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The decomposition kinetics of a solid-solution into separate phases are analyzed with an equation
of motion initially developed to account for dissipative processes in quantum systems. This equation
and the steepest-entropy-ascent quantum thermodynamic framework of which it is a part make it
possible to track kinetic processes in systems in non-equilibrium, while retaining the framework of
classical equilibrium thermodynamics. The general equation of motion is particularized for the case
of the decomposition of a binary alloy, and a solution model is used to build an approximate energy
eigenstructure, or pseudo-eigenstructure, for the alloy system. This equation is then solved with
the pseudo-eigenstructure to obtain a unique reaction path and the decomposition kinetics of the
alloy. For a hypothetical solid-solution with a miscibility gap at low temperatures, the conditions
under which this framework predicts a continuous transformation path (spinodal decomposition) or
a discontinuous one (nucleation and growth) are demonstrated.

I. INTRODUCTION

J. W. Gibbs envisioned uniform solutions decomposing
(or phase separating) through two kinds of kinetic pro-
cesses [1, 2]. In alloy systems, these processes are some-
times classified as continuous and discontinuous transfor-
mations. While continuous transformations begin with
small fluctuations that extend over relatively large spa-
tial regions and take place simultaneously throughout the
volume of the system, discontinuous transformations ini-
tiate with localized concentration fluctuations that are
comparatively large in amplitude but small in spatial ex-
tent [3]. From the perspective of the thermodynamic free-
energy [2, 3], continuous transformations initiate spon-
taneously from an unstable solution when an infinitesi-
mal variation decreases the free-energy. This behavior
is associated with the spinodal decomposition mecha-
nism. Discontinuous transformations develop in an ini-
tially metastable solution through a series of statistical
fluctuations that eventually overcome a free-energy bar-
rier. They are characteristic of nucleation and growth
mechanisms. These thermodynamic concepts are useful
for interpreting alloy decomposition even though func-
tions like temperature and free-energy are strictly speak-
ing defined only at equilibrium and must be extrapolated
to non-equilibrium states to describe kinetic phenomena.

Although the unit process underlying the two mecha-
nisms are the same (atomic migration by diffusion), the
driving forces are quite different, and this leads to very
different kinetic characteristics. Models for decomposi-
tion processes like these generally start by assuming that
a particular step of the process is rate-limiting, and then
building an appropriate mathematical description of the
rate-limiting step. An inherent difficulty with this ap-
proach is the need to know the underlying reaction mech-
anism in order to build an accurate kinetic model. For

example, if classical nucleation is the operative process
responsible for phase decomposition, the kinetics are de-
scribed in terms of the distribution of cluster sizes and
their rates of growth and shrinkage [4]. On the other
hand, if spinodal decomposition is operative, the decom-
position rate is better described by a generalized diffusion
equation (e.g., reference [2]). For this reason, microstruc-
tural modeling starts by assuming a decomposition mech-
anism rather than determining it from the physical con-
ditions.

Following Gibbs [1], the decomposition mechanism
should be selected at the very beginning of the decom-
position process when changes take place through the
collective behavior of a relatively small number of fluc-
tuations. Not surprisingly, kinetic Monte Carlo meth-
ods, which are based on statistical fluctuations and do
not assume a rate-limiting step, are successful describing
multiple processes [5, 6]. Quantum mechanics is widely
used to interpret discrete behavior in small systems, so
it should be reasonable to apply the tools of quantum
mechanics to the selection of transformation mechanisms
in bulk systems.

In this regard, the steepest-entropy-ascent quan-
tum thermodynamics (SEAQT) framework shows great
promise for predicting both the operative decomposi-
tion mechanism as well as the reaction kinetics. It is a
novel modeling approach that is more scalable in time
than molecular dynamics, computationally more com-
pact than kinetic Monte Carlo, and more appropriate
to far-from-equilibrium applications than the phase field
model [7]. The SEAQT framework is a non-equilibrium
thermodynamic-ensemble approach that was originally
formulated to address a number of physical inconsisten-
cies between quantum mechanics and thermodynamics
[8–12]. It describes the relaxation process of a system
from an initial non-equilibrium state to stable equilib-
rium following the direction of steepest entropy ascent,
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i.e., maximum entropy production. To apply the frame-
work to the phase decomposition of alloys, the system
is described differently from conventional microstruc-
tural models. Rather than describing the system in
terms of position-dependent functions like the free-energy
that evolve with time, the SEAQT approach employs a
thermodynamic-ensemble and a density operator formal-
ism (analogous to a phase-space probability measure in
statistical mechanics) that tracks the decomposition pro-
cess in terms of a single time-dependent variable.

