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Disordered magnets, martensitic mixed crystals, and glassy solids can be irreversibly deformed
by subjecting them to external deformation. The deformation produces a smooth, reversible re-
sponse punctuated by abrupt relaxation “glitches”. Under appropriate repeated forward and re-
verse deformation producing multiple glitches, a strict repetition of a single sequence of microscopic
configurations often emerges. We exhibit these features by describing the evolution of the system
configuration from glitch to glitch as a mapping of N states into one-another. A map U controls
forward deformation; a second map D controls reverse deformation. Iteration of a given sequence of
forward and reverse maps, e.g. DDDDUUUU necessarily produces a convergence to a fixed cyclic
repetition of states covering multiple glitches. The repetition may have a period of more than one
strain cycle, as recently observed in simulations. Using numerical sampling, we characterize the
convergence properties of four types of random maps implementing successive physical restrictions.
The most restrictive is the much-studied Preisach model. These maps show only the most qualita-
tive resemblance to annealing simulations. However, they suggest further properties needed for a
realistic mapping scheme.

I. INTRODUCTION

Much recent interest has focused on cyclic annealing
of disordered materials, i.e. deforming them repeatedly
in a prescribed way. Example materials are magnets,
dense colloidal suspensions, sheared amorphous solids or
granular packs, for which experimental and numerical re-
sults have been reported [1–16]. As these materials are
deformed by increasing amounts, they suffer a series of
abrupt yielding events that move them discontinuously
to new internal states. Repeated large-amplitude cycles
of deformation cause many such yielding events in each
cycle; these events differ with every cycle as new internal
configurations are encountered. However, it often hap-
pens that this annealing process reaches an end point at
which every subsequent cycle leads to the same sequence
of yielding events involving the same sequence of configu-
rations. Thus the deformation process has led the system
to a small family of specific states from among the much
larger number of available ones. Our aim in this paper
is to explore a minimal mechanism for the attainment of
this order based on certain qualitative features of these
systems.

In the systems considered above, the configurations
traversed form a discrete set, defined by locally stable
configurations. The transitions associated with these
traversals depend deterministically on the prior state and
on the deformation applied to induce it. The transitions
are in general irreversible, so that a given configuration
or state may have been reached from more than one pos-
sible prior state. These features amount to saying that
the evolution may be described as iterations of a map on
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a finite set. Upon iteration, such mappings generically
yield convergence to a cycle [17], as is also observed in
the physical examples above. Here we develop a corre-
spondence between cyclic annealing and the iteration of
finite maps. We can thus compare the behavior of the
maps with that of physical systems.

The convergence phenomena we aim to explain are well
illustrated in the numerical studies of Regev et al. and
Fiocco et al. [6–8]. These system consists of a peri-
odically continued box of a binary mixture with several
thousand solid-like spheres. These interact via a short
range repulsive potential without friction. The box is
filled with enough spheres that they are held in position
by the repulsions from their neighbors. The annealing de-
formation consists of a shearing deformation of the box
with a shear strain γ that increases with time. At ev-
ery increment of strain the spheres are moved until local
equilibrium is found. The increments of strain are made
small enough that limiting adiabatic behavior is reached.
This is referred to as the AQS (athermal quasi-static)
regime [18].

The increasing strain leads to mechanical instabil-
ity. The normal contact forces become aligned so that
they can no longer support the applied shear stress, and
the spheres move spontaneously without restoring force.
This motion is simulated as though dominated by viscos-
ity, with no inertial forces. The contact network evolves
during this motion until a new equilibrium state—a new
local minimum of potential energy—is reached . In the
simulations of amorphous packings these discontinuous
motions or “glitches” may involve few spheres or many.
After such a glitch has occurred, the shear strain again is
increased as before, thus creating a sequence of glitches.
After some chosen maximum strain γm is reached, the
strain is reversed until the strain has decreased to −γm.
Then γ is reversed until it again reaches +γm. The strain
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continues to be varied through a number of such cy-
cles. Glitches occur throughout these cycles; increments
of shear between glitches are generally small compared
to γm. For systems of the size studied, one may clearly
distinguish all glitches from numerical noise.

During these annealing cycles, the glitches keep the
same character but they differ in specifics: the displace-
ments of the particles are different each time. Moreover,
these differences tend to decrease with succeeding cycles.
Ultimately, each glitch in the cycle produces the same
displacements and occurs at the same strain as in pre-
vious cycles. This constancy remains until the driving
is changed in some way, e.g. by a subsequent change of
the maximum amplitude γm. Such changes disrupt the
cycle and a transient of a number of cycles is required
until convergence to a new cycle is achieved. Once a
given sequence of glitches is disrupted, it is generally not
recovered. The convergence process depends on the am-
plitude: larger amplitudes require more annealing cycles.
Further, there is generally a limiting amplitude γ∗, called
the yielding transition, above which convergence is im-
possible. The convergence time is observed to diverge as
γm increases towards γ∗.

Above we have noted that cyclic annealing can lead a
system from a very large set of states to a well-defined
and small class of discrete states. We have also observed
that this process is deterministic; once any configuration
is given and a direction of shear is specified, the next
discontinuous change of state is uniquely determined.
This defines a map from an initial state to a succeed-
ing state. When extended to all possible states, such a
map would dictate the sequence of transitions during in-
creasing shear. It would be a complicated function of
the disordered geometry of the system. Nevertheless, the
convergence to a small subset of states when periodically
driven suggest that these maps have common features
that one can hope to capture by simpler models.

A similar convergence is an intrinsic property of dis-
crete maps, without consideration of the mechanical ori-
gin of the mapping function. Such maps occur widely
in statistics and computer science [17, 19, 20], and have
also been studied within the context of spin glasses [21].
Iterating such maps produces convergence to a repeated
limit cycle of one or more states, as with cyclic annealing
in the sheared amorphous solids. In the following, we
aim to adapt such maps so as to describe annealing, with
as little further restriction as possible.

