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Disordered hyperuniform packings (or dispersions) are unusual amorphous states of two-phase
materials that are endowed with exotic physical properties. Such hyperuniform systems are charac-
terized by an anomalous suppression of volume-fraction fluctuations at infinitely long-wavelengths,
compared to ordinary disordered materials. While there has been growing interest in such singular
states of amorphous matter, a major obstacle has been an inability to produce large samples that
are perfectly hyperuniform due to practical limitations of conventional numerical and experimental
methods. To overcome these limitations, we introduce a general theoretical methodology to con-
struct perfectly hyperuniform packings in d-dimensional Euclidean space Rd. Specifically, beginning
with an initial general tessellation of space by disjoint cells that meets a “bounded-cell” condition,
hard particles are placed inside each cell such that the volume fraction of this cell occupied with
these particles becomes identical to the global packing fraction. We prove that the constructed
packings with a polydispersity in size in R

d are perfectly hyperuniform in the infinite-sample-size
limit and the hyperuniformity of such packings is independent of particle shapes, positions, and
numbers per cell. We use this theoretical formulation to devise an efficient and tunable algorithm to
generate extremely large realizations of such packings. We employ two distinct initial tessellations:
Voronoi as well as sphere tessellations. Beginning with Voronoi tessellations, we show that our al-
gorithm can remarkably convert extremely large nonhyperuniform packings into hyperuniform ones
in R

2 and R
3. Implementing our theoretical methodology on sphere tessellations, we establish the

hyperuniformity of the classical Hashin-Shtrikman multiscale coated-spheres structures, which are
known to be two-phase media microstructures that possess optimal effective transport and elastic
properties. A consequence of our work is a rigorous demonstration that packings that have identical
tessellations can either be nonhyperuniform or hyperuniform by simply tuning local characteristics.
It is noteworthy that our computationally designed hyperuniform two-phase systems can easily be
fabricated via state-of-the-art methods, such as 2D photolithographic and 3D printing technologies.
In addition, the tunability of our methodology offers a route for the discovery of novel disordered
hyperuniform two-phase materials.

I. INTRODUCTION

A hyperuniform state of matter is characterized by an
anomalous suppression of density or volume-fraction fluc-
tuations at infinitely long wavelengths relative to those
in typical disordered systems, such as liquids and struc-
tural glasses [1–3]. Such hyperuniform states encom-
pass all perfect crystals, many quasicrystals as well as
some exotic disordered systems. Disordered hyperuni-
form states of matter have been the subject of intense
interest across a variety of fields, including physics [4–
13], material science[14–20], chemistry [21–23], biology
[24–27], and mathematics [28–30]. The notion of hy-
peruniformity was first defined in the context of point-
particle systems [2] and then extended to two-phase het-
erogeneous systems [1] and random scalar/vector fields
[31]. General two-phase systems abound in natural and
artificial materials, including colloidal suspensions, par-
ticulate composites, and concrete [32–39]. Packings (or
dispersions), which are of central concern in this paper,
comprise a class of two-phase systems in which nonover-

lapping particles are spatially distributed throughout a
connected “void” (matrix) phase.

A hyperuniform two-phase system in d-dimensional
Euclidean space R

d is one in which the local volume-
fraction variance σ2

V (R) inside a spherical observation
window of radius R decays faster than R−d in the large-R
limit [1, 3]:

lim
R→∞

v1(R)σ2
V (R) = 0. (1)

Equivalently, its associated spectral density χ̃
V
(k) van-

ishes as the wavenumber |k| tends to zero [1, 3]. For
disordered hyperuniform two-phase systems, χ̃

V
(k) typ-

ically exhibits the power-law scaling:

χ̃
V
(k) ∼ |k|α (α > 0). (2)

This exponent α is directly related to three distinct
classes of hyperuniformity that are categorized based on
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FIG. 1. (Color online) (a-b) Portions of initial disordered
tessellations: (a) Voronoi tessellation (black lines) of a non-
hyperuniform packing (Sec. V) and (b) a multiscale-disk tes-
sellation (Sec. VI). A progenitor disk packing in (a) is illus-
trated by white dashed circles. The tessellation-based proce-
dure can be applied into higher dimensions, but we illustrate
two-dimensional cases here for simplicity. (c-d) Portions of
disordered hyperuniform packings (dispersions) constructed
from the initial tessellations (a-b) via the tessellation-based
procedure, i.e., local-cell packing fraction φ of a particle (blue
disks) within each cell is identical to the global packing frac-
tion. Importantly, (d) multiscale coated-disks model corre-
sponds to optimal Hashin-Shtrikman structures.

the large-R scalings of σ2
V (R) [3]:

σ2
V (R) ∼







R−(d+1), α > 1 (class I)

R−(d+1) lnR, α = 1 (class II)

R−d−α, α < 1 (class III)

, (3)

where classes I and III represent the strongest and weak-
est forms of hyperuniformity, respectively. Class I sys-
tems include all crystals, some quasicrystals, and stealthy
hyperuniform systems in which χ̃

V
(k) = 0 for 0 < k < K

[40–43].
Disordered hyperuniform two-phase systems [1, 20]

are attracting considerable attention due to their un-
usual physical properties, such as complete isotropic pho-
tonic and phononic bandgaps [17, 44–46], nearly optimal
transport properties [18–20], superior metamaterial de-
signs [47], dense but transparent materials [16], and low-
density materials of blackbody-like absorption [48]. Sim-
ilar to ordinary two-phase systems, their effective prop-
erties are also tunable by engineering the phase prop-
erties and volume fractions as well as the spatial ar-
rangements [17, 19, 20, 44, 47, 49, 50]. An important

class of two-phase systems are Hashin-Shtrikman struc-
tures [34, 38, 51–53] that are optimal for effective thermal
(electrical) conductivity, elastic moduli, and fluid perme-
ability [52] for given phase volumes and phase proper-
ties. Remarkably, certain disordered hyperuniform sys-
tems possess nearly optimal transport and elastic prop-
erties [19, 20, 50, 54].

Theoretical [4, 7, 11, 55, 56], numerical [19, 20, 57–
64], and experimental methods [12, 65–67] have been
developed to generate disordered hyperuniform packings
(dispersions). In practice, however, these methods are
system-size limited due to computational cost or im-
perfections. For instance, the collective-coordinate op-
timization technique [19, 20, 62, 63] and equilibrium
plasma [7, 8, 56] can achieve perfect hyperuniformity, but
their long-range interactions lead the computation cost
to grow rapidly with system size. Random organization
models [11, 55] yield disordered hyperuniform packings
at critical absorbing states but are limited in producing
perfect hyperuniformity because of critical slowing-down
phenomena [3, 61]. Determinantal point processes are
perfectly hyperuniform in the thermodynamic limit, but
the current numerical algorithm hardly can generate a
realization of more than 100 particles due to accumu-
lated numerical error [4]. Stealthy designs via the su-
perposition procedure [63] provides an efficient means to
construct exactly stealthy hyperuniform digitized two-
phase systems. However, this construction scheme re-
quires one to prepare many different small systems as
building blocks, which is computationally demanding as
the system size increases.

Since hyperuniformity is a global property of an in-
finitely large system, limited sample sizes often make
it difficult to ascertain whether such systems are truly
hyperuniform or effectively hyperuniform. Furthermore,
disordered hyperuniform systems often can include im-
perfections, such as point vacancies, stochastic displace-
ments [68], thermally excited phonon modes [69], and rat-
tlers [61] in maximally random jammed (MRJ) packings.
Such imperfections can either destroy or degrade the hy-
peruniformity (even if by a small amount) of otherwise
perfectly hyperuniform systems [3, 69]. Hence, there is
a great need to devise exact and efficient procedures to
construct extremely large realizations of disordered hype-
runiform two-phase systems. Such capability could then
be combined with state-of-the-art photolithographic and
3D printing techniques to fabricate large disordered hy-
peruniform systems.

In this paper, we introduce a tessellation-based proce-
dure that enables one to generate disordered packings in
R

d that are perfectly hyperuniform in the infinite-sample-
size limit. Based on this theoretical methodology, we for-
mulate an efficient algorithm to generate extremely large
realizations of hyperuniform packings. Specifically, one
first tessellates the space into certain disjoint cells that
meet a bounded-cell condition, i.e., the maximal length
of each cell should be much shorter than side length of
the entire tessellation. This mild restriction allows one
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to employ a wide class of tessellations, as discussed be-
low and in Sec. V. Then, one places hard particles in
each cell such that the local packing fractions associated
with the cells become identical to the global packing frac-
tion φ; see Fig. 1. Note that for “periodic” tessellations
of equal cell volumes (e.g., Voronoi tessellations of Bra-
vais lattices and Weaire-Phelan foam [70, 71]), our pro-
cedure yields periodic packings of identical particles that
are also stealthy hyperuniform [72]. However, our major
concerns in this paper are disordered tessellations whose
cells have a variability in sizes and shapes. Thus, the ap-
plication of our procedure to such tessellations generates
“disordered” hyperuniform packings in which the parti-
cles have a polydispersity in size. We present a detailed
theoretical analysis of the small-wavenumber scalings of
the spectral density χ̃

V
(k) for the constructed packings

in the case of arbitrary particle shapes. We thereby prove
that whenever the initial tessellations meet the bounded-
cell condition, these systems are strongly hyperuniform
(class I) for any particle shape in the infinite-sample-size
limit. In this limit, the system size tends to be infinitely
large with other intensive parameters (e.g., number den-
sity and packing fractions) held fixed. This procedure is
a packing protocol to generate packings of polydisperse
particles that is uniquely different from previously known
methods [73].

