〉 |4 = Pk0

(t)2 is

simply the squared survival probability. We denote byOtoc(t)
the extensive sum over all projection-OTOC’s,

Otoc(t) =
∑

k 6=k0

Fk,k0
(t). (15)

The inverse of the Npc is therefore Otoc(t) plus the squared

survival probability.

IV. ANALYTICAL ESTIMATES AND NUMERICAL

RESULTS

We now have the tools to compare the results for the Npc

and the OTOC for the TBRE and the dynamical spin-1/2

model in the strongly chaotic regime. As mentioned above,

the initial states have energy Ek0
= 〈k0 |H |k0 〉 far from the

edges of the spectrum.

A. TBRE: Number of principal components and OTOC

For the TBRE, we focus on initial states, where all particles

are on a single level, which we choose to be the fifth level,

such as in |0, 0, 0, 0, N, 0, 0, 0, 0, 0 〉. States of this kind have

Ek0
close to the center of the band. This choice of initial

state is made, because the number of directly coupled matrix

elements is minimal and independent of N . The number of

states directly coupled with the initial state together with the

strength of the perturbation determine the width of the LDOS

and thus the decay rate of the survival probability.

In Fig. 1, we confirm that for the chosen perturbation and

initial states, the survival probability decays exponentially and

the decay rate is approximately independent of the number of

0 5 10 15
Γt

10
-4

10
-3

10
-2

10
-1

10
0

<
<

P
k

0

>
>

N=4
N=5
N=6
N=7
N=8

e
-Γt

Figure 1. Survival probability for the TBRE for initial states |k0 〉 =
|0, 0, 0, 0, N, 0, 0, 0, 0, 0, 0 〉 with different number of particles N , as

indicated in the legend. The other parameters are M = 11, V = 0.4.

The dashed (red) line is the exponential fit for N = 8 and t < 2. The

exponential decay rate obtained from the fit is Γ = 2.4. The numbers

of random configurations chosen are nr = 1000, 500, 100, 50, 5 for

N = 4, 5, 6, 7, 8, respectively.

particles. Needless to say, for very short time, t ≪ Γ−1, the

survival probability decays quadratically in time, as given by

perturbation theory. This behavior is subsequently followed

by a region of exponential decay with rate Γ, as seen in Fig. 1.

This rate defines the timescale tΓ = 1/Γ for the depletion of

the initial state [6]. At this point, the probability to be in the

initial state is reduced by a factor 1/e.

1. Number of principal components

The parameter Γ is at the basis of a phenomenological cas-

cade model [6], that describes in a coarse-grained way the

spreading of the initial many-body state in the many-body

Hilbert space. The basic idea is to analyze the dynamics at dif-

ferent time steps, each being associated with the probability to

find the system in a specific subset of unperturbed many-body

states, referred to as a “class”. The class that contains only

the initial state is the M0(k0) class and the probability to be

in this class is just the survival probability Pk0
(t). M1(k0) is

the set of all unperturbed states directly coupled to the initial

state,

M1(k0) = {k 6= k0, 1 ≤ k ≤ D, | 〈k|H |k0〉 6= 0} .

The probability to be in this class is defined as

W1(t) =
∑

k∈M1(k0)

|〈k|ψ(t)〉|2. (16)

The subset with states coupled to |k0 〉 in second order of per-

turbation theory is M2(k0), and so on. This description of

the dynamics in terms of the spread of the wave packet in the

many-body Hilbert space was also explored in [62, 67]. With

this picture, we obtained in [6] approximate rate equations for
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Figure 2. (a) Growth in time of the number of principal components

for the TBRE. Different symbols stand for initial states with differ-

ent numbers of particles N , as indicated in the legend. The horizon-

tal lines represent the saturation values N∞

pc . The dashed (red) line

is the function e2Γt, where Γ = 2.4 was obtained in Fig. 1. The

horizontal dashed-dotted (black) lines indicate the asymptotic value

N∞

pc given by Eq. (17). (b) Saturation times obtained by the intersec-

tion between the dashed (red) curve and the horizontal dashed-dotted

(black) lines in panel (a), as a function of the number of particles N .