Our approach of using random maps to model the irre-
versible and athermal dynamics of disordered systems has
precedence. Within the context of Kauffman’s Boolean
networks [22] random maps have been considered for ex-
ample in [23–25]. Much closer to our aims is the tran-
sition matrix (TM) approach of Fiocco et al. [9], intro-
duced in order to describe the athermal dynamics of a
periodically sheared amorphous solid. In their approach
an ensemble of random maps is constructed where each
random map Pγ,∆γ captures the transitions associated
with a given strain change γ → γ + ∆γ that is assumed

to be small. The periodical shearing is implemented by
a concatenation of these maps. Inspired by the TM ap-
proach, our work expands theirs by (i) noting that only
two maps suffice to define the convergence process (ii)
explicitly making connections with the theory of random
maps and the available results in the literature, and (iii)
using these connections to understand the relation be-
tween the structure of the maps and the resulting limiting
behavior they produce.

The paper is organized as follows. In the next section,
Section II, we recall the statistical features of arbitrary
maps, also called random maps. We focus on the number
of limit cycles these maps contain and the average num-
ber of iterations needed to converge to them. In these
maps there is no notion of the sequence of strain induced
by increasing or decreasing shear. There is also no notion
of repeated oscillation of the shear. Thus in the follow-
ing Section III we build a representation of annealing
cycles using the discrete maps; it allows us to distinguish
between small-amplitude and large amplitude annealing.
We then introduce in Section IV a succession of maps pro-
gressing from least restrictive to most restrictive, describ-
ing how each is constructed. In the subsequent Section
V, we sample numerically from these maps and show how
the convergence to a limit cycle depends on the number
of states N in the set and on the annealing amplitude.
The convergence differs markedly from that seen in an-
nealing simulations. In the final section VI we discuss
possible reasons for these discrepancies. There we point
to further scope for improving the map representation of
annealing.

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  
 

 

 

 

 

 

 

 

 

  

 

 

 
 

 
 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 
 

 

 

 

 

 

  

FIG. 1. Functional graph associated with a random map of
N = 100 elements. The functional graph consists of nc = 3
components, each terminating in a limit-cycle. The lengths `c
of the limit cycles are `c = 4, 1, 1 and the vertices of the limit
cycles are colored in blue. Each blue cycle node is the root of
a tree. For three of the cycle nodes this tree is has only the
blue root node; the other trees have 2, 3, and 87 additional
red nodes. The sizes of the components are sc = 95, 4, 1.
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II. ITERATED DISCRETE MAPS

Given a set S of N elements, a discrete map is a map-
ping from S into itself. The properties of discrete maps
have been well studied by group theorists [26]. In this
background section we review the statistical properties
explained e.g. in Flajolet and Odlyzko [17], for later com-
parison with our results.

It is convenient to think of a discrete map as a directed
graph, the functional graph of the map, in which each el-
ement of S is a node, and each node has a single directed
edge pointing to some other node. Fig. 1 gives an exam-
ple. Evidently, the map can be such that a proper subset
of S may map into itself and the functional graph may
thus contain disjoint pieces. These pieces are known as
“components.” Every node of such a graph has a sequence
of images under the map, following each directed edge in
turn. At some point in this sequence some element of S
must be revisited. The subsequent steps in the sequence
must thence retrace previous steps, to return again and
again to the first revisited element. Given any initial ele-
ment, this cycle is dictated by the map. Thus any given
element of S may only map to one cycle. The part of the
sequence preceding this cycle is known as the “tail”.

Just as every element leads to a cycle, two elements
in the same component must lead to the same cycle, as
we now argue. Being in the same component means that
the two elements are connected via the functional graph.
That is, following the graph from each of the two ele-
ments must lead to one common element. Subsequent
elements after the first common one are necessarily also
common. This includes the cycles of both elements. Thus
two elements in the same component necessarily share a
cycle. Thus every component has exactly one cycle. The
end of the tail of a given element is an element of this
cycle. The tails of numerous elements may meet at this
end point. The subgraph of these elements may contain
no cycles; it is thus a tree graph whose root is the end
point. The union of all these roots is the cycle.

We next consider an arbitrary element and the `t ele-
ments of its tail leading to its cycle. Any element in this
tail may be joined by tails from other elements. We now
consider a second arbitrary element. If the tail of this el-
ement does not lead to the same cycle, it must therefore
belong to another component. We use this fact below to
estimate the number of components.

To summarize, every map on N elements consists of
some number nc of disjoint components, each of which
contains a single cycle with some `c elements. To each cy-
cle there are attached disjoint directed trees, each rooted
in an element of the cycle. A given element in such a
tree is joined to its cycle by some `t tail elements. The
number of elements in a component is denoted by sc, the
size of the component. The functional graph of a typical
random map is illustrated in Fig 1.

We next consider the ensemble of discrete maps of a
set of N elements into itself. We call such a map a simple
random map in order to distinguish it from the map en-

sembles to follow. Using generating-function techniques
[17], it is possible to work out how the expectation values
of the features defined above vary asymptotically withN :

nc =
1

2
lnN +

1

2
ln 2 + γ, (1)

sc =
2

3
N , (2)

`c = `t =

√
πN
8
, (3)

where γ is the Euler-Mascheroni constant [27]. The
statistics for `c, `t, and sc are formed by averaging also
over the nodes. For example sc is the size of the compo-
nent that a node belongs to, where both the map and the
node are selected at random and uniformly. Likewise, `c
is the expected length of the cycle associated with this
component etc. Further details can be found for example
in [17, 20, 28], and references therein.

It is instructive to obtain the large-N scaling behavior
of these estimates from simple arguments. To illustrate
this, we note that for random maps the ensemble for
N + 1 elements may be constructed inductively from its
N -element counterpart.

The average number of components in a random map
nc(N ) may be estimated in this way [28]. We consider the
average number of new components ∆nc(N ) that appear
when one new element is added to N . The new element
must map to one of the existing elements or to itself.
Only the latter choice creates a new component. And
this choice has a probability 1/(N + 1). Adding these
increments for integers up to N yields nc(N ) ∼ lnN .
Likewise, the average number of elements in a component
sc scales as N/ lnN .