As a proof-of-concept, we verify our theoretical results
by numerically constructing packings from certain initial
tessellations, and by ascertaining their hyperuniformity
from the spectral densities. Our procedure allows for the
use of any initial tessellation, including Voronoi tessella-
tions [34] and their generalizations [74, 75], sphere tes-
sellations, disordered isoradial graphs [76], dissected tes-
sellations [77], Delaunay triangulations, and “Delaunay-
centroidal” tessellations [44, 54], as long as it meets the
bounded-cell condition. For concreteness and simplicity,
two types of initial tessellations are considered in this
work: Voronoi tessellations (Sec. V) and sphere tessella-
tions, which are necessarily multi-scale divisions of space
(Sec. VI). Employing Voronoi tessellations of general dis-
ordered point patterns in R

2 and R
3, we demonstrate

that our methodology enables a remarkable mapping
that converts extremely large nonhyperuniform packings
(as large as 108 particles) into hyperuniform ones. To
carry out our simulations, we employ various statisti-
cally homogeneous progenitor systems. Based on the
same idea, we establish the hyperuniformity of the afore-
mentioned optimal Hashin-Shtrikman multiscale coated-
spheres structures [34, 51, 52] (see Fig. 1(d)). Here, we
provide a detailed derivation of χ̃(m)

V
(k) in the mth stage

and numerical simulations for two distinct types of cell-
volume distributions. It is noteworthy that our method-
ology only involves calculating cell volumes, which is ex-
actly performed and easy to parallelize. Furthermore,
we demonstrate that large samples of many of our de-
signs can be readily fabricated via modern photolitho-
graphic and 3D printing techniques [78–81] (Sec. VII).
While some of the major results were announced in a

brief communication [82], there we focused on applica-
tions to sphere packings without detailed derivations. In
this work, we treat a broader class of sphere packings
as well as packings of nonspherical particles and provide
detailed mathematical derivations. We also report asso-
ciated simulation results that are not contained in Ref.
[82].
We present basic mathematical definitions and con-

cepts in Sec. II. Then, we precisely describe the
tessellation-based procedure in Sec. III. In Sec. IV we de-
rive the small-k scalings of the spectral densities for the
constructed packings. Subsequently, we verify our the-
oretical results by numerical simulations using Voronoi
tessellations and sphere tessellations in Secs. V and VI,
respectively. Then, we discuss the feasibility of fabri-
cating our designs in modern technologies in Sec. VII.
Finally, we provide concluding remarks in Sec. VIII.

II. BACKGROUND AND DEFINITIONS

The microstructure of a two-phase system can be de-
scribed by the phase indicator function associated with
phase i = 1, 2 [34]:

I(i)(r) =

{

1, r ∈ phase i

0, otherwise.
(4)

If the system is statistically homogeneous, its one-point
correlation function is independent of position r, and
identical to the phase-volume fraction φi, i.e.,

〈
I(i)(r)

〉
=

φi, where 〈·〉 represents an ensemble average. The auto-

covariance function can be defined in terms of the mean-
zero fluctuating indicator function, J (i)(r) ≡ I(i)(r)−φi,
as follows:

χ
V
(r) ≡

〈

J (i)(r′)J (i)(r′ + r)
〉

, (5)

which is identical for each phase and tends to zero as
r increases if the system does not have long-range or-
der. Its Fourier transform χ̃

V
(k) ≡

∫

Rd dy e−ik·y χ
V
(y),

called the spectral density, is a nonnegative real-valued
function of a wavevector k. In experiments, the spectral
densities are directly obtainable from elastic scattering
intensities [83] when the wavelength of radiation is larger
than atomic distance, but shorter than the length scale
of domains. In numerical simulations, the spectral den-
sities are calculated from realizations of the media under
the periodic boundary conditions as follows:

χ̃
V
(k) =

1

|VF |

〈∣
∣
∣J̃ (i)(k)

∣
∣
∣

2
〉

, (6)

where |VF | is the volume of the simulation box, a
wavevector k is a reciprocal lattice vector of the simula-
tion box, and 〈·〉 represents an ensemble average, where

J̃ (i)(k) is the Fourier transform of J (i)(r) [84].
In the context of two-phase media, a packing can be

regarded as domains of a “particle” phase (N generally
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shaped particles P1, P2, · · · , PN ) that are dispersed
throughout a continuous “matrix” (void) phase. For such
a packing in a periodic fundamental cell VF , the random
variable J̃ (k) associated with the particle phase (drop-
ping the superscript) can be expressed as follows:

J̃ (k) =

N∑

j=1

m̃(k;Pj) e
−ik·rj − φ

∫

VF

dy e−ik·y (7)

=
N∑

j=1

m̃(k;Pj) e
−ik·rj − φ |VF | δk,0, (8)

where rj is the centroid of Pj , m̃(k;Pj) is its form factor

(i.e., the Fourier transform of the “particle indicator func-
tion” m(r;Pj) with respect to rj), and δk,0 represents
a Kronecker delta symbol. Since the forward scattering
term φ |VF | δk,0 in Eq. (8) always vanishes at nonzero
reciprocal lattice vectors k’s, this term is often ignored
in numerical calculations.
For some special particle shapes, closed-form expres-

sions of m̃(k;Pj) are known. For a spherical particle of
radius a, the associated form factor is

m̃(k; a) = (2πa/k)
d/2

Jd/2(ka) , (9)

where k ≡ |k| and Jn(x) is the Bessel function of order n.
For a cubic particle of side length L, the corresponding
function is

m̃(k;L) = Ld
d∏

l=1

sinc(klL/2) , (10)

where kl represents lth component of a wavevector k and

sinc(x) ≡

{
sin x
x , x 6= 0

1, x = 0.
(11)

We note that Eqs. (9) and (10) have their global maxima
at the origin, whose values are identical to their particle
volumes.
From Eqs. (6) and (7), one can straightforwardly de-

rive an expression of the spectral density for sphere pack-
ings of the identical particle radius a [31, 34]:

χ̃
V
(k) = ρ |m̃(k; a)|2 S(k) , (12)

where ρ is number density and S(k) is the structure fac-
tor defined as

S(k) ≡
1

N

〈
∣
∣
∣
∣
∣
∣

N∑

j=1

e−ik·rj −Nδk,0

∣
∣
∣
∣
∣
∣

2〉

. (13)

Equation (12) gives

χ̃
V
(0) = φ2 S(0) /ρ, (14)

and thus, one obtains a hyperuniform packing by deco-
rating a hyperuniform point pattern with spheres of an

equal size [31]. In this paper, however, we will not discuss
such hyperuniform constructions.
In the case of a one-component many-particle system

in thermal equilibrium in which the particles do not
overlap, the fluctuation-compressibility relation S(0) =
ρκTkBT [34, 85] and Eq. (14) yield

χ̃
V
(0) = φ2κT kBT, (15)

where κT is the isothermal compressibility, kB is the
Boltzmann constant, and T is temperature. Equa-
tion (15) implies that any compressible (κT > 0) one-
component system in thermal equilibrium cannot be hy-
peruniform at a positive temperature [3, 43].
The local volume-fraction variance σ2

V (R) associated
with spherical windows of radius R is defined as [1, 3]

σ2
V (R) ≡

〈
τ2(x;R)

〉
− φ2, (16)

where τ(x;R) denotes the local volume fraction of the
particle phase inside the spherical window of radius R
centered at position x.
From numerical simulations alone, it is difficult to as-

certain whether a system is perfectly hyperuniform be-
cause the infinite-sample-size limit is never achievable
and χ̃

V
(k) usually has large relative statistical uncertain-

ties at small wavenumbers. For these reasons, it is desir-
able to employ alternative criteria to determine whether
a system is effectively hyperuniform. A useful empirical
criterion to deem a system to be hyperuniform is that
the hyperuniformity metric H is less than 10−2 or 10−3

[3, 56, 61], where H is defined by

H ≡
χ̃

V
(k → 0)

χ̃
V
(kpeak)

, (17)

where χ̃
V
(kpeak) is the spectral density at the first domi-

nant (non-Bragg) peak. Note that this criterion is differ-
ent from its counterpart for point patterns because of the
presence of the form factor in the spectral density [56];
see Eq. (12).

III. TESSELLATION-BASED PROCEDURE

Here, we precisely describe the tessellation-based pro-
cedure in d-dimensional Euclidean space R

d. For a pe-
riodic cubic fundamental cell VF of side length L in R

d,
the procedure is performed as follows:

1. Divide the simulation box with N disjoint cells
C1, · · · , CN (Fig. 1a-1b) in which the
maximal characteristic linear cell size ℓmax ≡
maxNj=1

{
maxr,r′∈Cj

{|r − r′|}
}

is much smaller
than L, i.e.,

ℓmax ≪ L. (18)

We call this the “bounded-cell” condition.
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FIG. 2. (Color online) An illustration of local volume-fraction
fluctuations for a disordered packing constructed via the
tessellation-based procedure. For an observation window of
radius R and center x0, volume-fraction fluctuations arise
only from partially covered cells, which are highlighted in
gray shade. Due to the limited region of fluctuations, this
packing becomes hyperuniform in the large sample-size limit;
see main text for details.

2. For a specified local-cell packing fraction 0 < φ < 1,
place hard particles of arbitrary shapes of total vol-
ume φ |Cj | within the jth cell Cj , and then repeat
the same process over all cells (see Fig. 1c-1d for
illustrative examples with disks).

Application of this procedure results in a packing in
which the local-cell packing fraction φ is identical to
global packing fraction. Given an initial tessellation, this
construction is realizable only when the local-cell packing
fraction φ in the step 2 is smaller than or equal to the
maximal packing fraction φmax, i.e.,

φ ≤ φmax ≡
N
min
j=1

{
|Pj |max

|Cj |

}

, (19)

where |Cj | and |Pj |max represent volumes of the jth cell
and the largest particle of a certain shape which is in-
scribed in this cell, respectively.
Roughly speaking, the maximal packing fraction φmax

becomes larger when each cell tends to fully enclose a
larger particle. Clearly, the largest particle that a cell can
fully circumscribe should be congruent to the cell, and
thus the maximal packing fraction will take its largest
value (φmax = 1) only if the shape of each particle is
similar to its circumscribing cell. For this reason, when
only considering spherical particles, packing fraction of
the multiscale coated-disks model (Fig. 1d) can span up
to unity, i.e., φmax = 1.
The rationale behind our methodology can be intu-

itively understood by considering how the volume of the

particle phase within a spherical window of radius R fluc-
tuates around its global mean value φ v1(R). As shown
in Fig. 2, our methodology ensures that the cells only
in the gray-shaded region can contribute to the fluctua-
tions, which are proportional to volume of this boundary
region. Since the bounded-cell condition ensures that
thickness of this boundary region is smaller than ℓmax,
the resulting variance in local phase-volume grows on the
order of Rd−1 for sufficiently large windows (R ≫ ℓmax).
This implies that σ2

V (R) ∼ R−d−1, meaning that this
packing is strongly hyperuniform (class I). This ratio-
nale also explains the hyperuniformity of the constructed
packings, regardless of shapes and number of particles
inside each cell. However, for simplicity, we henceforth
focus on the cases in which each cell contains exactly one
particle.