The dashed line is the best linear fit, tS ∝ N . The other parameters

of the model are M = 11, V = 0.4. The numbers of random config-

urations chosen are nr = 1000, 500, 100, 50, 5 for N = 4, 5, 6, 7, 8,

respectively.

the probability to find the system in each class. The sum of the

square of these probabilities gives the inverse of the number

of principal componentsNpc. Our analysis predicted an expo-

nential growth for Npc with exponent 2Γ, which was verified

numerically. This is shown in Fig. 2(a) for different initial

states with increasing number of particles.

It is important to remark that the exponential increase of

the number of principal components continues beyond tΓ. At

long times, since the many-body Hilbert space is finite,Npc(t)
finally saturates to an equilibrium value, which is obtained by

taking the infinite time average,

[

N∞
pc

]−1
= lim

T→∞

1

T

∫ T

0

dt
∑

k

|〈k|e−iHt|k0〉|
4

= 2
∑

k

(

∑

α

|Cα
k0
|2|Cα

k |
2

)2

−
∑

α

|Cα
k0
|4
∑

k

|Cα
k |

4. (17)

An estimate of the saturation time tS can be obtained by

equating e2ΓtS ≃ N∞
pc . We showed in Ref. [6] that for

M,N ≫ 1, this estimate is given by tS ∼ NtΓ. This result is

seen clearly in Fig. 2 (b), together with a linear fit. The values

for tS are obtained from the intersections in Fig. 2 (a) between

the exponential curve and the horizontal lines, which indicate

the saturation values from Eq. (17). We note that the satura-

tion time tS was shown to coincide with the time necessary for

the onset of the Bose-Einstein distribution for single-particle

occupation numbers (for details see [68]). One can therefore

identify tS with the thermalization time.
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Figure 3. OTOC’s for projection operators with k 6= k0 averaged

over 100 disorder realizations for the TBRE. From top to bottom, k
in: 〈k|H |k0〉 6= 0 (red); 〈k|H |k0〉 = 0 and 〈k|H2|k0〉 6= 0 (green);

and 〈k|H |k0〉 = 〈k|H2|k0〉 = 0 (magenta). Dashed, solid, and

dot-dashed lines represent respectively the t4, t8 and t12 behaviors.

Vertical lines indicate the depletion time tΓ and the thermalization

time tS . The initial state is chosen in the middle of the energy band

and it has 6 particles in the fifth single-particle energy level. The

other parameters of the model are M = 11 and V = 0.4.

2. Out-of-time ordered correlator

We now proceed with the analysis of the OTOC and com-

parison with Npc. The OTOC behavior at short time can be

obtained with the expansion,

Fk,k0
(t) = |〈k|e−iHt|k0〉|

4

≃ |δk,k0
− itHk,k0

−
1

2
t2(H2)k,k0

+ ...|4, (18)

where Hk,k0
= 〈k|H |k0〉. For k 6= k0, there are different

behaviors, as listed below.

(i) The first one corresponds to k ∈ M1(k0), for which one

gets,

Fk,k0
(t) ≃ t4H4

k,k0
+ o(t6) for k ∈ M1(k0). (19)

Taking the average over disorder realizations in the TBRE, we

come to the following estimate,

〈〈Fk,k0
(t)〉〉 ≃ t4〈〈H4

k,k0
〉〉

≃ 3t4V4 for k ∈ M1(k0). (20)

To obtain the last line above, we took into account that Hk,k′

are Gaussian variables with zero mean and variance V2.

(ii) For the case k ∈ M2(k0), one has a t8 behavior,

Fk,k0
(t) ≃

1

16
t8

[

∑

k′∈M1

Hk,k′Hk′,k0

]4

for k ∈ M2(k0).

(21)

(iii) For the projection-OTOC’s of higher-order classes,

where 〈k|H |k0〉 = 〈k|H2|k0〉 = 0, the initial numerical

power-law growth gives a t12 behavior.
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Figure 4. Growth in time of the extensive sum of all projection-

OTOC’s. Different symbols stand for initial states |k0 〉 =

|0, 0, 0, 0, N, 0, 0, 0, 0, 0, 0 〉 with different number of particles N , as

indicated in the legend. The dashed (red) line is the fit with an expo-

nential function eαΓt for the points with N = 8 for 1.2 < Γt < 4.5.

We fix Γ = 2.4 (obtained from Fig. 1) and get from the fitting

α = 1.2. The other parameters of the model are M = 11,

V = 0.4. The number of random configurations chosen are nr =

1000, 500, 100, 50, 5 for N = 4, 5, 6, 7, 8, respectively.