If an element of a map is chosen at random and its
successive images are recorded, there must come a point
where a prior element is repeated. The sequence from
this prior element to the current one must then repeat
cyclically, as noted above. The average length of a se-
quence to the first repeated element is called its six-length
`6; all of its elements are necessarily mutually distinct.
The probability that the first step in this sequence hap-
pens to be a repetition is 1/N since the first node’s image
must be itself. For large N , the probability that the sec-
ond step is a repetition, becomes 2/N : the second node’s
image may be either the first node or itself. Similarly, the
first repetition occurs at the k’th step with probability
k/N provided k � N . Thus the cumulative probabil-
ity of a repetition after k steps is of order k2/N . This
probability grows to the order of unity when k2 ∼ N .
At this point k is of the order `6, so that `6

2 ∼ N .
The six-length `6 consists of two parts: the “tail” se-
quence, of length `t preceding the repeated element and
the cyclic sequence of length `c following it. Since given
a six-length sequence, the starting position of the cyclic
segment is equally likely to be anywhere on it, the ex-
pectation value of the tail and cycle lengths must be the
same. Thus `t ∼ `c ∼ `6 ∼

√
N .
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(a) (b) (c)
U D R1 = DU R2 = D2U2

g + 2

g + 1

g

g − 1

g − 2

FIG. 2. Functional graphs for iterated U and D maps. a) Graph detail for a U tree and a compatible D tree. Nodes (red
dots) are arranged in rows having a common distance g from the U root. The U mappings are shown as black arrows; D
mappings are shown as red arrows. Dotted edges go to nodes not shown. These maps are “generation compatible”: every D
arrow connects from a node to another below it. b) Graph detail of the map R1 ≡ DU showing three fixed points and one
3-cycle. c) Graph detail of the map R2 ≡ DD UU showing a single fixed point.

It is useful to introduce some notation. Let P and Q be
two maps that map a set of N elements into itself. Then
the action of the composite map PQ on some element A
is obtained by mapping A first according to Q, the result
of which we denote by QA, and then applying P to it,
to obtain the element P(QA) ≡ PQA, by associativity.
Observe that we apply a sequence of maps from right to
left. An iteration is a composition of a map with itself,
e.g. PP . . .P which we write as Pn, with n indicating
the number of iterations.

A property of maps that will prove important below
is the contraction factor: a given element A maps to ex-
actly one element, but more than one element may map
to A. An element may also have no such inputs. The
contraction factor z of a map is the average number of
inputs to an element with at least one input. Thus the
number of elements contracts by a factor z upon itera-
tion. The fraction of the elements with no inputs is given
in terms of z as 1 − z−1. Arney and Bender [19] report
results for a variety of cases where the random maps are
further constrained by the specification of the contrac-
tion factor z. In particular, they find that the large N
scaling of the number of components nc and their size sc
remains unaltered, given by (1) and (2), while the cycle
and transient lengths now become

`c = `t =

√
πN
8λ

, (4)

with λ depending on z in a known way. This equation is
identical to Eq. (3), with N replaced by N/λ. Thus the
scaling with N is unaltered.

III. REPRESENTATION OF ANNEALING

The discrete maps defined above represent two features
of the cyclic annealing process we wish to treat. They
represent the discreteness of the sequence of states and
the determinism of the transitions between them. Here
we make further restrictions on the maps to enable a
more faithful description of annealing. This description
raises potential confusion between two notions of cycles,
which we now take pains to clarify. In the preceding
section we noted that all finite maps when iterated ter-
minate in limit cycles. These are intrinsic to the map
in question and have nothing to do with cyclic driving.
The physical annealing processes of e.g. a granular pack-
ing discussed in the Introduction are not intrinsic to the
system but are imposed externally through the periodic
driving. We will call the repetitions constituting this pe-
riodic driving “annealing cycles.” Our goal is thus to see
how annealing cycles can be represented by maps and
to compare the behavior of the maps with that of the
annealing simulations. Specifically, we wish to reproduce
the physical phenomenon in which a repetition of anneal-
ing cycles leads to a cyclic repetition of configurations,
as described above.

We have noted that the increasing of the imposed
strain causes a sequence of discrete changes of state—
the glitches defined above. Our mapping scheme gives
us no way to infer the strains at which a glitch occurs.
Still, we may use the glitches as a proxy for the transition
from one strain state of the sample to another. Thus for
any packing in a particular configuration A that is sta-
ble under a given strain, the configuration B obtained by
adiabatically increasing the strain through a single glitch
is a deterministic function of A, leading to a new stable
state that we denote as UA. The ensemble of successors
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of all configurations A under increasing strain defines the
map U. Likewise, if the configuration A is subjected to
a decreasing strain through a single glitch, this results in
a new configuration C and defines an analogous map D.
We write this transition as DA = C.

Conventional annealing is done by monitoring the driv-
ing parameter (e.g. the strain γ) at which a given config-
uration shifts to another as one proceeds through a fixed
range of γ values. Our proxy for this procedure is to re-
peatedly increase the strain through p glitches and then
decrease it through q glitches. The map for a complete
annealing cycle is thus given by DqUp. This map need
not correspond to an explicit range of γ: our driving is
oscillatory but γmax and γmin can change from driving
period to the next. Still, our procedure does prescribe a
form of cyclic annealing. If repeating this process leads
to a limiting cycle of configurations, then that cycle nec-
essarily occurs for some fixed limits γmin and γmax.

For simplicity we shall consider an annealing cycle with
p upward glitches followed by p downward, ones. In terms
of our maps U and D this corresponds to iterating U p
times and composing the result with D applied p times
to form the “annealing cycle map”

Rp = DpUp. (5)

A pattern of glitches that repeats with every anneal-
ing cycle corresponds to a fixed-point of Rp, mapping
the state at the beginning of the annealing cycle into
itself. We shall call this type of response synchronous
response. Larger limit cycles of Rp would correspond to
sub-synchronous response [29], i.e. repetition of the states
after two or more annealing cycles, as observed in some
simulations and experiments [6, 30].