IV. GENERAL THEORETICAL ANALYSES

Here, we derive an asymptotic expression for the
spectral density for the constructed packings in the
small-wavenumber limit. Consider an initial tessellation
{Cj}Nj=1 of a cubic periodic fundamental cell VF of side

length L in R
d. Since a fundamental cell is the union

of all cells C1, · · · , CN of the tessellation, the Fourier
transform of VF can be decomposed as follows:

|VF | δk,0 =

∫

VF

dy e−ik·y =

∫

VF

dy e−ik·y
N∑

j=1

m(y − xj;Cj)

=
N∑

j=1

e−ik·xj m̃(k;Cj) , (20)

where δk,0 represents the Kronecker delta symbol, k is
a reciprocal lattice vector of VF , and for the jth cell
Cj , xj , m(r;Cj), and m̃(k;Cj) represent its centroid,
the indicator function with respect to xj , and the form
factor, respectively.
The application of our procedure to this tessellation

yields a particle packing that consists of N particles P1,
· · · , PN whose centroids are r1, · · · , rN , respectively,
with the identical local-cell packing fraction φ. Using
the decomposition of Eq. (20) and the spectral density
given in Eqs. (6) and (7), we obtain the following general
expression:

χ̃
V
(k) =

1

|VF |

∣
∣
∣J̃ (k)

∣
∣
∣

2

=
1

|VF |

∣
∣
∣
∣
∣

N∑

j=1

e−ik·xj

{

m̃(k;Pj) e
−ik·∆Xj − φ m̃(k;Cj)

}
∣
∣
∣
∣
∣

2

,

(21)

where ∆Xj ≡ rj − xj, and m̃(k;Pj) is the form factor
of a particle Pj .
Due to the bounded-cell condition, |r| < ℓmax ≪ L for

every r in each cell Cj , or equivalently, one can consider
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small wavevectors satisfying that |k · r| ∼ |r| /L ≪ 1.
Thus, the form factor of V = (Cj or Pj) can be well
approximated by its Taylor series about k = 0:

m̃(k;V) = |V|

[

1−
kαkβ
2

Mαβ(V)

+
ikαkβkγ

6
Mαβγ(V)

]

+O
(
k4
)
, (22)

where the Einstein summation convention is employed,

Mα1α2···αn
(V) ≡

1

|V|

∫

V

dr rα1rα2 · · · rαn
, (23)

is the mth moment of the mass distribution of V(=
Cj or Pj) that is normalized by its volume |V|, and rαj

represents the αjth Cartesian component of a vector r.
We note that since Eq. (23) refers to the moments with
respect to the centroid of V , its first moment is identically
zero.
Using Eq. (22), the term J̃ (k) given in Eq. (21) can

be written as follows (see Appendix B for details):

J̃ (k) = J̃(1)(k) + J̃(2)(k) + J̃(3)(k) +O
(
k4
)
, (24)

where

J̃(1)(k) =φ

N∑

j=1

(e−ik·∆Xj − 1) |Cj | e
−ik·xj , (25)

and J̃(2)(k) and J̃(3)(k) are defined in Eq. (B2). Since
the leading order terms of m̃(k;Pj) and m̃(k;Cj) ex-
actly cancel each other due to the local constraint |Pj | =

φ |Cj | for all j, these three terms J̃(1)(k), J̃(2)(k), and

J̃(3)(k) exhibit the power-law scalings in the small-
wavenumber limit. Assuming typical tessellations that

exhibit
∣
∣
∣J̃(2)(k)

∣
∣
∣ ∼ |k|2 and

∣
∣
∣J̃(3)(k)

∣
∣
∣ ∼ |k|3, the first

term can have two scalings (either
∣
∣
∣J̃(1)(k)

∣
∣
∣ ∼ |k| or

J̃(1)(k) ∼ O
(

|k|2
)

), depending on the particle displace-

ments ∆Xj with respect to their cell centroids. There-

fore, the scaling of J̃(1)(k) determines that of the spectral
density (21).

Specifically, whenever
∣
∣
∣J̃(1)(k)

∣
∣
∣ ∼ |k|, which can be

achieved when particle displacements ∆Xj are uncorre-
lated with one another [86], the spectral density of the
constructed packings tends to zero quadratically in |k|;
specifically,

χ̃
V
(k) ∼ φ2 |k|2 , (26)

which corresponds to class I hyperuniformity. When∣
∣
∣J̃(1)(k)

∣
∣
∣ ∼ O

(

|k|2
)

, the packings are more strongly hy-

peruniform with a new scaling given by

χ̃
V
(k) ∼ φ2 |k|4 . (27)

For example, this scaling can be achieved when ∆Xj = 0

for all j (i.e., J̃(1)(k) = 0) or when
∣
∣
∣J̃(1)(k)

∣
∣
∣ ∼ |k|2 due to

certain spatial correlations in ∆Xj (see Sec. V). There-
fore, the manipulation of particle displacements ∆Xj en-
ables us to engineer either quadratic or quartic scalings
of the spectral density.
It is noteworthy that the appearance of φ2 factor in

Eqs. (26) and (27) is common for small-|k| scalings of the
spectral densities of all statistically homogeneous sphere
packings: see Eq. (12). Here, we note that the the-
oretical results (26) and (27) can be straightforwardly
generalized to the cases of multiple particles are added
in each cell. This is achieved by dividing cells such that
each subdivided cell should circumscribe a single particle
with an identical local-cell packing fraction.
Now, we consider a special case where all particles are

similar to the associated cells in the sense that the par-
ticles have identical shapes and orientations with their
cells, but have different sizes (Pj = φ1/d

Cj for j =
1, · · · , N). Then, the nth moments of particles and cells
can be related as Mα1···αn

(Pj) = φn/d Mα1···αn
(Cj).

Substituting this expression into Eq. (24), we obtain

J̃ (k) = J̃(1)(k) (28)

+φ(1 − φ2/d)
kαkβ
2

N∑

j=1

Mαβ(Cj) |Cj | e
−ik·xj

︸ ︷︷ ︸

J̃(2)(k)

+O
(
k3
)
.

Again, whenever
∣
∣
∣J̃(1)(k)

∣
∣
∣ ∼ |k|, the spectral density

of the constructed packings shows a scaling χ̃
V
(k) ∼

φ2 |k|2. However, in the special case of ∆Xj = 0 for

all j (i.e., J̃(1) = 0), the resulting scaling is

χ̃
V
(k) ∼ φ2(1− φ2/d)2 |k|4 . (29)

Both hyperuniform cases belong to the class I.
Here, we should note that all theoretically predicted

scalings of χ̃
V
(k), given in Eqs. (26), (27), and (29),

are analytic at the origin, i.e., the power exponents are
even positive integers. This implies that autocovariance
functions χ

V
(|r|) of the constructed packings must decay

to zero exponentially fast (or faster) as |r| → ∞ [3].

V. HYPERUNIFORM PACKINGS FROM

VORONOI TESSELLATIONS

In this section, we formulate an efficient numerical al-
gorithm that is based on our tessellation-based methodol-
ogy to generate very large disordered hyperuniform pack-
ings in R

2 and R
3. This can be accomplished from var-

ious types of tessellations [44, 54, 74–77], but we focus
on Voronoi tessellations of disordered nonhyperuniform
point patterns in this section. For a given point pat-
tern, the Voronoi cell of a point is defined as the region
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FIG. 3. (Color online) Numerical simulations of probability distributions of the largest hole volume (2rmax) in each sample
of 1D Poisson point patterns: (a) on a semilog scale and (b) on a log-log scale. The x-axis in (b) represents the relative size
δ = v1(rmax) /V of the largest holes to the box volume V (= L). For each particle number N , the distribution is obtained from
104 independent samples. (c) Log-log plot of hole probability EV (r) of finite-size Poisson point patterns as a function of system
size N . Values are computed from Eq. (30).

of space closer to this point than any other points, and
the Voronoi tessellation is the collection of all Voronoi
cells [34]. The computational time for the Voronoi tes-
sellation of a point pattern of N particles in R

d is at
most of the order of O

(
N logN +N ⌈(d−1)/2⌉

)
[87]. Due

to such small computation cost, the implementation of
our methodology in the case of Voronoi tessellations en-
ables a remarkably efficient mapping that converts very
large nonhyperuniform point patterns or packings into
very large disordered hyperuniform packings.
We choose the progenitor point patterns for the

Voronoi tessellations not only to meet the bounded-cell
condition but so that the resulting packing is easy to fab-
ricate. From a practical viewpoint, it is useful to employ
similar particle shapes and sizes to construct the pack-
ings. All of these conditions can be readily fulfilled by
considering progenitor point patterns derived from dense
hard-sphere packings. In what follows, we elaborate the
bounded-cell condition.

A. The bounded-cell condition

The bounded-cell condition in the initial tessellation is
a central requirement to ensure hyperuniformity via the
tessellation-based procedure. For Voronoi tessellations,
the largest cell size ℓmax is on the order of the largest
nearest neighbor distance, which in turn is of the order
of the largest radius rmax of holes (i.e., spherical regions
that are empty of particle centers); ℓmax ∼ rmax. There-
fore, the bounded-cell condition (18) can be satisfied if
the relative size rmax/L of the largest hole to the sample
size (or equivalently, their volume ratio δ ≡ v1(rmax) /L

d)
is much smaller than a certain small value.
The information about largest hole size is contained

in the void-exclusion or hole probability function EV (r),
which gives the probability for finding a hole of radius r
when it is randomly placed in a point-particle system in
the thermodynamic limit [34]. Clearly, if the hole proba-
bility has compact support, i.e., EV (r) = 0 at any r > D

for a certain length D, then Voronoi tessellations of the
associated point patterns always meet the bounded-cell
condition for relatively small sample sizes (say 10d+1 in
space dimension d). Examples of such systems include
all crystals, disordered stealthy hyperuniform point pat-
terns [88, 89], and the saturated random sequential ad-
dition (RSA) packings [34, 90]. Specifically, RSA is a
time-dependent process that irreversibly, randomly, and
sequentially adds nonoverlapping spheres into space. In
the infinite-time limit the resulting packing does not have
any available space to add further particles, called satu-

rated.