While perhaps physically nonintuitive, reformulating
the problem in this way has important advantages [7] over
approaches based on classical mechanics (e.g., molecular
dynamics) and microstructual models (e.g., phase field
models). The SEAQT framework uses extensive proper-
ties – energy and entropy – as fundamental state vari-
ables rather than intensive quantities like temperature
and chemical potential, and it does not invoke a local
equilibrium or near-equilibrium assumption. Both the
extensive state variables and the lack of a dependence
on equilibrium make the SEAQT framework useful for
exploring systems far-from-equilibrium, at high and low
temperatures, and at any length or time scale [7, 13]. In
addition, the SEAQT equation of motion that determines
the time-evolution of a system consists of a set of ordi-
nary first-order differential equations that can be solved
relatively easily and efficiently.

States in the SEAQT framework are described by occu-
pation probabilities of a set of possible energy eigenlevels,
also called the energy eigenstructure [14], as depicted in
Fig. 1. For example, an energy eigenstructure for a A–
B binary solid-solution of a specified size is constructed
from the energies corresponding to all the possible ar-
rangements of A-type and B-type atoms. The entropy of
the system is given by a measure of the degree of energy
load sharing among available energy eigenlevels, and the
evolution of the system from an initial, non-equilibrium
state at time t = 0 to a final, stable equilibrium state
at time t = ∞ is found by solving the SEAQT equa-
tion of motion (indicated by the large schematic arrow in
Fig. 1). By assuming the system’s evolution of state fol-
lows the path of steepest entropy ascent (maximum rate
of entropy production), the equation of motion yields a
unique kinetic path through state space from the initial
state to the final equilibrium state predicted by the sec-
ond law of thermodynamics.

To use the SEAQT framework, the energy eigenstruc-
ture must be determined for the system in question. Al-
though the eigenstructure for a gas phase can be con-
structed relatively easily (e.g., by assuming ideal gas be-
havior), many-body interactions among particles make
the eigenstructure highly complex for condensed phases.
There are two aspects to this complexity. First, deter-
mining the available energy eigenlevels from appropri-
ate quantum models may be computationally intractable,
and second, the number of energy eigenlevels is effec-
tively infinite. Both of these problems are addressed in
recent work modeling the thermal expansion of silver [15].
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FIG. 1. A schematic explanation of the SEAQT approach:
(a) An energy landscape, or eigenstructure, of an alloy with
variable composition is constructed from a solution model.
The energy of the system is displayed as a discrete function
of alloy concentration. (b) The initial state of the system at
t = 0 is expressed as occupation probabilities for each possible
configuration (the distribution of closed circles superimposed
on the eigenstructure). The time-evolution of the system is
determined by solving the SEAQT equation of motion (rep-
resented by the large arrow) to find the path from the initial
state to that of stable equilibrium (c) at t =∞.

Thus, instead of a quantum eigenstructure, a “quantum-
inspired” eigenstructure is built from a reduced-order
model (i.e., a solid-state model), and an infinite energy-
level eigenstructure is replaced with a discretized, finite-
level “pseudo-eigenstructure” with the use of the den-
sity of states method developed in reference [14]. How-
ever, the basic principle underlying the development of
the model for the kinematics, kinetics, and dynamics is
the same even though quantum effects are not present.
This is because, the SEAQT framework, which origi-
nated at the quantum level of description, has in sub-
sequent work been extended to apply from a practical
standpoint across all spatial and temporal scales so that
even if quantum effects are not important for a particu-
lar application as is the case here, the energy eigenstruc-
ture is patterned after the eigenstructure that would be
developed on a quantum basis. Furthermore, our ulti-
mate goal is to explore the effects on phase decomposi-
tion of other phenomena such as phonons, magnons, and
electrons for which a quantum formulation would be re-
quired. The SEAQT framework naturally lends itself to
including these.
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In this contribution, the SEAQT theoretical framework
with the pseudo-eigenstructure is applied to phase de-
compositions in binary solid-solutions to determine the
kinetic pathways (i.e., the reaction kinetics and the op-
erative decomposition mechanism). This paper is or-
ganized as follows. First, the SEAQT equation of mo-
tion is modified for kinetic calculations in binary al-
loy systems with fixed composition in Sec. II A, and a
pseudo-eigenstructure for a solid-solution is constructed
using a mean-field approximation (or a solution model)
in Sec. II B. In Sec. II C, calculation conditions and how
to prepare initial states are described. In Sec. III, the cal-
culated time-evolution of the decomposition process from
arbitrary initial states is shown and discussed focusing on
the continuous and discontinuous transformation behav-
iors (Sec. III A) in which a limiting curve for a continuous
transformation and a real time-dependence of the decom-
position process are also explored (Secs. III B and III C,
respectively). At the end, the study of the continuous
and discontinuous phase decomposition behaviors in an
alloy system using the SEAQT model is summarized in
Sec. IV.