Functional graphs of U and D; partial ordering. The
U map is defined by increasing strain; this constrains
the structure of its functional graph. Indeed, the strain
γ+(A) at which a given state A undergoes an up transi-
tion must be lower than that of its image, i.e. γ+(UA).
Thus successive up transitions, must have strictly in-
creasing γ+ values. Now, it is possible for a given state
to be repeated at some larger shear value. This means
that a state may have more than one external increasing
strain that produces its glitch. Once such a state is en-
countered, the subsequent U maps must follow a cycle.
Thus cycling of the states (or a fixed point) would occur
under increasing strain, without the need to do external
cycling. This simple behavior does not appear to occur
for the small shear amplitudes (less than γ∗) of inter-
est here. Thus for our purpose we may suppose that no
state A can be repeated upon successive U maps [31].
The functional graph must thus be a tree or a group of
disjoint trees or forest. Such acyclic maps are necessarily
partially ordered, since each element has a fixed number
of steps to the root of its tree. Thus there is a fixed order
of precedence in the path from a given state to that root.
The D map is also acyclic, tree-like and partially ordered
by the same reasoning. Since annealing convergence hap-
pens for mild strain cycles far below the yielding strain,

we suppose that the depths of these trees are large com-
pared to the number of glitches p in an annealing cycle.

The partial ordering property constrains U and D in-
dividually but gives no constraining relationship between
U and D. However, in order for the pair of maps (U,D)
to correspond to annealing, it should obey some addi-
tional conditions, which we now address.

Compatibility Every state A in the physical system
has a stable interval of strain bounded by an upper and
a lower strain denoted γ+(A) and γ−(A). The spread
between the γ− of a state and its γ+ is a natural mea-
sure of its stability. If this spread is much narrower than
the range of strains γ imposed during an annealing cycle,
one may say that the states have little stability. One can
gauge the degree of stability by considering an arbitrary
state A that is stable for some strain γ, and then increase
or decrease γ until a glitch occurs. The initial γ necessar-
ily lies between γ−(A) and γ+(A). The necessary change
in γ is then a rough gauge of the spread γ+ − γ− of the
that state, which we denote by δγ(A). In the rich final
states we seek to explain, there are many glitches in the
annealing cycle. Accordingly, we will focus on systems
whose δγ is small on the scale of the annealing range.
Following the above reasoning, we shall suppose δγ to be
comparable to the typical interval of γ between glitches
as one traverses the annealing cycle.

We now consider the successor to A upon increasing
the strain to γ+(A), i.e. UA. It can happen that the
lower strain γ−(UA) is higher than γ−(A). In that case,
the successor under decreasing strain, viz. DA, cannot
be UA, since γ−(DA) must be smaller than γ−(A). We
say that this choice of DA is incompatible with UA.

When the upper and lower strains have a small spread
of strains δγ, this puts a compatibility constraint on the
pair of maps (U,D). Each glitch encountered upon in-
creasing strain from a state A increases the γ+ by an
amount of order δγ. By our reasoning above, it also in-
creases its γ− by a comparable amount. On average then,
the new γ−(UA) lies above γ−(A). Successive upward
glitches from A steadily raise the typical values of both
γ+ and γ−. Thus they steadily diminish the probabil-
ity that the new γ−(UnA) lies below the original γ−(A).
Each successor is thus less likely to be compatible with
A.

Now take the first glitch encountered upon decreasing
the strain from state A and consider DA. The γ− of this
state i.e. γ−(DA) is necessarily below γ−(A). According
to the last paragraph, the U successors of A have limited
likelihood of being compatible with DA. Furthermore,
successors DDA, etc. have progressively less likelihood
of being compatible.

Evidently the requirement of compatibility limits the
D maps that are admissible for a given U map. Clearly,
one cannot decide whether a given D map is compatible
without knowledge of the γ range associated with each
state A. Still as argued above, the compatibility condi-
tion influences the possible D and U successors of a state
A: namely states in the D tail of A are unlikely to be in
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the U tail of the same A. We may eliminate these un-
likely events entirely without knowledge of the γ ranges.
Accordingly, we denote any (U, D) pair where the U and
D tails of every A are disjoint as a tail-compatible pair.
Below we shall consider the effect of tail compatibility
and stronger conditions on the convergence properties of
maps.

Simplifying restrictions For the sake of simplicity, we
will constrain the U and D maps even further. First,
as justified above, we shall suppose that both U and D
are rooted trees. This means that each state inherits a
label providing the number of U steps to the U root.
We denote this label as the U generation of the state.
Each state A has an analogous D generation. A step in
the U direction necessarily decreases the U generation of
A by one. This step need not change its D-generation.
However we shall ensure tail-compatibility of U and D
by restricting the D generation of UA: we require that
under a step of U or D, the two generations may not
both increase or decrease. We call this condition genera-
tion compatibility and note that it suffices to achieve tail
compatibility as defined above. We show an example of
two generation-compatible maps in Fig. 2.

These restrictions, aimed at representing realistic con-
ditions of cyclic annealing, are minimal and they con-
stitute a null-model that captures the irreversible transi-
tions under adiabatic increases and decreases of the driv-
ing parameter. Our aim therefore is to explore numer-
ically (i) whether these restrictions have a potentially
large effect on the scaling behavior when compared with
that of generic random maps, and (ii) how well these re-
strictions reproduce the observed behavior seen in cyclic
annealing experiments.

IV. SAMPLE MAPS

We consider four types of map-pairs (U,D), progress-
ing from least restrictive to most restrictive. The least
restrictive takes U and D to be a pair of simple random
maps in the sense of [17], and we denote this by Rand.
We next add the restriction of compatibility and then im-
pose increasingly stronger additional constraints, leading
in turn to the map-classes, GCRand, GCSRand, and finally
Preisach. We describe their constructions next.
Rand We present this example to show the effect of

composing two maps without further restrictions. Here
U and D are two independently constructed simple ran-
dom maps, each mapping a set of N elements into itself,
as described in Section II. We are thus ignoring all re-
strictions considered in Section III. Let ΩRand be the set
of all (U,D) map-pairs that can be constructed in this
manner. Thus ΩRand has N 2N elements [32].
GCRand These “generation-compatible random”

maps obey the restrictions introduced in Section III.
They are intended to show how much these restrictions
affect the scaling properties seen in Rand. Thus we now
take U and D to be trees. We implement a strong form

of generation compatibility as shown in Fig. 3: Given a
node A with U-generation g, we require that UA and
DA are nodes of generation g− 1 and g+ 1, respectively.
Denoting by L the total number of U-generations, it
follows that a state having U-generation g has simulta-
neously D-generation L− g [33]. We further let N (g, L)
be the number of nodes in generation g. Equating the
corresponding generations of U and D, we require that
N (g, L) = N (L− g, L)[34]. In particular, we will choose

N (g, L) =

(
L
g

)
, (6)

to be the binomial coefficients, so that N = 2L. Clearly,
this strict generation compatibility entails the looser gen-
eration compatibility defined above and the latter in turn
assures the tail compatibility property related to physical
constraints on packings.