On the other hand, many other disordered point pat-
terns, including Poisson point patterns, equilibrium hard-
sphere liquids, and unsaturated RSA packings, can pos-
sess arbitrarily large holes in the thermodynamic limit.
Finite-size samples of these systems tend to have larger
holes as the sample size grows (see Fig. 3a for 1D Poisson
point patterns), but the hole size relative to the sample
size decreases as the sample size grows (see Fig. 3b), im-
plying that samples, in fact, tend to meet the bounded-
cell condition (18).

We now rigorously show that for sufficiently large
statistically homogeneous point patterns, Voronoi tes-
sellations of almost every realization should obey the
bounded-cell condition, as long as their hole probabili-
ties are smaller than or equal to that of the Poissonian
counterparts for large hole radii. For this purpose, we will
show that Voronoi tessellations of almost every Poisson
point pattern obey the bounded-cell condition for suffi-
ciently large sample sizes. We begin by considering, for
finite-size samples, the hole probability EV (r) which can
be interpreted as the probability that a finite sample pos-
sesses at least a single hole of radius greater than r (i.e.,
ℓmax ∼ rmax ≥ r). Thus, EV

(
L(δ/ v1(1))

1/d
)
is, in turn,

the probability that the Voronoi tessellation of a single
sample does not meet the bounded-cell condition (18).
For Poisson point patterns of N particles and volume
V = Ld in R

d, its hole probability can be straightfor-
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φ < φmax

φ < φ
(2)
max

φ < φ
(1)
max

FIG. 4. (Color online) Schematic for three types of the max-

imal packing fractions φ
(2)
max ≤ φ

(1)
max ≤ φmax. For a Voronoi

cell of an initial particle (white circle), the black circle and the
green one represent the largest inscribed circles when the cir-
cle center is fixed or is free to move, respectively. These three
circles (white, black, and green ones) illustrate the largest
particles |P|j of this cell for three distinct maximal packing

fractions φ
(2)
max, φ

(1)
max, and φmax, respectively. We note that

the initial particle size is exaggerated for a clear visualization.

wardly obtained as follows [91]:

EV (r) = (V − v1(r))
N/V N = (1− δ)N , (30)

where δ ≡ v1(r) /V . This quantity converges to a
well-known expression in the thermodynamic limit [34]
exp(−ρ v1(r)), where ρ is the number density. Equation
(30) decays exponentially fast for a given δ < 1 as particle
number N increases; see Fig. 3c. This implies that for
sufficiently large sample sizes, almost every realization
of a Poisson point pattern should obey the bounded-cell
condition. Thus, the constructed packings from Voronoi
tessellations of Poisson point patterns should be hyper-
uniform, which is consistent with a recent study of ran-
dom fields [92].
We will employ correlated and statistically homoge-

neous point patterns as the progenitor configurations,
which are even more likely to obey the bounded-cell con-
dition than Poisson-point counterparts at the same num-
ber density. In the ensuing discussion, we show that such
nonhyperuniform point patterns can be converted into
disordered hyperuniform packings.

B. Spherical particles

Here, we numerically implement our procedure by
solely rescaling particle volumes without changing par-
ticle centers and shapes. It results in disordered sphere
packings whose Voronoi tessellations are identical to

(a) (b)

FIG. 5. (Color online) (a) A portion of a hyperuniform disk
packing that was converted from a 2D RSA packing with the
packing fraction φinit = 0.41025. (b) A portion of a hyperuni-
form sphere packing that was converted from a 3D saturated
RSA packing.

those of their progenitor packings and we show that they
are exactly hyperuniform of class I.

Due to the fixed particle centers, we define two al-

ternative maximal packing fractions φ
(1)
max and φ

(2)
max; see

Fig. 4. For φ
(1)
max, the volume |Pj |max of the largest

particle of a Voronoi cell in definition (19) is that of the

smallest spherical particle inscribed in the cell. For φ
(2)
max,

the largest particle is the particle in the progenitor pack-
ing. By definition, we have the following inequalities:

φmax ≥ φ
(1)
max ≥ φ

(2)
max, where φ

(1)
max = φ

(2)
max occurs only

when every particle in the progenitor has a neighbor in

contact, and φmax = φ
(1)
max occurs only when every par-

ticle in the progenitor is inscribed in its Voronoi cell.
Obviously, if a constructed packing has the packing frac-

tion φ ≤ φ
(2)
max, none of its particles can be larger than

those in the progenitor packing. For 2D and 3D saturated

RSA packings, values of φ
(1)
max are around 0.35 or 0.25, re-

spectively. These values tend to decrease as the packing
fraction of the progenitor packings is smaller, and they
become arbitrarily small for Poisson point patterns (i.e.,
RSA with the zero packing fraction). Additional values

of φ
(1)
max and φ

(2)
max are summarized in Sec. IB in the Sup-

plementary Material [93].

We employ three different types of nonhyperuniform
progenitor point patterns in both R

2 and R
3: RSA pack-

ing [34, 90], equilibrium hard-sphere liquids, and lattice-
packings with point vacancies. First, we employ RSA
packings for various values of initial packing fractions
φinit. These RSA packings are efficiently generated by
the voxel-list algorithm [90]. Second, as progenitor pack-
ings, we use equilibrium hard-sphere liquids with a range
of initial packing fraction φinit; see the Supplementary
Material [93] for employed parameters. In 2D, its χ̃

V
(0)

can be well approximated from Eq.(15) and the com-
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FIG. 6. (Color online) Log-log plot of the scaled local volume-
fraction variance v1(R) σ2

V (R) of the progenitor and con-
structed packings. The scaling of the latter clearly shows
that it is hyperuniform of class I. The progenitor packings are
2D saturated RSA packings and the Monte Carlo technique
is employed. Three vertical grids represent a quarter of side
length of the simulation boxes (i.e., R = L/4) for N = 104,
105, and 106, respectively.

pressibility [94] as follows:

χ̃
V
(0) ≈

φ2(1 − φinit)
3

ρ(1 + φinit + 0.38406φinit
2 − 0.12802φinit

3)
,

(31)
where φ is the packing fraction of the decorated spheres.

TABLE I. Extrapolated values of χ̃
V
(0) and hyperuniform

metric H of the constructed packings. For the progenitor
packings, H ∼ 0.1 − 0.01. We do not compute H for the
imperfect lattices because of their Bragg peaks. See the Sup-
plementary Material [93] for additional data.

Progenitors/Parameter χ̃
V
(0) H

2D RSA
N = 107

φsat 2.29(54) ×10−18 1.36(32) ×10−14

0.41025 4.7(15) ×10−18 3.4(11) ×10−14

0.27350 1.15(60) ×10−17 1.01(52) ×10−13

0.13675 3.1(18) ×10−17 3.0(17) ×10−13

3D RSA
N = 106

φsat 1.97(31) ×10−12 1.51(24) ×10−8

0.288 1.39(31) ×10−12 1.27(28) ×10−8

0.192 3.77(85) ×10−12 3.90(88) ×10−8

0.096 1.44(32) ×10−11 1.66(36) ×10−7

2D HSL
N = 105

0.65 2.03(32) ×10−14 6.03(98) ×10−11

0.40 6.7(19) ×10−14 4.5(13) ×10−10

0.20 2.48(76) ×10−13 2.20(67) ×10−9

3D HSL
N = 106

0.45 -1.4(32) ×10−13 7.0(162) ×10−10

0.30 9.2(47) ×10−13 7.6(39) ×10−9

0.20 7.7(32) ×10−13 8.0(33) ×10−9

Imperfect Z2

Ns = 108

0.10 6.9(50) ×10−20 -
0.20 2.1(15) ×10−19 -
0.40 2.49(95) ×10−18 -

Imperfect Z3

Ns = 27× 106

0.10 4.1(71) ×10−15 -
0.20 5.0(20) ×10−14 -
0.40 2.42(76) ×10−13 -

The last type of progenitor packings are vacancy-
riddled square and simple cubic lattices in two and three
dimensions, respectively. These progenitor systems are
characterized by the number Ns of initial lattice sites
and the fraction c of point vacancies to Ns. While these
imperfect lattices still have Bragg peaks, they are not hy-
peruniform [69, 95] and it is easy to generate extremely
large samples (N ∼ 108). Furthermore, for high values of
c, their cell-volume distributions are similar to those for
Poisson point patterns. Therefore, this investigation will
immediately demonstrate our discussion in Sec. VA.

We compute the Voronoi tessellations of the
three aforementioned types of progenitor packings via
VORO++ library [96] (see Appendix A for the imple-
mentation), and then perform our methodology without
changing particle centers. To get a visual sense of the
resulting hyperuniform packings, we show representative
but small hyperuniform sphere packings in 2D and 3D
derived from RSA initial conditions in Fig. 5.

We computed the local volume-fraction variances
σ2
V (R) of certain progenitor and constructed packings by

Monte Carlo sampling of windows [34, 97] for many val-
ues of R up to L (i.e., side length of the simulation box).
For illustrative purposes, Fig. 6 plots such variances for
progenitor packings that are 2D saturated RSA packings
of various system sizes (N = 104, 105, and 106). We
note that these results for σ2

V (R) are reliable only up
to a window radius R < L/4 [98, 99] due to the finite-
size effects. The constructed packings exhibit a com-
mon scaling σ2

V (R) ∼ R−(d+1), as predicted from the
heuristic rationale associated with Fig. 2. This rationale
also predicts that such a scaling starts from window sizes
R & 5ℓmax, where ℓmax is the maximal cell length defined
in step 1, from which the region where volume-fraction
fluctuations arise (the gray-shaded region in Fig. 2) can
be effectively regarded as window boundary. Since the
Voronoi tessellations of 2D saturated RSA that have a
small ℓmax (. 1.7ρ−1/2), the class I hyperuniform scal-
ing is well-established in length scales over several orders
of magnitude (even beyond the reliable regime) for even
relatively small samples (N = 104) and the largest ones
(N = 106); see Fig. 6.