The behaviors t4, t8 and t12 for the various projection-

OTOC’s are shown in Fig. 3, respectively as dashed, full and

dot-dashed lines. Perturbation theory is approximately valid

for t < tΓ. In the region marked by the exponential growth of

the Npc, that is tΓ < t < tS , the OTOC’s have a non-generic

and non-monotonous behavior. For t > tS , the OTOC’s just

show fluctuations around some equilibrium value.

In Fig. 4, we examine the behavior of the sum of all

projection-OTOC’s [Eq. (15)]. Our figure shows the time de-

pendence of the 〈〈Otoc(t)〉〉 for different numbers of particles.

We can see that it reaches a maximum approximately at tΓ
(vertical orange line), when the probability to be in the initial

state is reduced by a factor 1/e. After this point, 〈〈Otoc(t)〉〉
decays exponentially, with an exponent betweenΓ and 2Γ (ac-

tually 1.2Γ for this set of initial states). This exponent comes

out from the sum of many different contributions from states

belonging to different classes, and it cannot be obtained by

taking into account the first-class states only. We note that

extensive sums of local operators were also used in the analy-

sis of the OTOC in Ref. [69], where it is argued that only the

sum, and not a single local observable, can exhibit indefinite

exponential growth in the thermodynamic limit.

We do not have yet a theory to extract the exponential decay

rate for Otoc(t). It should be possible to associate the charac-

teristic decay time for the sum
∑

k∈M Fk,k0
(t) of projection-

OTOC’s that belong to a specific class M to the scrambling

time of the correlations during the flow from one class to the

other. The timescale tS would emerge as a result of the sum-

mation of all different timescales associated to all classes. We

leave this study to a future work. We note that the exponen-

tial decay of the out-of-time order correlators was recently

obtained analytically for chaotic quantum maps [22, 23]. In

Ref. [22], the approach to the stationary value was found
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Figure 5. Comparison between the sum of projection-OTOC’s, the

squared survival probability, and the inverse of the number of prin-

cipal components, as indicated in the legend. Vertical solid orange

lines represent the depletion time tΓ and the saturation time tS . The

dashed and dashed-dotted lines stand for the e−Γt and e−2Γt, respec-

tively. The initial state, chosen in the middle of the energy band, has

8 particles in the fifth single-particle energy level. The other param-

eters of the model are M = 11, V = 0.4. The number of random

configurations chosen is nr = 5.

to occur with a rate determined by the Ruelle-Pollicot reso-

nances.

The exponential decay of 〈〈Otoc(t)〉〉 for tΓ < t < tS
indicates that the extensive sum of OTOC’s plays an impor-

tant role in the exponential growth of the number of princi-

pal components beyond tΓ. In Fig. 5, we compare the two

terms appearing in the denominator ofNpc, that is 〈〈Otoc(t)〉〉
and 〈〈Pk0

(t)2〉〉, for the case with N = 8 particles. Ini-

tially 〈〈Npc(t)
−1〉〉 is entirely dominated by the squared sur-

vival probability. Later, due to the different decay rates for

〈〈Otoc(t)〉〉 and 〈〈Pk0
(t)2〉〉, these two contributions become

of the same order of magnitude and they eventually cross.

As seen in Fig. 5, for the system size and set of initial states

considered, the crossing between 〈〈Otoc(t)〉〉 and 〈〈Pk0
(t)2〉〉

occurs after the saturation time tS . As a result, the relaxation

of 〈〈Npc(t)〉〉−1 to its infinite time-average value is entirely

due to the saturation of 〈〈Otoc(t)〉〉. The two saturate roughly

at the same time. In contrast, the squared survival probability

reaches its stationary value at a timescale much larger than tS .

Figure 6 illustrates the timescale for the relaxation of the

survival probability. By comparing this time with the satura-

tion time tS for Npc shown in Fig. 2, we can see that the for-

mer is more that two orders of magnitude larger. This is due

to the presence of the so-called correlation hole (see [70–72]

and references therein), which is a dip below the saturation

value. This hole is clearly visible for the survival probability,

but it is not so evident for 〈〈Npc(t)〉〉 (for a comparison see

Ref. [7]). The correlation hole ends at the Heisenberg time,

beyond which there are only fluctuations around the infinite-

time average, given by
∑

α |Cα
k0
|4.
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B. Spin-1/2 model: Number of principal components and

OTOC

For the spin model, we do not perform any average, since

the Hamiltonian has no random elements and a single initial

state with energy Ek0
≈ −0.5 is considered. The results are

very similar to those presented in Fig. 2, Fig. 3, and Fig. 4.