Such maps have a natural interpretation in terms of a
specific configuration set, namely the 2L configurations
of L two-state “spins” denoted “up” and “down.” Here
the generation corresponds to the number of down spins.
The U map is one that decreases the number of down
spins by one. The D map is one that increases that
number by one. Evidently, no annealing cycle may have
more than 2L glitches.

The map U of GCRand is then constructed as follows.
We first designate a set of nodes for each generation g
from 0 to some L. The number of nodes assigned to
generation g is the N (g, L) of Eq. (6). Then for each
node A of generation g, we assign for UA a node picked
uniformly and at random among those in generation g−1.
The map D is generated independently and in a similar
manner. We denote by ΩGCRand the set of all pairs (U,D)
of maps that can be constructed in this way. ΩGCRand has∏L
g=1N (g, L)2N (g−1,L) elements.
GCSRand These “generation-compatible single ran-

dom” maps are a subset of ΩGCRand. We think of the
states as spin configurations, and as in GCRand, UA is a
configuration with one more up-spin than A. However,
in GCSRand UA is chosen among configurations that dif-
fer from A by a single spin changed from down to up.
Likewise, DA is the A configuration with one up-spin
changed to a down-spin. Evidently, the number of ele-

ments in ΩGCSRand is given by
∏L
g=1 g

2N (g−1,L).

Preisach The Preisach model [35] is a spin model
of annealing for which the pair of maps (U,D) can be
constructed as well. Here each binary spin i evolves based
on two shear thresholds: a smaller one γ−i and a larger
one γ+

i . We further require γ−i < γ+
j for all i, j [36]. In

this case, only the rank orderings of γ+
i and γ−i suffice

to determine U and D. Moreover, for each of the 2L

configurations, there exists a range of values γ over which
none of the spins flip. Whenever the applied shear γ
increases through γ+

i the corresponding spin i becomes or
remains 1. Thus increasing γ causes a succession of spins
to increase, one at a time. This defines a U map from
any given spin state that proceeds by single spin flips.
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FIG. 3. Functional graphs for GCRand GCSRand and Preisach maps with 24 nodes compared. Nodes shown as red dots are
arranged by generation as in Fig. 2. Spin labels described in the text are shown above each node. Thus each row contains the
same number of 1 spins. Within a row the labels are arranged in numerical order. In all three panels, the “backbone” U edges
leading from the D root to the U root are indicated. a) contrasts GCRand and GCSRand maps on these nodes. For GCRand maps,
each node may map to any node in the row above. For GCSRand the choices are restricted as indicated by the red shading.
Starting from the g = 4 node, all g = 3 options are allowed (since all have a single 1 spin). Given the choice made for this
mapping, the next mapping to the g = 2 row may only be one of the red-shaded nodes in that row. Thus the dashed arrow is
not allowed in GCSRand. b) shows the Preisach map with the same backbone as in a). Here, the ordering of the Preisach γ+’s
is dictated by the backbone. Since this ordering determines the entire U map, the rest of the map, shown in light arrows, is
determined. c) shows a general GCRand map with the same backbone.

Specifically, UA is the state that one obtains from A by
raising the 0 (down) spin having the smallest γ+

i . Upon
decreasing γ, every spin i becomes 0 when γ decreases
through γ−i . A D map is similarly defined. Given any
spin state: DA is the state in which the 1 (up) spin of
A with the largest γ−i is lowered. Both maps proceed by
single spin flips only. Thus the Preisach model obeys the
rules of the GCSRand class, and is a subset of that class.
Denoting by ΩPreisach the set of all Preisach map pairs
(U,D), we see that ΩPreisach has (L!)2 elements.

Note in particular that ΩPreisach ⊂ ΩGCSRand, i.e. every
Preisach necessarily is also a GCSRand map. The con-
verse is not true in general, as follows immediately from
a comparison of the number of elements that these two
sets contain.

Since each class of maps was defined by making re-
strictions on the previous class, the sets Ω are related
by

ΩPreisach ⊂ ΩGCSRand ⊂ ΩGCRand ⊂ ΩRand, (7)

as illustrated in Fig. 3. Moreover, the elements in
one subset constitute an asymptotically vanishingly small
fraction of the elements in the set containing it, as is read-
ily shown. Note that conceptually we can think of these
maps as mean-field models, since they do not contain any
reference to an underlying spatial structure. Instead, the
mapping pattern is largely determined by assigning nodes
to classes, prescribing where members of these classes can
map to and then selecting the map images randomly from
the possible choices.

Now that the U and D maps have been defined for
these different models, we may readily determine the ef-
fect of an annealing cycle Rp = DpUp as described in

Section III. Once an Rp is constructed, we may read-
ily analyze the convergence to limit cycles as defined in
Section III.

This response is especially simple in the Preisach
model, due to its return-point-memory (RPM) feature
[37], which the other classes of maps lack in general. The
“return point” γm of an annealing cycle is the point at
which the direction of shearing reverses. It is thus the
point at which γ is algebraically maximal or minimal. A
well-known route to RPM is via the no-passing property
(NP) [38], which is a dynamic constraint enforcing the
preservation of some partial ordering of the states. NP
implies RPM [1]. Return point memory via NP implies
that repeated iterations with a given return point γm re-
visit the same configuration whenever γ returns to γm
[1]. Thus convergence is always achieved in one anneal-
ing cycle, the first time γm is revisited. Moreover, under
NP the response is synchronous, i.e. `c = 1 [39]. It can
be shown that the dynamics of the Preisach model has
the NP property [40].

The RPM property restricts the hysteresis loop of the
system, i.e. the plot of total spin as a function of strain.
In a system with RPM, these loops are nested: if a large-
amplitude strain cycle is followed by a smaller amplitude
one, the smaller loop lies within the larger one. The
general structure of the functional graphs associated with
map pairs (U,D) when RPM is present, has been worked
out in [39].