Figures 7, 8, and 9 summarize the simulation results
for packings that were converted from RSA, equilibrium
hard-sphere liquids, and vacancy-riddled lattices, respec-
tively. By construction, these constructed packings have
particle-volume distributions that are identical to those
of Voronoi cell volumes in their progenitors; see Figs.
7a, 7d, 8a, and 9a. Furthermore, since particle cen-
ters are fixed in the procedure, the progenitor packings
and their associated constructed packings have identical
Voronoi tessellations and thus obviously have identical
local statistics associated with Voronoi cells. This im-
plies that local statistics alone generally may or may not
determine hyperuniformity, which we elaborate in Sec.
VIII.

Isotropic spectral densities of progenitor and con-
structed packings are computed by using Eqs. (6) and
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FIG. 7. (Color online) Simulation results for sphere packings from Voronoi tessellations of RSA packings in (a)-(c) R
2 and

(d)-(f) R3. (a) and (d) Probability density p(|Cj |) of Voronoi cell volumes versus the scaled cell volume |Cj | /|C| plotted on a

semi-log scale (larger panel) and a linear scale (inset). Here, |C| represents the expected cell volume. (b) and (e) The spectral
densities versus wavenumber k for small wavenumbers plotted on a log-log scale. Inset in (b) is on a linear scale. Here, we
note that all packings are rescaled to the common packing fraction φ = 0.01. (c)-(f) Log-log plots of the spectral densities for
progenitor packings (saturated RSA) and associated constructed packings according to sample size N .

0 2 4
|C

j
| / |C|

10
-4

10
-2

10
0

|C
| 

p
(|

C
j|)

φ
init

 = 0.65

φ
init

 = 0.40

φ
init

 = 0.20

(a)

4

0.01 0.1 1 10
kρ-1/d

10
-13

10
-11

10
-9

10
-7

10
-5

~ χ V
(k

)

φ
init

 = 0.65

φ
init

 = 0.40

φ
init

 = 0.20

~χ
V

(0) at φ
init

 = 0.20

~χ
V

(0) at φ
init

 = 0.40

~χ
V

(0) at φ
init

 = 0.65

Progenitor packings

Constructed packings

(b)

10
-9

10
-7

10
-5

10
-3

~ χ V
(k

)

progenitor:  φ
init

=0.65

constructed: φ
init

=0.65

progenitor:   φ
init

=0.4

constructed: φ
init

=0.4

progenitor:   φ
init

=0.2

constructed: φ
init

=0.2

0 1 2 3 4
k a

0

1.5

3

1
04

~ χ V
(k

)

×10−4

(c)

FIG. 8. (Color online) Simulation results for disk packings converted from 2D equilibrium hard-disk liquids of N = 105. (a)

Probability density p(|Cj |) of Voronoi cell volumes versus the scaled cell volumes |Cj | /|C| plotted on a semi-log scale. (b)
The spectral densities versus wavenumber k for small wavenumbers plotted on a log-log scale. Theoretical values of χ̃

V
(0) are

obtained from Eq. (31). (c) The spectral densities versus wavenumber k for intermediate and large wavenumbers plotted on a
semi-log (upper) and a linear (lower) scales. Here, sample size is N = 103 and a is the mean particle radius of the constructed
packings.

(9). To compare them, we rescale all packings to a com-
mon packing fraction φ = 0.01; see Figs. 7b, 7e, 8b, and
9b. For small wavenumbers (i.e., 0 < ka ≪ 1, where
a ∼ 0.1ρ−1/d is the mean of particle radii), as shown
in these figures, the spectral densities of the progenitors
are significantly different from those of the constructed
packings. While progenitor packings are clearly nonhy-
peruniform (i.e., H ∼ 0.1 − 0.01 for RSA packings and

equilibrium hard-sphere liquids), the constructed pack-
ings are class I hyperuniform with a common power-law
scaling χ̃

V
(|k|) ∼ |k|4. Similar to the case of σ2

V (R)
shown in Fig. 6, this power-law scaling is particularly
well-established over several orders of magnitude, even
for relatively small samples (N = 103 as shown in Figs.

7c and 7f). This k4-scaling results from
∣
∣
∣J̃(1)(k)

∣
∣
∣ ∼ |k|2,
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FIG. 9. (Color online) Simulation results for constructed disk packings from 2D lattice packing for various values of vacancy
concentration c. (a) Semi-log plots of probability density functions of Voronoi cell volumes (Ns = 106). (b) Log-log plots of
the spectral densities for progenitor packings of various vacancy concentrations and the constructed packings (Ns = 106). (c)
Log-log plots of the spectral densities of the constructed packings of various sample sizes (c = 0.4).

which comes from special correlations in ∆Xj; see Sec.
IV. Some values of χ̃

V
(0) and H are summarized in Table

I; see, for additional data, Sec. IC in the Supplementary
Material [93].
On the other hand, for intermediate wavenumbers (i.e.,

1 < ka < 3), the spectral densities of the constructed
packings largely resemble those of their progenitors; see,
for example, Fig. 8c. This result reflects that local statis-
tics of both packings are identical at corresponding length
scales. At large wavenumbers (i.e., ka > 3), however,
the spectral densities of progenitor and constructed pack-
ings again become different from each other because the
spectral density at this regime mainly depends on the
particle-size distributions; see Fig. 8c.

C. Nonspherical particles
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FIG. 10. (Color online) Simulation results for χ̃
V
(k) of the

constructed packings depending on particle shapes. Here, the
progenitor point patterns are the centers of saturated RSA
packings with N = 106 in (a) two and (b) three dimensions.

As shown in the derivation in Sec. IV, the tessellation-
based procedure can result in class I hyperuniformity
even for nonspherical particle shapes, including regular
and random polyhedrons. However, since it is generally
nontrivial to compute the form factors of those particle
shapes, we consider a simple geometric shape, i.e., a d-

dimensional hypercubic particles; see Eq. (10).
For simplicity, we take advantage of the sphere pack-

ings constructed in Sec. VB by replacing the spherical
particles with the inscribed cubic particles. In this case,
the corresponding maximal packing fraction for cubes
will be related to that of spheres as follows: φcube

max =
Γ(1+d/2)2d−1

(dπ)d
φsphere
max . We consider two cases: (identically)

oriented particles and randomly oriented particles. Fig-
ure 10 summarizes the simulation results for 2D and
3D packings converted from saturated RSA packings of
N ≈ 106. We note that the results for squares or cubes
are largely indistinguishable from those for spheres be-
cause both particle shapes have comparable length scales
and the Fourier transforms of both a cube (10) and a
sphere (9) are isotropic near the origin and have similar
profiles. However, these spectral densities will exhibit
different behaviors at intermediate and large wavenum-
bers, depending on particles shapes and orientations.

VI. MULTISCALE COATED-SPHERES MODEL

The tessellation-based methodology can be applied to
any type of tessellations of space besides the Voronoi tes-
sellations, as long as they obey the bounded-cell con-
dition (18). One interesting example is a tessellation
of space that consists of nonoverlapping spherical cells.
Since a monodisperse sphere packings in d > 1 cannot oc-
cupy all space, spherical cells in such tessellations should
have a polydispersity in size down to the infinitesimally
small; see Fig. 1b. For these (multiscale) sphere tessel-
lations, the bounded-cell condition can be guaranteed by
making the ratio of the largest cell-volume to the sample
volume, δ = vmax/ |VF |, sufficiently small. Implementing
our methodology from these tessellations should result
in hyperuniform packings regardless of particle shapes,
positions, and numbers per cell.
A simple but important case of such disordered hype-

runiform packings are ones in which each cell includes
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only a single particle to which the cell is concentric; see
Fig. 1d. Since particle shapes are similar to those for
cells, the local-cell packing fraction φ of those packings
can span up to unity, as mentioned in Sec. III. In ad-
dition, we can use the expression of the second moment
of a sphere of radius R, Mαβ = 1

(2+d)R
2δα,β , ∆Xj = 0,

and Eq. (28) to obtain the following power-law scaling
for the spectral density:

χ̃
V
(k)

=

(
φ(1− φ2/d)

2(2 + d)

)2
1

|VF |

∣
∣
∣
∣
∣
∣

∞∑

j=1

v1(Rj) (kRj)
2e−ik·xj

∣
∣
∣
∣
∣
∣

2

+O
(
k5
)

∼ φ2(1 − φ2/d)2k4, (32)

where radius of cell j is denoted by Rj .
It is crucial to observe that cells and the associated

particles form composite spheres that fill all space. Each
composite sphere is comprised of a spherical core (par-
ticle) of one phase that is surrounded by a concentric
spherical shell of the other phase such that the frac-
tion of space occupied by the core phase is equal to its
global phase volume fraction, which is guaranteed by
our procedure. Thus, this structure is a packing (dis-
persion) in which spherical particles (blue regions) are
“well-separated” from one another in a fully connected
(continuous) void (matrix) phase (red region). This is
traditionally understood as a key characteristic of opti-
mal two-phase structures [50, 54].
Surprisingly, these hyperuniform multiscale structures

are identical to the Hashin-Shtrikman multiscale coated-

spheres models [34, 51, 52], which are perhaps the most
famous results from the theory of heterogeneous materi-
als. These special particle composites are optimal for the
effective electric (thermal) conductivity and bulk elastic
modulus for a given phase fractions and phase properties.
This observation will shed light on the origin of nearly
optimal transport properties of disordered stealthy hype-
runiform packings [19, 20] and cellular networks derived
from hyperuniform systems [54].
The coated-spheres structures are infinitely degenerate

with varying degrees of order/disorder. The most ordered
structures would be ones, derived from certain determin-
istic sphere tessellations, such as Apollonian gaskets, or
initial lattice packings of identical spheres in which par-
ticles are added in a sequential multiscale manner.