II. THEORY

A. SEAQT equation of motion

The equation of motion in the SEAQT modeling has
been developed to account for dissipative processes in
quantum systems. The dissipative contribution is incor-
porated in the Schrödinger equation as the irreversible
term and the SEAQT equation of motion takes a form
[16–18]:

dρ̂

dt
=

1

i~
[ρ̂, Ĥ] +

1

τ(ρ̂)
D̂(ρ̂) , (1)

where ρ̂ is the density operator, t the time, ~ the re-
duced Planck constant, Ĥ the Hamiltonian operator, τ
the relaxation time (which represents the rate at which
the states of a system evolve in Hilbert space along the
unique kinetic path determined by Eq. (1)), and D̂ the
dissipation operator. The left-hand side of the equation
and the first term on the right corresponds to the time-
dependent von Neumann (or Schrödinger) equation. The
second term on the right is a dissipation term, the ir-
reversible contribution that accounts for relaxation pro-
cesses in the system. When ρ̂ is diagonal in the Hamil-
tonian eigenvector basis, ρ̂ and Ĥ commute and the von
Neumann term in the equation of motion disappears so
that Eq. (1) simplifies (for the case of a system in which
the identity and Hamiltonian operators are the only gen-

erators of the motion) to [14, 17, 18]

dpj
dt∗

=

∣∣∣∣∣∣
sjpj pj εjpj
〈s〉 1 〈e〉
〈es〉 〈e〉 〈e2〉

∣∣∣∣∣∣∣∣∣∣ 1 〈e〉
〈e〉 〈e2〉

∣∣∣∣ , (2)

where

〈s〉 =
∑
i

sipi , 〈e〉 =
∑
i

εipi ,

〈e2〉 =
∑
i

ε2i pi , 〈es〉 =
∑
i

εisipi ,

and the pj (~p = [p1, p2, · · · , pj ]) are the diagonal terms
of ρ̂, each of which represents the occupation probability
in the jth energy eigenlevel εj ; the t∗ is the dimensionless

time (t∗ =
∫ t

0
1

τ(~p(t′))dt
′); the sj ≡ −ln

pj
gj

is the entropy;

the gj are the degeneracies of the energy eigenlevel; and
〈·〉 is the expectation value of the property. Note that the
von Neumann formula for entropy is used here. Provided
the density operator is based on a homogeneous ensem-
ble, this formula satisfies all the characteristics of entropy
required by thermodynamics without making entropy a
statistical property of the ensemble [7, 19, 20]. It is as-
sumed here that ρ̂ is diagonal in the eigenvector basis,
which is the case for many classical systems or when no
quantum correlations between particles are present [21–
23].

The SEAQT equation of motion, Eq. (2), is derived
via a constrained gradient in Hilbert space that causes
the system to follow the direction of steepest entropy
ascent when the energy and occupation probabilities are
conserved. When the number of particles is conserved as
an additional constraint, the identity, Hamiltonian, and
particle number operators become the generators of the
motion. The equation of motion, then, becomes [24]

dpj
dt∗

=

∣∣∣∣∣∣∣
sjpj pj Njpj εjpj
〈s〉 1 〈N〉 〈e〉
〈Ns〉 〈N〉 〈N2〉 〈eN〉
〈es〉 〈e〉 〈eN〉 〈e2〉

∣∣∣∣∣∣∣∣∣∣∣∣∣
1 〈N〉 〈e〉
〈N〉 〈N2〉 〈eN〉
〈e〉 〈eN〉 〈e2〉

∣∣∣∣∣∣
, (3)

where

〈N〉 =
∑
i

Nipi , 〈N2〉 =
∑
i

N2
i pi ,

〈eN〉 =
∑
i

εiNipi , 〈Ns〉 =
∑
i

Nisipi .