Evidently the RPM property requires immediate con-
vergence to a fixed sequence of states from the first an-
nealing cycle onwards once the range of shear γ has been
established. This convergence is less immediate for the
Rp annealing cycles explored below. These Rp cycles do
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FIG. 4. Sample-averaged statistics of Rp = DpUp for the random map classes Rand, GCRand, GCSRand and Preisach (from
left to right column), introduced in Section III. The first and second rows show the average number of components nc and
component sizes sc versus system size N . The color and width of the symbols correspond to the different values of p, as
indicated in the lower left plot. The black dashed lines are the predictions for the simple random map, (1) and (2).

not entail a fixed range of strain until the limiting behav-
ior is reached. Thus the convergence length `t need not
be reached in a single iteration of Rp.

V. NUMERICAL SAMPLING

In this section we present the results of our numerical
sampling from the maps introduced in Section IV. Our
ultimate goal is to compare qualitatively with the anneal-
ing experiments the following quantities: (i) the length
of the transients before limit cycles set in, (ii) the length
of the resulting limit cycles, and (iii) the dependence of
these quantities on the map properties. We explore how
each of the classes of (U,D) map pairs converges to its
limiting behavior under cyclic annealing in the limit of
large system sizes N ≡ 2L and how this convergence
depends on p. We start out with a description of the
sampling. We then briefly summarize our main findings
before presenting these in detail.

For a given N , we examine annealing cycles of the
form Rp = DpUp for amplitudes p = 1—5. We examine
L ranging from 8 to 15 so that N ranges from 256 to

32768, spanning a little more than two decades. For each
size N and type of map construction, we generate RL
random realizations, where RL = 1000 (213−L). We then
identify the different components and calculate nc, `c, `t
and sc, as defined in Section II for each map and perform
averages over the number of realizations.

Let us summarize our main numerical findings next.
As we go from Rand to Preisach by gradually imposing
more restrictions on the map, the resulting convergence
behavior changes. The map class Rand behaves like the
simple iterated random map, whose scaling properties are
given by (1) – (3). In GCRand with generation compabibil-
ity, the number of components is increased. But in both
Rand and GCRand the components structure is dominated
by a few large components whose size scales linearly with
the system size. Most of the nodes are trapped into limit
cycles with long periods with respect to the annealing cy-
cles giving rise to sub-synchronous response i.e. `c > 1,
as defined in Section III. Typical cycle lengths grow as√
N . Adding further restrictions in going from GCRand to

GCSRand, we observe that the component structure where
a few macroscopic components contain most of the state
is broken up now. Consequently, in GCSRand transient
lengths and lengths of limit-cycles are substantially re-
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duced. Sub-synchronous response is still present, but `c
tends to one with decreasing p. Finally, in the Preisach
family of maps, we find `c ≡ 1 and `t ≤ 2. Both of these
are a consequence of the no-passing property, which in
turn implies the RPM property, as discussed above. Thus
the classes of maps we consider here span a broad range
of response. We now turn to a detailed discussion of these
results. We will relate these findings to the experimental
annealing results in the Discussion Section VI.

A. Component size and number

We start out by looking at the component structure
emerging from the different classes of maps. In Fig. 4 we
show our results for the number of components nc and
their sizes sc for the four types of maps considered. We
have plotted the sample averaged statistics of the maps
Rp = DpUp, against system size N for different powers
p. From left to right, each column corresponds to one
of the four random maps: Rand, GCRand, GCSRand and
Preisach, respectively, with the first and second rows
showing the behavior of nc and sc. The color and width of
the plotting symbols represent p and the legend is given in
the inset of the bottom-left plot. The black dashed lines
in each plot are the predictions for the simple random
map, (1) and (2).

We begin with Rand (first column). In this case Rp is
the composition of the pth powers of two random maps.
The component size sc (second row) does not change with
p and agrees very well with the random map prediction
of (2), indicated by the black dashed line. The number
of components nc on the other hand, does depend on p,
decreasing with increasing p. Nevertheless, comparing
with the prediction for the random map (2), the leading
order behavior of (lnN )/2 seems to be preserved and
there appears to be an additive correction whose value
depends on p.

Comparing with the results for GCRand in the second
column, we see that the introduction of generation com-
patibility has modified the logarithmic dependence of the
number of components nc on N . We observe larger val-
ues of nc, but as in the case of Rand, nc remains small
compared to the system sizes N with the powers p con-
sidered.

For GCRand the component size sc does also show a
dependence on p. However, this dependence diminishes
with increasing N . The fact that the number of compo-
nents scales as lnN while sc scales as N , suggests that
the component size distribution is broad [41]. Indeed, the
typical functional graphs contain few components whose
size is comparable to the system size and many others
that are much smaller. This is already apparent in Fig. 1.
In fact, for the simple random map Flajolet and Odlyzko
[17] predict that the expected size of the largest compo-
nent scales with N as smax/N = 0.75782. Similarly, for
Rand we find smax/N ≈ 0.8, with no discernible depen-
dence on p or N , while for GCRand and for the values

considered smax/N approaches 0.2 both for large N and
large p. This is consistent with the sc behavior of GCRand.
This suggests that the introduction of generation com-
patibility in GCRand has reduced the expected size of the
largest component, but its size still scales linearly with
N .

The behavior of nc and sc for GCSRand and Preisach
(third and fourth columns), while similar to each other,
is markedly different from both Rand and GCRand. The
number of components nc is much larger and propor-
tional to N at large values of p (note that y-axes for
both maps are on a logarithmic scale). In both GCSRand
and Preisach, we find that at constant p, nc appears to
increase with N according to a power-law and the scaling
exponent has a weak dependence on p. The correspond-
ing component sizes sc change in a reciprocal manner
and this behavior is similar for GCSRand and Preisach.
We also find that for both GCSRand and Preisach the
ratios smax/N do not remain constant, but instead de-
creases with N for all p. We thus see that while for Rand
and GCRand the functional graphs of Rp are dominated
by a few large components whose size remains compara-
ble to N , the restrictions leading to the maps GCSRand
and Preisach change this picture drastically. The num-
ber of components for both are now comparable to the
system size N and correspondingly, the component size
distribution is less broad.