A. Simulation model

In what follows, we describe our model to simulate
the coated-spheres model and ascertain their hyperuni-
formity. We first construct very dense disordered sphere
packings via a multistage version of the RSA procedure,
in which volume of the inserted spheres reduced in ev-
ery stage. These dense “precursor” packings are later
used to simulate ideal sphere tessellations. The coated-

FIG. 11. (Color online) A representative of disordered coated-
disks model with the local-cell packing fraction φ = 0.25 de-
rived from a sphere tessellation for a power-law scaling with
p = 1.5 and m = 400. Here, inclusions are only displayed; see
Sec. II in the Supplementary Material [93] for an enlarged
image.

spheres model is then simulated by scaling spheres in the
precursor packings at a certain ratio.
Specifically, these precursor packings are constructed

from an empty simulation box VF in R
d under the pe-

riodic boundary conditions. The construction procedure
has two control parameters: the upper bound vmax on cell
volumes and a positive decreasing function g(i) of posi-
tive integers i, which satisfies g(1) = 1 and

∑∞
j=1 g(j) <

∞. The infinite-sample-size limit can be achieved as the
upper bound vmax tends to be infinitesimally small with
the simulation box fixed. Subsequently, one determines
the prescribed number N of spheres that will be inserted
in every stage and the maximum cell volume v(1) to fill
all space:

N ≡ ⌈|VF | / (vmaxG)⌉ (33)

v(1) ≡ |VF | / (NG) , (34)

where G ≡
∑∞

j=1 g(j) and ⌈x⌉ is the ceiling function. Ev-

ery sphere in the mth stage has volume v(m) = v(1) g(m)
and the associated diameter Dm. Using these parame-
ters, the precursor packings are constructed by the fol-
lowing steps:

1. In the first stage (m = 1), irreversibly, randomly,
and sequentially add (i.e., via RSA procedure)
nonoverlapping spheres of a diameter D1. The in-
sertion stops when N spheres are added, unless the
packing becomes saturated.

2. In the mth stage (m > 1), nonoverlapping spheres
of a diameterDm (< Dm−1) are added via the RSA
procedure. Make sure that newly inserted spheres
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do not overlap with the spheres in the previous
stages 1, 2, · · · ,m − 1. The insertion stops when
the packing reaches to a prescribed covering frac-
tion N/|VF |

∑m
i=1 v

(i), unless the packing becomes
saturated.

3. The procedure stops when it reaches to a prescribed
number of stages; see Fig. 1b.

Note that the aforementioned voxel-list algorithm [90]
is implemented in step 1 and 2. Using the mth stage pre-
cursor packings, we simulate the coated-spheres model of
the inclusion volume fraction φ by reducing these spheres
at a volume ratio φ. Figure 11 shows a representative but
small disordered multiscale coated-disks construction.
We note that due to saturation at each stage, the num-

ber Nm of spheres inserted in the mth stage can be differ-
ent from the prescribed number N . Let Nm ≡

∑m
i=1 Ni

and ηm =
∑m

i=1 Niv
(i)/ |VF | denote the total number of

spheres at the end of the mth stage and the fraction of
space covered by these spheres, called the covering frac-
tion, respectively. By construction, ηm cannot exceed the
prescribed covering fraction in the mth stage:

ηm ≤
N

|VF |

m∑

i=1

v(i). (35)

Thus, in a finite mth stage, the precursor packings will
not cover all space but have gaps that can be only covered
by smaller spheres in the next stages. As the number of
stages tends to be infinite, those gaps are eventually cov-
ered by spheres of size down to the infinitesimally small,
i.e., ηm → 1 as m → ∞.
In this work, we consider two different types of volume

scalings: a power-law scaling and an exponential scalings.

For the power-law scaling, the cell volume in the m stage
is determined by

v(m)/v(1) = 1/mp, (36)

for a given scaling exponent p > 1. From this relation,
it is straightforward to derive the relation between max-
imum cell volume v(1) and the prescribed insertion num-
ber N , and the prescribed covering fraction:

|VF | = Nv(1) ζ(p) , (37)

1− ηm =
1

ζ(p)

∞∑

j=m+1

1/jp, (38)

where ζ(p) denotes the Riemann zeta function.
For the exponential scaling, cell volume in the mth

stage is determined by

v(m)/v(1) = 1/qm−1, (39)

for a given scaling base q > 1. The analogues of Eqs.
(37) and (38) are

|VF | = Nv(1)q/(q − 1), (40)

1− ηm = 1/qm. (41)
B. Theoretical analyses

While in the limit of m → ∞ our coated-spheres model
is predicted to be strongly hyperuniform (see Eq. (32)),
our model in a finite mth stage will be nearly hyper-
uniform, rather than perfectly hyperuniform, due to the
uncovered gaps (ηm < 1). To estimate the degree of hy-
peruniformity of our model in the mth stage, we consider
the associated spectral density χ̃(m)

V
(k), given by

χ̃(m)
V

(k) =
1

|VF |

〈
∣
∣
∣
∣
∣
∣

Nm∑

j=1

m̃
(

k;φ1/dRj

)

e−ik·xj − φ

∫

VF

dy e−ik·y

∣
∣
∣
∣
∣
∣

2〉

, (42)

where φ denotes the local-cell packing fraction. Without any prior knowledge of cell-volume distribution, its rigorous
bound can be obtained by using some simple inequalities (see Appendix C 1):

χ̃(m)
V

(k) ≤ 2F (k;φ) + 2φ2 |VF | (1− ηm)2, (43)

where

F (k;φ) ≡
1

|VF |

(
φ(1− φ2/d)

2(2 + d)

)2
〈
∣
∣
∣
∣
∣
∣

Nm∑

j=1

v1(Rj) (kRj)
2e−ik·xj +O

(
k4
)

∣
∣
∣
∣
∣
∣

2〉

∝ (φ2(1 − φ2/d)2) |k|4 , |k| → 0. (44)

Here, the constant term φ2 |VF | (1 − ηm)2 is the largest
volume-fraction fluctuations that can arise from uncov-
ered gaps in the mth stage coated-spheres model. Impor-

tantly, the constant term depends on φ(1− ηm), i.e., the
deviation between the local-cell packing fraction φ and
the global packing fraction φηm, which will vanish as the
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uncovered gaps become completely filled in the limit of
m → ∞. Thus, in this limit, the upper bound implies
that our model becomes perfectly hyperuniform of class
I, consistent with Eq. (32).
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FIG. 12. (Color online) Simulation results for multiscale-disk
tessellations. For the power-law scaling (36), (a) the semi-log
plot of fraction of uncovered space (1−ηm) versus the number
of stages m, and (b) the log-log plot of total cell number Nm

versus (1−ηm). For the exponential scaling (39), (c) the semi-
log plot of (1− ηm) in the mth stage, and (d) the log-log plot
of total cell number Nm as functions of (1 − ηm). Here, we
note that dashed lines represent prescribed covering fractions,
given by Eqs. (38) and (41), and δ ≡ vmax/ |VF |.

Although the upper bound (43) is rigorous, it is a gross
overestimation compared to corresponding simulation re-
sults. Thus, we obtain a better estimate of Eq. (42) by
assuming that the uncovered gaps are spatially uncorre-
lated, which effectively removes the ensemble average of
their cross terms, yielding

χ̃(m)
V

(k) ≈ F (k;φ) +
φ2

|VF |

〈
∞∑

j=Nm+1

v1(Rj)
2

〉

, (45)

where the summation term becomes dominant as |k| → 0
because F (k;φ) shows a power-law scaling; see Appendix
C 2 for details.
Further estimation of the second term in Eq. (45) re-

quires the cell-size distribution. Consider two distinct
cell-size scalings discussed in Sec. VIA: a power-law form
(36) and an exponential functional form (39). For the
power-law scaling, using Eqs. (37) and (38), the summa-
tion in Eq. (45) can be written as

〈
∞∑

j=Nm+1

v1(Rj)
2

〉

= N
(

v(1)
)2 ∞∑

j=m+1

1

j2p

=v(1) |VF | ζ(p) (1− ηm)2 f(m) , (46)

where f(m) ≡
(
∑∞

j=m+1 j
−2p

)

/
(
∑∞

j=m+1 j
−p

)2

. Sub-

stituting Eq. (46) into Eq. (45) yields an approximation
of the residual spectral density in the small-wavenumber
limit as follows:

χ̃(m)
V

(k → 0) ≈ v(1) f(m) ζ(p) (φ(1− ηm))
2
. (47)

For the exponential scaling, Eqs. (40) and (41) are
used to simplify Eq. (45) as follows:

〈
∞∑

j=Nm+1

v1(Rj)
2

〉

= N

{

v(1)
q

qm(q − 1)

}2
(q − 1)2

q2 − 1

= |VF | v
(1) q

q + 1
(1− ηm)2, (48)

which results in the following leading-order term of the
spectral density in the mth stage:

χ̃(m)
V

(k → 0) ≈ v(1)
q

q + 1
(φ(1 − ηm))2 . (49)