Here the Nj are the number of particles in the jth en-
ergy eigenlevel. The equation of motion can be modified
further by allowing an exchange of heat between the sys-
tem and a heat reservoir. This can be done by viewing
them as subsystems of an overall composite system (see
references [7, 14, 21, 24]) for which the generators of the
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motion are the identity and particle number operators
for each subsystem and the Hamiltonian operator for the
composite system. This combined with the concept of
hypoequilibrium states [14, 21, 24] transforms Eq. (3) for
the original system into the following form:

dpj
dt∗

= pj
[
(sj − 〈s〉) + (Nj − 〈N〉) γR − (εj − 〈e〉)βR

]
,

(4)
where

γR ≡ − (〈Ns〉 − 〈N〉〈s〉)− (〈eN〉 − 〈e〉〈N〉)βR

〈N2〉 − 〈N〉〈N〉
,

and βR is the inverse of the product of Boltzmann’s
constant and the temperature of the reservoir TR, i.e.,
βR = 1/kBTR.

For many physical processes occurring in an alloy,
the concentrations of the components remain constant.
This can be described for a binary A–B alloy by re-
placing Nj with NB,j (or NA,j) and fixing the total
number of particles in each energy eigenlevel, NT,j , i.e.,
NT,j = NA,j +NB,j = constant (≡ NT ) where NA,j and
NB,j are, respectively, the number of A-type and B-type
atoms in the jth energy eigenlevel. These notations to-
gether with Eqs. (3) and (4) are applicable to a binary
alloy of fixed composition. Note that whereas the com-
position of an alloy (or the expectation value of B atoms,
〈NB〉) can be mathematically fixed using Eq. (3) or (4),
the total number of particles, NT , is assumed constant
by arbitrarily choosing a fixed value. The specification
of NT is given in Sec. II B.

B. Pseudo-eigenstructure

Configurational energy in a binary alloy system is given
by [25]

E =
1

2

∑
r,r′

W (r− r′)n(r)n(r′) , (5)

where W (r− r′) is a pairwise interatomic interaction en-
ergy between two atoms at lattice sites r and r′. The fac-
tors n(r) and n(r′) represent the distribution functions
at these lattice points. The pseudo-eigenstructure in an
alloy system is constructed by employing a mean-field ap-
proximation that replaces many-body interactions among
particles with an average internal field experienced by
each atom [26]. Using the simplest mean-field approxi-
mation, where short-range correlations between different
atomic species are ignored, the n(r) and n(r′) can be ex-
pressed in terms of the concentration of B-type atoms, c.
When the reference energy is set to the segregation limit
(a line connecting the energies of two systems composed
of pure A-type and pure B-type atoms), Eq. (5) becomes

E(c) =
1

2
NT c(1− c)V (0) , (6)

where NT is the number of atoms in the system and V (0)
is a parameter incorporating all the interaction energies.
For a face-centered cubic crystal, V (0) is given by [25]

V (0) = 12W1 + 6W2 + 24W3 + 12W4 + · · · , (7)

where Wn is the nth nearest-neighbor effective pair inter-
action energy, which is related to the component-specific

nth-neighbor pair interaction energies, e
(n)
ij (i, j = A or

B), by

Wn = 2e
(n)
AB − e

(n)
AA − e

(n)
BB . (8)

The parameter V (0) is positive when the interactions
among A and B species are such that a solid-solution of
A and B prefers to decompose into two different solid-
solutions. The degeneracy of each energy in Eq. (6) is
given by the binomial coefficient,

g(c) =
NT !

NA! ·NB !
=

NT !

(NT (1− c))! · (NT c)!
, (9)

where NA and NB are the number of A-type and B-
type atoms, respectively. Here, using the approximation
for a factorial [27], x! ≈ (2x + 1

3π)xxe−x, Eq. (9) can
be treated as a continuous function for large NT . The
energy eigenlevels, Ej , and the degeneracy, gj , are de-
termined from Eqs. (6) and (9) by replacing c with cj
(here the energy eigenlevels are denoted by Ej instead of
εj because the Ej ’s are extensive quantities). For a bulk
sample composed of a vast number of particles, any value
of cj between zero and unity is possible and the number of
states is effectively infinite. To cope with this intractable
number of accessible energy eigenlevels, the density of
states method developed by Li and von Spakovsky within
the SEAQT framework [14] is used, where similar en-
ergy eigenlevels are combined into discrete bins and the
computational burden is reduced substantially without
affecting the accuracy of the result. With this method,
the energy eigenlevels, degeneracies, and concentration
of B-type atoms become