B. Transient and cycle length

The numerical results for the transient and cycle
lengths, `t and `c are shown in Fig. 5. Recall that for the
simple random map `t = `c, given by (3). For both Rand
and GCRand this seems to be retained, the apparent de-
viations being of the same order as the statistical fluctu-
ations. Likewise, the leading-order

√
N -dependence sur-

vives, but with a p-dependent pre-factor. As one would
expect, for fixed N , `t and `c decrease monotonically
with increasing p.

Cycle length For GCSRand and Preisach the situation
is again different. First of all, `t 6= `c. In fact, for given
N and p we have `t > `c. For Preisach moreover we find
that `c = 1 for all p, exactly. This is a direct consequence
of the RPM property, as discussed at the end of Section
IV. For GCSRand and p = 1 we find that `c is slightly
greater than one. With N fixed, `c grows with increasing
p. Within statistical precision this behavior appears to
be monotonic.

Transient length We consider next the transient
lengths `t. During the transient, the range of γ covered
need not be the same for every cycle, as noted in Section
IV. Thus the RPM property, which is based on a fixed
range of γ, must be used with caution. Remarkably, for
both GCSRand and Preisach, at fixed N and increasing
p, the behavior of `t is non-monotonic. For Preisach `t
increases for p = 1, 2 and thereafter starts to decrease,
while for GCSRand and depending on N the maximum is
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FIG. 5. Sample-averaged statistics of Rp = DpUp for the random map classes Rand, GCRand, GCSRand and Preisach (from left
to right column), introduced in Section III. The average cycle lengths `c (`) and transient lengths `t (a) are plotted against N .
The color and size of the symbols correspond to the different values of p, as indicated in the left-most plot. The black dashed
lines are the predictions for the simple random map, (3), the blue dotted line in GCSRand is a power law with exponent 1/3 and
serves as a guide to the eye.

attained at p = 2 or p = 3. For Preisach the maximum
transient length trivially satisfies `t ≤ L, as is readily
checked [42]. The observed average transient length is
well less than that; `t < 2 for the range of N and p con-
sidered. Similarly, for GCSRand we observe mean tran-
sient lengths less than 7 annealing cycles. Thus for both
GCSRand and Preisach, `t � N , in contrast with Rand
and to a lesser extent GCRand.

The non-monotonic behavior of `t with p observed in
the maps GCSRand and Preisach is worth commenting
on. We consider first the decrease in `t with increasing p
(at fixed N ). Recall that in all the generation-compatible
maps we considered, U acting on a node A reduces its
U-generation g by one, while D increases it by one. Thus
the map Rp = DpUp acting on a node A of generation
g, is effectively a map from the set of nodes of gener-
ation g into itself. Clearly, given a node of generation
g, the probability that it is revisited upon the next an-
nealing cycle depends on the number of nodes N (g, L) in
generation g. In general it will also depend on the num-
ber of nodes in generations g − 1, g − 2, . . . g − p, since
Rp = DpUp moves the node up and down p generations
(for simplicity we are assuming that g + p < L).

It is not hard to see how the contraction factor can
influence the length of a transient. Consider the extreme
case where N (g + p, L) = 1. Then starting with any
node A in generation g, UpA maps it to the single node
of generation g + p. The subsequent map Dp brings it
back to some node B in generation g. Note however,
that at this point a limit cycle of length one has been
established: starting from A and under repeated appli-
cations of Rp, we have A → B → B . . .. In going from
GCRand to GCSRand to Preisach, by imposing further re-
strictions, we effectively make the maps Up and Dp more
contracting. This in turn tends to reduce transient and

cycle length.

non-monotonicity It is harder to understand the non-
monotonicity in p observed for GCSRand and Preisach.
We believe that this arises out of an interplay of p with
N (g, L) as follows: Recall that for both types of maps
the nodes can be interpreted as spin configurations. The
spin configurations of UA and DA differ from those of
A in a single spin flip, those of U2A and D2A in two
flips etc. Thus for small values of p, the probability that
RpA = A will also depend on the number of available
spins to flip, i.e. the generation g that A belongs to.

By our choice of N (g, L) as a binomial factor, (6),
a large number of nodes are assigned to generations
g ∼ L/2. To lowest order the image of nodes in the most
populous generations determines the map statistics. Pick
a node A belonging to generation L/2 and consider its
images under the map Rp = DpUp. For small values of p,
the number of nodes N (L/2+p, L) in generation L/2+p
will be comparable to those in generation L/2 and thus
the length of the transient will be dominated by the prob-
ability that spins flipped in the course of applying Up are
undone by a subsequent application of Dp. For small val-
ues of p this probability is expected to decrease and the
expected transient length therefore increases with p.

On the other hand, when p becomes sufficiently large
so that N (L/2 + p, L) is much smaller than N (L/2, L),
a focusing due to the large contraction factor of the map
Up comes into play. The easiest way to see this is to
consider the equivalent map UpDp that maps the set of
nodes in generation L/2 + p into itself. Since N (L/2 +
p, L) decreases rapidly with increasing p this will also
reduce the expected transients length of this map, with
the extreme case occurring when N (L/2 + p, L) = 1, as
discussed before.

These types of ideas are very similar to those developed
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by Coppersmith in the context of Kauffman-networks [43]
and the problem of determining whether a node is the
image of some other node. We leave a more thorough
analysis of our map classes for future work.

VI. DISCUSSION

Here we address the motivating question of the paper:
Can the convergence to periodic behavior observed in
cyclic annealing of bead packs be captured using generic
discrete maps? Apart from the mere existence of con-
vergence, we also ask whether the convergence behavior
of maps matches that of cyclic annealing [7, 10]. This
convergence behavior includes the behavior of the tran-
sient length `t and the cycle length `c with the shear
amplitude. In bead pack annealing these two lengths
are typically comparable and they grow with increasing
shear amplitude. For systems of a few thousand particles
`t and `c are of order 10 cycles or less, hence `t and `c
show no dramatic dependence on system size, which is
consistent with similar findings [10]. One also observes
sub-synchronous motion when the shear amplitude ap-
proaches the “yielding transition” at which convergence
to cyclic behavior is lost.