C. Simulation results

For the purpose of illustration and simplicity, we spe-
cialize to two dimensions to generate multiscale-disk tes-
sellations for the aforementioned cell-size scalings: a
power-law (36) and an exponential (39) functional forms.
Using the power-law functional forms, the simulations
proceed up to the 400th stage, yielding a scaling exponent
p ranging from 1.5 to 1.8, and the ratios of the maximal
cell volume to the sample volume δ = 10−3 and 10−4.
For the exponential functional forms, the constructions
proceed to achieve around covering fraction ηm ≈ 0.99
for values of a scaling base q=1.05, 1.10, and 1.20, and
the ratio δ = 10−3.
For both types of scaling functions, as the scaling pa-

rameters increases, the smaller is the number of stages
needed to achieve a prescribed covering fraction. Instead,
for even larger scaling parameters, the precursor packings
are more likely to be saturated [100], which often results
in significant computational costs. This is because as the
packing approaches to a saturation state, the voxel-list
algorithm that we employ subdivides current voxels with
an increasingly finer resolution, which requires increas-
ingly larger computer memory and computational times.
For this reason, we choose scaling parameters smaller
than 2.
To obtain multiscale-disk tessellations that nearly fill

space (ηm ≈ 0.95), these procedures need to continue up
to around a few hundred stages (Fig. 12a and 12c). For
m . 10, cell volumes in the exponential scalings do not
change much, compared to those in the power-law scal-
ings. Thus, the tessellations in the exponential scalings
can cover a larger fraction of the simulation box with a
smaller number of stages than those for the power-law
scaling. Instead, for the exponential scaling, the pre-
cursor packings more easily achieve saturation from rel-
atively low covering fractions (ηm ≈ 0.65). Then, the
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FIG. 13. (Color online) Simulation results for the coated-disks models for (a-b) power-law and (c-d) exponential scalings of

cell volumes. (a) and (c) Log-log plots of the spectral densities χ̃(m)
V

(k) versus wavenumber k for our coated-spheres model

at various values of stages. (b) and (d): Log-log plots of the associated spectral densities χ̃(m)
V

(k = kmin) at the minimal
wavenumber as functions of the fraction of uncovered space (1 − ηm). The dashed lines represent the values calculated from
Eqs. (47) and (49), respectively.

simulated covering fraction never keeps up with the pre-
scribed covering fraction (41); see Fig. 12c. However, the
number of total cells Nm required to reach to a certain
covering fraction will be similar for both cases; see Fig.
12b and 12d.

From these precursor polydisperse packings, we sim-
ulate the coated-disks model with the inclusion volume
fraction φ = 0.5. To ascertain their hyperuniformity, we
compute the associated spectral densities χ̃(m)

V
(k). As

shown in Fig. 13a and 13c, the packings in the finite
stages (around ηm ≈ 0.95) are effectively hyperuniform.
Importantly, this comes from the fact that the precur-
sor packings have uncovered gaps, and thus the local-
cell packing fraction φ and their global packing fraction
φηm have a discrepancy. The consequent volume-fraction
fluctuations are estimated by Eqs. (47) and (49). Fig-
ures 13b and 13d show that while the numerical results
in χ̃(m)

V
(k = kmin) and these theoretical estimations con-

form to each other for low covering fractions (ηm . 0.8),
they significantly deviate for relatively high covering frac-
tions. This is because the uncovered gaps are no longer

spatially uncorrelated in high covering fractions.

However, for high covering fractions, the residual spec-
tral densities χ̃(m)

V
(k = kmin) vanish with an error on the

order of (1 − ηm)2. Thus, our upper bound (43), which
although is a gross overestimation, correctly predicts the
scaling behavior of χ̃(m)

V
(k = kmin). Both the theoreti-

cal and numerical results show that the coated-spheres
model should be strongly hyperuniform in the limit of
m → ∞.

It is noteworthy that as the number m of stages in-
creases, the spectral densities in Fig. 13a and 13c tend
to resemble one another for intermediate wavenumbers.
In addition, the terms χ̃(m)

V
(k = kmin), as shown in Fig.

13b and 13d, collapse to a single curve that seemingly
only depends on the fraction of uncovered space. From
these observations, we surmise that the spectral densities
of the multiscale coated-spheres structures (ηm → ∞) are
identical to one another, regardless of the cell-volume dis-
tributions of the precursor sphere packings. This univer-
sal behavior of spectral densities is apparently related to
the fact that the coated-spheres structures have identical
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effective properties.

VII. FABRICATION OF OUR DESIGNS

Disordered hyperuniform structures, constructed by
numerical simulations have been produced via modern
fabrication technologies [14, 101]. Here, we explicitly
discuss how our designed hyperuniform packings (disper-
sions) can be fabricated via state-of-the-art technologies,
such as 2D photolithographic [81] and 3D printing tech-
niques [78–80].
Photolithography is a microfabrication technique that

uses light to transfer a designed 2D pattern in the pho-
tomask on the photo-sensitive chemicals coated on a flat
substrate. Then, after a series of chemical treatments,
the desired pattern is engraved on the material, or mate-
rial is deposed on the pattern. These methods are widely
used in industry and research because of their high effi-
ciency and exact control over the shapes and size of the
patterns. Instead, diffraction tends to round all sharp
corners in the designed pattern, the radius of which is
associated with the minimum feature size. State-of-the-
art photolithography techniques are capable of creating
patterns on a 30-cm-diameter wafer with the minimum
feature size down to 25 nm [81]. With equipment of 1.5
µm minimum feature size, one can readily fabricate our
2D hyperuniform disk packings (probably derived from
Voronoi tessellations) that include more than one million
particles.
Three-dimensional hyperuniform packings can be fab-

ricated using 3D additive manufacturing techniques [78–
80]. 3D printing refers to various processes that solid-
ify materials layer by layer to create a 3D object (e.g.,
fused filament fabrication, stereolithography, and selec-
tive laser melting). A printed structure must be topolog-
ically connected such that it can be mechanically self-
supporting after the procedure. Thus, the void (ma-
trix) phase of our 3D hyperuniform packings(dispersions)
can be readily printed [102]. Due to recent develop-
ments in 3D printing methods, some commercial desk-
top 3D printers can print a sample with dimensions
125 × 125 × 125 cm3 in 50 hours with around 100 µm
XY-resolution and 20 µm in Z-resolution. Setting the
minimum pore size is 300 µm, such devices can readily
fabricate our 3D hyperuniform sphere packings that in-
clude up to 50 million pores. If pore sizes are on the
order of the resolutions, spherical pores will be suitable
to reduce the effect of thermal deformations during the
printing process.

VIII. CONCLUSIONS AND DISCUSSION

In summary, we have introduced the tessellation-based
methodology to construct disordered hyperuniform pack-
ings (dispersions) in d-dimensional Euclidean space R

d.
This procedure is simple to implement because it only

involves computing cell volumes, each of which can be
performed exactly and in parallel. Furthermore, it guar-
antees that the constructed packings are perfectly hype-
runiform of class I in the infinite-sample-size limit, as we
analytically showed in Eqs. (26), (27), and (29). We have
implemented numerically our methodology from two dis-
tinct types of disordered tessellations: Voronoi tessella-
tions of nonhyperuniform progenitor packings and sphere
tessellations.

In the case of Voronoi tessellations, we demonstrated
that our methodology provides a remarkable mapping
that converts virtually all samples of any statistically
homogeneous point pattern, whether hyperuniform or
nonhyperuniform, into perfectly hyperuniform packings.
Furthermore, the fact that it is easy to create a Voronoi
tessellation of a very large point pattern with the combi-
nation of our efficient procedure enables us to construct
very large samples (of the order of 108 particles) of per-
fectly hyperuniform disordered packings. Such large sys-
tem sizes have not been possible for previous numerical
methods.

In the case of sphere tessellations, we established that
the optimal Hashin-Shtrikman multiscale dispersions are
hyperuniform of class I. In addition to the fact that
the spherical inclusions in such dispersions are “well-
separated” from one another [54], hyperuniformity is ap-
parently another important structural attribute to attain
optimal effective transport and elastic properties. In this
regard, it is noteworthy that some disordered hyperuni-
form packings [19, 20] and cellular networks derived from
hyperuniform systems [54] have been reported to possess
(nearly) optimal effective transport and elastic proper-
ties. Thus, it will be interesting to investigate the phys-
ical properties of hyperuniform packings constructed by
our procedure.

Furthermore, it is important to observe that our pro-
cedure allows many distinct types of tessellations as long
as they meet the bounded-cell condition (18). Besides
Voronoi tessellations and sphere tessellations studied in
this work, examples include disordered isoradial graphs
[76], Delaunay triangulations, “Delaunay-centroidal” tes-
sellations [44, 54], dissected tessellations [77], and various
generalizations of Voronoi tessellations, such as Laguerre
tessellations [74, 75] and tessellations in Manhattan dis-
tances [103]. Since constructing progenitor packings is
the most time-consuming step in our numerical imple-
mentations, one would increase sample sizes by employ-
ing other tessellations that can be efficiently generated.

We note that similar to our procedure, a 1D model
[104] and the “equal-volume tessellation” [105] enable the
generation of hyperuniform point mass patterns and hy-
peruniform point patterns from certain initial tessella-
tions, respectively. Specifically, these two models place
a point mass [104] and point particles [105] in each cell
such that mass densities and number densities in the cells
become identical, respectively. Thus, the hyperuniform
systems in both models can be regarded to be a zero-φ
limit of the hyperuniform packings in our procedure. Im-
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portantly, however, both previous models [104, 105] do
not consider volume-fraction fluctuations, which is our
central concern and accounted for by our procedure. In
addition, the mass density of point masses in this 1D
model does not change the structural characteristics of
the resulting systems, which again is different from our
methodology. We also note that the equal-volume tes-
sellation is less versatile in its initial tessellations than
our procedure because all cell volumes in an initial tes-
sellation should be integer multiples of a common unit
volume.
We have shown that our procedure enables a mapping

that converts a nonhyperuniform packing into a hype-
runiform one without changing the initial tessellation,
i.e., the tessellation is an invariant under the transfor-
mation. In other words, packings that have identical
tessellations can either be nonhyperuniform or hyperuni-
form by simply tuning local characteristics. It immedi-
ately follows that any tessellation statistic, including the
distributions of nearest-neighbor distances and Voronoi-
cell volumes, are identical for both the progenitor nonhy-
peruniform point patterns and their corresponding con-
structed hyperuniform packings. These results reinforce
previous observations that local structural characteristics
may or may not determine the hyperuniformity of sys-
tems, e.g., substantial local clustering of particles many
not be inconsistent with hyperuniformity [106] and dis-
ordered systems with appreciable short-range order are
often not hyperuniform [90]; see Ref. [3]. Moreover,
our results also show that transitions from a nonhype-
runiform state to a hyperuniform state can be achieved
without correlated movements of particles/mass across
all length scales. Such transitions stand in contrast to
those in some previous hyperuniform systems in thermal
equilibrium [7, 8, 19, 40, 41, 62] as well as nonequilibrium
[11, 12, 55, 58, 59, 65, 66], in which the transitions always
involve collective rearrangements of the particles.
It should not go unnoticed that our methodology also

allows ones to tune particle shapes, positions, and num-
bers within each cell with preserving hyperuniformity of
the constructed packings. For instance, one can engi-
neer these two-phase systems at large length scales (i.e.,
k ≪ 1) by choosing nonspherical particles with various
aspect ratios and placing them away from the centroids
of the associated cells. However, at intermediate length
scales the two-phase media are structurally similar to
their progenitor patterns (see Sec. VB). One can tune
local structures of the hyperuniform packings to achieve
the “well-separated” condition, which is a necessary re-
quirement to attain the optimal transport and mechani-
cal properties (see Sec. VI). Moreover, the small-k scal-
ing of the spectral density can either be χ̃