Ej =
1

gj

∫ c̄j+1

c̄j

g(c)E(c) dc , (10)

gj =

∫ c̄j+1

c̄j

g(c) dc , (11)

and

cj =
1

gj

∫ c̄j+1

c̄j

g(c)c dc , (12)

where c̄j is specified by the number of intervals, R, as
c̄j = j/R with j an integer (j = 0, 1, 2, ... R). The
number of intervals, R, is determined by ensuring the
following condition is satisfied [7]:

|Ej±1 − Ej |
NT

� kBT . (13)
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The size of the system, specified via the number of
atoms, NT , establishes the energy and the degeneracy
through Eqs. (6) and (9), respectively. In order to cap-
ture quantum effects, the system size should not be so
large that it behaves classically but large enough to
include important interactions among the constituent
atoms — say 5 to 20 times the interatomic distance for
a metallic solid-solution. For most of the subsequent cal-
culations, NT = 104 was chosen for the system size al-
though a more detailed analysis than that conducted here
could be carried out to determine the most appropriate
system size, but that is beyond the present scope.

The system being considered here is analogous to what
Gibbs called a “homogenous part of the given mass” in
his seminal paper on the equilibrium of heterogeneous
substances [1]. His homogeneous part is spatially uni-
form in chemical composition and physical state, and it
is a subsystem of the larger isolated system he consid-
ers at equilbrium. While a uniform system may seem
at odds with the concept of fluctuations, it is entirely
consistent with the way a system is represented in the
SEAQT framework. Fluctuations, or changes in composi-
tion or physical state, in the SEAQT system are reflected
by multimode probability distributions among the energy
eigenlevels, not by spatial variations in a property. Gibbs
demonstrated that equilibrium is reached when the inten-
sive property values (temperature, pressure, and chem-
ical potential) of each homogeneous part are identical.
The SEAQT framework is used here to identify the path
by which a part reaches this equilibrium.

C. Specification of initial states

The evolution of a binary solid-solution that is
quenched and annealed within a miscibility gap is con-
sidered in this work. The phase diagram for a binary
alloy with a high-temperature solid-solution and a misci-
bility gap at lower temperatures is shown in Fig. 2. The
pseudo-eigenstructure of such an alloy corresponds to a
system with a positive V (0) in Eq. (6).

The initial disordered solid-solution (S.S.) is annealed
at a high temperature, TH (= T0), and then quenched to
a lower temperature, TL (= TR), and annealed at that
temperature. The initial state can be prepared using the
(semi-) [28] grand canonical distribution:

p0
j =

gje
−β0(Ej+µANA,j+µBNB,j)

Ξ
, (14)

where β0 = 1/kBT0, µA and µB are, respectively, the
chemical potentials of A atoms and B atoms, and Ξ is
the grand partition function, which is given by

Ξ ≡
∑
i

gie
−β0(Ei+µANA,i+µBNB,i) . (15)

The target alloy composition is obtained by adjusting the
chemical potentials. Note that one needs to adjust the

chemical potentials just for the initial state since once the
initial state is prepared using Eq. (14), the alloy compo-
sition is fixed and conserved in the kinetic calculations
via Eq. (4).

Although not a necessary assumption, preparing the
initial state of the alloy system with Eq. (14) alone means
that its initial state is in equilibrium at the initial, high
temperature, T0. On the other hand, the initial state of
the composite system (i.e., alloy system plus reservoir)
is that of non-equilibrium since the equilibrium state of
the reservoir is not that of the alloy system. This non-
equilibrium state is in effect what Li and von Spakovsky
[14, 24] call a 2nd-order hypoequilibrium state. The con-
cept of hypoequilibrium provides a simple relaxation pat-
tern for a system by properly dividing the system into
a number of subsystems (or subspaces). The steepest
entropy ascent principle under hypoequilibrium ensures
that each subsystem moves along its own manifold of dif-
ferent equilibrium states until the states of both subsys-
tems (alloy system plus reservoir) arrive at a final equi-
librium state of the composite system in which the two
subsystems are in mutual stable equilibrium with each
other. In order to explore the effects on state evolu-
tion of not assuming that the alloy subsystem is initially
in equilibrium, concentration fluctuations are introduced
into the initial state to drive it away from equilibrium.
This is done by using an occupation probability distribu-
tion corresponding to a smaller number of particles than
are actually present in the system, N0

T < NT . A smaller
number of particles reduces the degeneracies of some of
the energy eigenlevels, gj , and generates an initial occu-
pation probability distribution calculated from Eq. (14)
that is broader than the equilibrium distribution. The
effects of the number of particles on initial states and
kinetic paths are discussed in Sec. III B.