Here we investigated this question using arbitrary
maps on anN -object set. TheN objects represent all the
locally stable configurations of a packing—exponential in
the number of particles N . The image of object i under
the map is the new configuration reached upon chang-
ing the shear amplitude until an instability occurs. We
distinguished two maps; one map U dictating the transi-
tions encountered on one direction of shear and the other
(D) dictating transitions under shear in the opposite di-
rection. We restricted these maps in various ways and
observed the effect on their convergence properties. In
these studies the number of mapped states or configura-
tions N was small relative to the physical systems we aim
to describe. Moreover, the size of the annealing cycles
was kept small relative to those observed in physical sys-
tems. The number of elementary transitions or glitches in
an annealing cycle of our maps never exceeded ten, while
the number observed in [7, 10] reached many dozens.

At the most qualitative level, these maps produce con-
vergence to a periodic cycle of states that repeats every
one or more annealing cycles in accord with observations.
The convergence length increases sublinearly with the
number of states N , in

√
N steps or fewer. However,

the convergence showed two major differences from the
packings. First, the convergence was qualitatively un-
physical. It was either much too fast (a single cycle for
Preisach) or much too slow. Second, the convergence
was typically faster for larger-amplitude cycles (larger p),
in contrast to the packing simulations. This is natural
since each increase in p dictates a reduction in the re-
maining active states by a contraction factor z, and thus
larger-amplitude annealing cycles produce a larger net
contraction factor for an annealing cycle; hence, faster

convergence.

The restricted maps that we used, GCRand, GCSRand
improved the agreement with the packings modestly.
They reduced the transient lengths `t. Unlike the pack-
ings, the transient length still grew superlinearly in the
number of degrees of freedom N (∼ logN ), as indicated
by the dashed lines in Fig. 5. As for Preisach, its tran-
sient length was of order unity for all of our runs. When
used with conventional annealing between two limiting
γ’s, its intrinsic transient length is precisely unity, in view
of its return-point memory property. Thus the Preisach
limit excludes the possibility of realistic annealing.

One promising feature of our map approach is the nat-
ural appearance of the sub-synchronous behavior seen in
packing simulations. Indeed, strongly sub-synchronous
behavior covering many annealing cycles with `c >> 1
was the rule rather than the exception in our mappings.
We only observed the desired simple synchronous behav-
ior (`c = 1) when p was large enough to approach satu-
ration of the U and D trees.

Much of the discrepancy between the map picture and
the packing annealing stems from identifying N as the
(exponentially large) number of configurations in the sys-
tem. Using this basis for choosing N clearly gives tran-
sient lengths that are enormously longer than is seen in
the packings. If the mapping picture is to have any re-
semblance to the packing behavior, the effective num-
ber of accessible configurations must be qualitatively less
than the total number of configurations. Since the ob-
served convergence rates seem roughly independent of
system size, the map picture can only be applicable if
the effective N is also roughly independent of the size of
the system.

The effective N of a map need not be comparable to
the number of configurations. Certainly if a map happens
to map small subsets of the configurations into them-
selves, then its effective N is the size of these subsets.
More generally, any map that tends to revisit states re-
cently visited is more likely to repeat itself after a small
number of iterations. The tendency of a map to revisit
recently visited states can be thought of as a form of
“locality”. If the number of accessible states grows with
the number of mappings performed so that the maps be-
come increasingly non-local, one then expects effective
N to grow as well. Thus, expanding the annealing cy-
cle (increasing the number of iterations 2p in a cycle)
would tend to slow the convergence to a periodic be-
havior, as observed in the packings. The transition to
non-convergence as the strain amplitude reaches γ∗ can
be understood within the map picture as an increase of
non-locality thereby causing an increase in the effective
N of the map.

The maps we devised did restrict the possible set of
states reachable under iteration. For example in GCRand
DpUp maps from a given generation g to itself. This re-
striction limits the accessible states to a fraction of N ,
but not to a number independent of N . Thus it cannot
give the fast convergence rates observed. But other re-
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strictions can provide much smaller effective N . If, for
example, there exists a measure of distance between the
states, then one can restrict the maps to be local with
respect to this distance. Such a restriction is not un-
physical, since glitches are often observed to be localized
disturbances in the sample.

VII. CONCLUSION

The picture introduced above aims to lay a common
descriptive basis for explaining the remarkable conver-
gence to periodic motion seen in many irreversibly an-
nealed systems. As we have seen, one can depict the
annealing process via our abstract map language and
compare the annealing behavior observed with that of
realistic systems. The maps are a useful way to capture
the determinism of the annealing process. They clarify
the inevitability of the convergence to a cyclic behav-
ior whenever the iteration of the map leads to a repeti-
tion. Understandably, the minimal maps we used do not
achieve realistic convergence behavior. This shows that
the realistic convergence requires further physical restric-

tions, like the spatial locality mentioned above. Explor-
ing such restrictions is a promising path to gain insight
about how synchronous and sub-synchronous behavior
arise. Conversely, one may use the packing simulations
to gain information about the actual maps governing an-
nealing for both geometric packing models and explicit
discrete-state models[1]. We look forward to exploring
these avenues in future work.
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[40] M. M. Terzi and M. Mungan, “The structure of state

transition graphs of the Preisach model,” (2019), in
preparation.

[41] Recall that the averages for sc, `t and `c are averages
weighted by the component size. Thus sc is the second
moment of the component size distribution.

[42] In fact, one can actually show that max `t ≤ int(L/2),
where int(x) is the greatest integer less or equal to x,
and the maximum is over all initial states and random
realizations of the pair of maps.

[43] S. N. Coppersmith, Phys. Rev. E 75, 051108 (2007).

http://dx.doi.org/10.1007/BF01349418
http://dx.doi.org/10.1098/rspa.1983.0035
http://dx.doi.org/10.1103/PhysRevLett.68.670
http://dx.doi.org/10.1103/PhysRevE.75.051108

	Cyclic annealing as an iterated random map
	Abstract
	Introduction
	Iterated discrete maps
	representation of annealing
	Sample maps
	numerical sampling
	Component size and number
	Transient and cycle length

	Discussion
	Conclusion
	References