Figure 7 (a) shows the number of principal components,

which grows as e2Γt in the time interval tΓ < t < tS . In

Fig. 7 (b), we depict the behavior of some projection-OTOC’s.

They show power-law growths proportional to t4 and t8 for

t < tΓ, as seen also in Fig. 3. The behaviors become non-

monotonic for tΓ < t < tS . From the figure, it is clear

that states belonging to the first class (those having a t4 ini-

tial growth) reach their maximal value before the states in the

second class (those with a t8 behavior). Since they reach the

maximum at different times, they start to decay at different

times, so we might expect a complicated behavior in the time

region tΓ < t < tS . However, as clear from Fig. 7 (c), in this

time interval, the extensive sum of all projection-OTOC’s ac-

tually decays exponentially before saturation, with α = 0.66
in e−αΓt. The result is similar to the one observed in Fig. 3

for the TBRE.

The results for the spin model corroborate that for tΓ <
t < tS , the sum given by Otoc(t) contributes to the expo-

nential behavior of Npc, despite the fact that individually, the

projection-OTOC’s do not show any sign of exponential be-

havior in this time interval. We find a different decay exponent

α from TBRE case. It is not clear at this point what this expo-

nent might depend on, such as number of particles, energy of

the initial state, and connectivity of the model. We leave this

point for future investigations.

We notice that even though H0 for the spin model can be

solved with the Bethe ansatz, this is not at all trivial. Thus,
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Figure 7. Clean spin-1/2 model, Ek0
≈ −0.5. (a) Exponen-

tial growth in time of the number of principal components; (b)

projection-OTOC’s for some k’s; (c) the extensive sum of projection-

OTOC’s. Vertical (orange) lines indicate tΓ and tS . In all panels, the

numerical results are shown with solid curves. In (a), the dashed line

indicates the exponential growth e2Γt and the horizontal dotted line

is for the infinite time average N∞

pc . In (b) the dashed and dot-dashed

curves represent the initial t4 and t8 behavior for the probability to

be in the first and second class, respectively. In (c) the dashed line is

the exponential fitting e−2αΓt with α = 0.66.

we obtain numerically the eigenstates |k 〉, used as the basis

to write H . As a result, all matrix elements of H become

non-zero. To identify which elements correspond to effective

couplings between the unperturbed states, we use a threshold

ξ = 0.1, that is, we assume that |k 〉 is directly coupled with

|k′ 〉 only if Hk,k′ > ξ|Hk,k −Hk′,k′ |.

V. DISCUSSION

We studied the relationship between the out-of-time or-

dered correlator (OTOC) and the number of principal compo-

nentsNpc (or participation ratio), and their relevance to the re-

laxation process of many-body quantum systems. Two chaotic
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models were considered: One model belongs to the two-body

random ensemble (TBRE), where randomness is introduced

ad hoc as random couplings between many-body unperturbed

states, and the other is a clean system of spin-1/2 particles on

a linear chain with non-random two-body interactions.

In a recent work [6], we had shown that, starting with a sin-

gle many-body state of the unperturbed Hamiltonian H0, the

effective number of unperturbed many-body states participat-

ing in the dynamics, dictated by the perturbed Hamiltonian

H = H0 + V , increases exponentially in time. This happens

when the inter-particle interactions are sufficiently strong and

the many-body eigenstates are superpositions of many effec-

tively pseudo-random components, which is a main feature of

strong quantum chaos. The quantity employed to characterize

the spread of the initial wave packet in the Hilbert space was

the number of principal componentsNpc.

For strong perturbation, namely H0 ∼ V , we found

that Npc(t) increases as e2Γt, where Γ is the width of the

LDOS. Our numerical data, as well as the analytical estimates,

showed that this exponential behavior holds up to the satura-

tion time tS ∼ NtΓ, where N is the number of particles for

the TBRE and number of excitations for the spin model. This

timescale is larger than the time tΓ ∼ 1/Γ for the effective

decrease of the survival probability.

In the present paper, we showed thatNpc is the square of the

survival probability plus the sum of all projection-OTOC’s.