V
(k) ∼ k2 or

χ̃
V
(k) ∼ k4 by engineering particle displacements ∆Xj

with respect to the associated cell centroids (see Sec.
IV). Due to this tunability, our methodology allows ones
to design an enormous class of hyperuniform packings,

including (nearly) optimal structures. Combining our
computational designs with the aforementioned 2D and
3D fabrication techniques [82] is expected to accelerate
the discovery of novel disordered hyperuniform two-phase
materials.
There are several other open questions for future ex-

ploration. For example, could other types of initial tes-
sellations lead to scaling behaviors of the spectral density
besides quadratic or quartic shown here? To what extent
can our procedure be generalized by relaxing the identi-
cal local-cell packing faction constraint (e.g., giving cer-
tain spatial correlations in local-cell packing fractions)?
Can such generalized versions of our procedure construct
“disordered” stealthy (i.e., χ̃

V
(k) = 0 for k < K) [40–43]

or class II hyperuniform (i.e., χ̃
V
(k) ∼ k, such as MRJ

packings [9, 61])? If possible, this would certainly allow
one to obtain more general scaling behaviors.
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Appendix A: Voronoi tessellations

The Voronoi tessellation of a given progenitor packing
is computed via VORO++ library [96]. To enhance the
performance, we divide the particle centroids of the pro-
genitor packing into several domains and compute the
Voronoi tessellations for each domain in parallel. To
avoid any deformation in Voronoi cells due to domain
boundaries, we choose domains in the following steps:

1. Divide the simulation box into several disjoint sub-
domains in cubic shape.

2. Add a marginal region surrounding each subdo-
main, and these two regions form a domain. Here,
the thickness W of the marginal region is chosen as
6ρ−1/d, where ρ is the number density.

Then, for each domain, we compute the Voronoi cells
of points inside “subdomains.” For point patterns with
larger holes, the thickness of the marginal region should
be increased accordingly.
Since VORO++ is designed for three-dimensional ge-

ometries, its 2D implementation is performed in a quasi
3D simulation box whose height (in z component) is
unity. To avoid any possible “memory leakage” in this 2D
implementation, the number of particles within a domain
should be smaller than 105.
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Appendix B: Derivation of Eq. (24)

First, we rewrite the Fourier transform of the particle indicator function J̃ (k), given in Eq. (21):

J̃ (k) =

N∑

j=1

e−ik·xj
{
m̃(k;Pj) e

−ik·∆Xj − φ m̃(k;Cj)
}

=

N∑

j=1

e−ik·xj
{(

m̃(k;Pj)− φ m̃(k;Cj)
)
+ m̃(k;Pj)

(
e−ik·∆Xj − 1

)}
.

Here, we substitute the form factors m̃(k;Pj) and m̃(k;Cj) with their Taylor expansions (22), which yields

J̃ (k) =

N∑

j=1

φ |Cj| e
−ik·xj

{

−
kαkβ
2

(Mαβ(Pj)−Mαβ(Cj)) +
ikαkβkγ

6
(Mαβγ(Pj)−Mαβγ(Cj))

+

(

1−
kαkβ
2

Mαβ(Pj)

)

(e−ik·∆Xj − 1)
}

+O
(
k4
)

(B1)

=φ
N∑

j=1

|Cj | e
−ik·xj

{(
e−ik·∆Xj − 1

)
−

kαkβ
2

(Mαβ(Pj)−Mαβ(Cj))

+
ikαkβkγ

6
(Mαβγ(Pj)−Mαβγ(Cj))−

kαkβ
2

Mαβ(Pj) (e
−ik·∆Xj − 1) +O

(
k4
)

=φ

N∑

j=1

(
e−ik·∆Xj − 1

)
|Cj | e

−ik·xj

︸ ︷︷ ︸

J̃(1)(k)

+(−1)φ
kαkβ
2

N∑

j=1

(Mαβ(Pj)−Mαβ(Cj)) |Cj | e
−ik·xj

︸ ︷︷ ︸

J̃(2)(k)

+ φ
ikαkβkγ

6

N∑

j=1

(Mαβγ(Pj)−Mαβγ(Cj) + 3(∆Xj)γ Mαβ(Pj)) |Cj | e
−ik·xj

︸ ︷︷ ︸

J̃(3)(k)

+O
(
k4
)
. (B2)

In Eq. (B1), we used the identical local-cell packing fraction condition, i.e., |Pj | = φ |Cj | for j = 1, · · · , N . In Eq.
(B2), (∆Xj)γ is the γth Cartesian component of a vector ∆Xj , and we apply the Taylor expansion

(
e−ik·∆Xj − 1

)
=

−ikγ(∆Xj)γ +O
(
k2
)
, which is a good approximation due to the bounded-cell condition (18).

Appendix C: Derivations of the spectral density of the mth stage coated-spheres model

Here, we compute upper bounds on the spectral density χ̃(m)
V

(k) defined in Eq. (42) in three cases of cell-volume
distributions: unknown, a power-law scaling, and an exponential scaling.

1. Upper bounds of the spectral density

From Eq. (42),

χ̃(m)
V

(k) =
1

|VF |

〈
∣
∣
∣
∣
∣
∣

Nm∑

j=1

[

m̃
(

k;φ1/dRj

)

− φ m̃(k;Rj)
]

e−ik·xj − φ
∞∑

j=Nm+1

m̃(k;Rj) e
−ik·xj

∣
∣
∣
∣
∣
∣

2〉

(C1)

=
1

|VF |

〈
∣
∣
∣
∣
∣
∣

φ(1− φ2/d)

2(2 + d)

Nm∑

j=1

v1(Rj) (kRj)
2e−ik·xj +O

(
k4
)
− φ

∞∑

j=Nm+1

m̃(k;Rj) e
−ik·xj

∣
∣
∣
∣
∣
∣

2〉

. (C2)
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Now, note the following inequality for two complex numbers A and B:

|A+B|2 ≤ (|A|+ |B|)2 = |A|2 + |B|2 + 2 |A| |B| (C3)

≤2(|A|2 + |B|2), (C4)

which is obtained by successively applying the triangle inequality and then the inequality of arithmetic and geometric
means, and thus equality occurs if and only if A = B. Using this inequality, we obtain a rigorous upper bound on
Eq. (C2):

χ̃(m)
V

(k) ≤
2

|VF |

(
φ(1 − φ2/d)

2(2 + d)

)2
〈
∣
∣
∣
∣
∣
∣

Nm∑

j=1

v1(Rj) (kRj)
2e−ik·xj +O

(
k4
)

∣
∣
∣
∣
∣
∣

2〉

+
2φ2

|VF |

〈
∣
∣
∣
∣
∣
∣

∞∑

j=Nm+1

m̃(k;Rj) e
−ik·xj

∣
∣
∣
∣
∣
∣

2〉

.

(C5)

Subsequently, we derive an upper bound on the second term in Eq. (C5) by applying the triangle inequality:

〈
∣
∣
∣
∣
∣
∣

∞∑

j=Nm+1

m̃(k;Rj) e
−ik·xj

∣
∣
∣
∣
∣
∣

2〉

≤

〈
∣
∣
∣
∣
∣
∣

∞∑

j=Nm+1

|m̃(k;Rj)|

∣
∣
∣
∣
∣
∣

2〉

≤

〈
∣
∣
∣
∣
∣
∣

∞∑

j=Nm+1

v1(Rj)

∣
∣
∣
∣
∣
∣

2〉

= |VF |
2
(1 − ηm)2, (C6)

where the inequality in Eq. (C6) comes from the fact that |m̃(k;R)| ≤ v1(R); see Eq. (9). We note that the last
term in Eq. (C6) can be regarded as the largest volume-fraction fluctuations contributed from the uncovered gaps.
Combining Eqs. (C5) and (C6), we obtain a rigorous bound as follows:

χ̃(m)
V

(k) ≤ 2F (k;φ) + 2φ2 |VF | (1− ηm)2, (C7)

where F (k;φ) is defined by Eq. (44). We remark that this bound is derived without any prior knowledge of the
cell-volume distribution.

2. Derivation of Eq. (45)

We can approximate Eq. (42) by assuming that its contributions from composite spheres (the first term in Eq.
(C2)) and uncovered gaps are uncorrelated, which effectively removes an ensemble average of their cross terms:

χ̃(m)
V

(k) ≈ F (k;φ) +
φ2

|VF |

〈
∣
∣
∣
∣
∣
∣

∞∑

j=Nm+1

m̃(k;Rj) e
−ik·xj

∣
∣
∣
∣
∣
∣

2〉

. (C8)

Here, the second term can be further simplified by assuming that the uncovered gaps are spatially uncorrelated:

φ2

|VF |

〈
∣
∣
∣
∣
∣
∣

∞∑

j=Nm+1

m̃(k;Rj) e
−ik·xj

∣
∣
∣
∣
∣
∣

2〉

≈
φ2

|VF |

〈
∞∑

j=Nm+1

m̃(k;Rj)
2

〉

≈
φ2

|VF |

〈
∞∑

j=Nm+1

v1(Rj)
2

〉

, (C9)

where the last approximation comes from |m̃(k;R)| ≈ v1(R) +O
(
k2
)
when kR ≪ 1; see Eq.(9).
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