For the latter, the operators ŵ and v̂ in Eq. (12) are projec-

tion operators in the many-body Hilbert space, ŵ being the

projection on a state other than the initial state.

Our semi-analytical description ofNpc(t) was based on the

spread of the initial wave packet into different classes of un-

perturbed many-body states. At the shortest timescale, only

the many-body states ofH0 directly coupled to the initial state

by the two-body interactions get excited. Later in time, the

wave packet propagates to those states which are coupled to

the initial state in the second order of perturbation theory, and

even later, higher orders are reached successively. This dy-

namics may be compared with the spread (mixing) of pack-

ets of classical trajectories in phase space: initially the whole

phase space is scarcely occupied, but as time grows it gets

more densely occupied. Within this picture, the projection-

OTOC’s describe the flow of the wave packet probability be-

tween specific classes. At short time, each one increases as

t4, t8, t12, depending on the class the OTOC is associated

with, and in accordance with our analytical estimates. After

reaching a maximal value, the projection-OTOC’s decay to a

stationary value given by the infinite-time average value. In

the course of this process, none of the individual projection-

OTOC’s shows an exponential behavior. It is only the sum of

the projection-OTOC’s over all classes that decays exponen-

tially for t > tΓ. This non-monotonic behavior contrasts with

that for the autocorrelation function (squared survival proba-

bility), which decays as e−2Γt already at short times.

It should be possible to associate to the sum of the

projection-OTOC’s belonging to a specific class M, a char-

acteristic decay time that represents the scrambling time for

that class. The saturation of the entire dynamics at tS happens

after the saturation of the projection-OTOC’s for all classes.

After the time tS ∼ NtΓ, the system is fully equilibrated

(thermalized) in a finite but very large domain of the unper-

turbed basis.

We finish this conclusion with a discussion about the

quantum-classical correspondence for chaotic many-body

systems. For this, we recall that the LDOS, which has widthΓ,

has a well defined classical limit with width Γcl [48, 73–76].

Our results show that for Npc(t), which is a global observ-

able, the timescale tS over which one can speak of exponen-

tial instability diverges in the thermodynamic limit, provided

the semiclassical limit Γ → Γcl is done beforeN → ∞. This

suggests that there may be global observables for which the

quantum-classical correspondence remains indefinitely in the

thermodynamic limit.

The divergence of tS does not contradict the conventional

picture of the Ehrenfest theorem, according to which the

timescale of the quantum-classical correspondence for one-

body chaotic systems is very small, tE ∼ ln(1/~). As shown

for the KR model, this is the timescale for a local observable,

but there is another timescale, tD ∼ 1/~, corresponding to

the dynamical localization in the momentum space, which is

related to a global observable. Therefore, the timescales for

the quantum-classical correspondence depend on the choice

of the observable and can vary significantly from one observ-

able to another. Our study for many-body models focused on

the global observable Npc, rather than on local observables.

There is not yet any direct comparison between Npc and a

classical analog. We suggested in Ref. [6] that such compari-

son will have to be done with the use of the Kolmogorov-Sinai

entropy, which is the main characteristic of the dynamics for

classical many-body systems, whose dynamics occurs in a 2N
dimensional phase space.

One should mention that the quantum diffusion in the KR is

not a “true” diffusion as that occurring in classical systems.

As shown in [34], the quantum diffusion is completely re-

versible, despite the presence of small, but finite errors as-

sociated with any numerical calculation. This is at variance

with classical diffusion, which is non-reversible due to the

exponential sensitivity with respect to unavoidable compu-

tation errors. This is a distinctive property of the observed

quantum-classical correspondence for the wave packet width

in the momentum space. One can conjecture that a similar

picture should arise for many-body chaos. Even though the

quantum-classical correspondence may look very good for

global observables (for the number of principal components

in our case), quantum properties such as local quantum cor-

relations and entanglement may still be present during the re-

laxation process and even at thermalization. In fact, it was re-

cently shown numerically and semi-analytically in Ref. [68]

that the Bose-Einstein distribution for occupation numbers

emerges on the same timescale as the thermalization time tS .

This implies the coexistence of classical and quantum features

in the dynamics on a very large timescale t > tS ∼ N/Γ. The

quantum-classical correspondence for many-body systems is

a challenging problem that requires further studies.
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