III. RESULTS AND DISCUSSION

A. Continuous and discontinuous transformations

The SEAQT equation of motion, Eq. (4), is solved with
Eqs. (10) – (12) to track the decomposition process in
two alloys, A–40.0 at.% B and A–30.0 at.% B, quenched
from T ∗0 = kBT0

V (0) = 0.30 to T ∗0 = 0.20. Solving the equa-

tion of motion gives the occupancy probabilities of the
atomic configurations (distinguished by the concentra-
tion of B-type atoms, c) as a function of time from the
initial state to the final stable equilibrium state.

Figure 3 (a) shows the occupancy probabilities as a
function of c at five different times in a A–40.0 at.% B al-
loy. From the phase diagram in Fig. 2, quenching this al-
loy from T ∗0 = 0.30 to T ∗R = 0.20 falls within the spinodal
limits and should thus lead to a continuous transforma-
tion. The dotted curve in Fig. 3 (a) represents the initial
occupancy probability distribution at the high tempera-
ture, T ∗0 = 0.30. As time increases, the occupancy proba-
bility evolves from the dashed distribution into two peaks
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FIG. 2. A phase diagram with a positive V (0). The solid
line is the solvus line, inside of which is a two-phase region of
different solid-solutions. The spinodal curve determined from
the free-energy [25] is shown as the broken line. The vertical

axis is a normalized temperature, T ∗ = kBT
V (0)

.

(one at a dilute concentration of B and the other at a rich
concentration) that eventually at t∗ = 3.0 correspond to
the compositions of the two equilibrium solid-solutions
at the temperature of the reservoir, T ∗R = 0.20. At early
times, the probability distribution between the two peaks
of the evolving phases is non-zero — this is a signature
of a continuous transformation. There is a finite proba-
bility of finding any concentration between those of the
two developing phases.

A contrasting example is shown in Fig. 3 (b), which
shows the equivalent heat treatment for a A–30.0 at.% B
alloy. In this comparatively dilute alloy, the same ther-
mal cycle places the alloy very close to the spinodal limit
at the annealing (or reservoir) temperature. In this case,
the initial probability distribution in Fig. 3 (b) shifts to
more dilute concentrations with time, and a new phase
suddenly appears at high concentrations. The occupa-
tion probabilities of atomic configurations between the
dilute and high concentrations are zero — this behavior
is a signature of a discontinuous transformation (a nu-
cleation and growth mechanism). The B-rich phase with
concentrations in the range 0.65 < c < 0.8 appears from
the initial distribution, but there are no occupied proba-
bilities between c = 0.4 and c = 0.65.

Considering the influence of alloy composition, as the
B concentration in the alloy increases from c = 0.3
(Fig. 3 (b)) to c = 0.4 (Fig. 3 (a)), the transformation
mechanism switches from discontinuous to continuous.
This transition is consistent with conventional wisdom in
that the driving force for transformation increases with
c at the annealing temperature and has the effect of low-
ering the barrier to nucleation. Although not shown, it
also was confirmed that the kinetic path is sensitive in
a similar fashion to the annealing temperature: lower-
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FIG. 3. The calculated phase separation processes in (a) A–
40.0 at.% B and (b) A–30.0 at.% B alloy systems at T ∗R = 0.20
using T ∗0 = 0.30, NT = 104, and N0

T = 103.

ing the annealing temperature increases the driving force
for decomposition and as a result shifts the mechanism
from a discontinuous transformation path at high anneal-
ing temperatures to a continuous transformation path at
lower annealing temperatures.

It is worth noting that the equation of motion is a sys-
tem of R first-order, ordinary differential equations (R
is the number of energy eigenlevels). From a computa-
tional standpoint, these are relatively easy to solve. For
the system considered here (R = 500 and NT = 104), the
kinetic path from the initial state to stable equilibrium
can be calculated in a few minutes on a laptop computer
with 8 GB of memory. This is an added advantage of
the SEAQT approach when compared to other methods
(e.g., kinetic Monte Carlo), where extensive information
on particles and possible paths is required at each time-
step.
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FIG. 4. The calculated initial probability distributions in a
A–50.0 at.% B alloy system at T ∗0 = 0.30 using Eq. (14) with
N0

T = 1000, 500, 200, and 100. Here, an occupation probabil-
ity calculated using N0

T = NT = 104 is shown together as a
dotted line.

B. Estimated limiting curves for continuous
transformation

Of course, being an initial value problem, the kinetic
path is sensitive to the initial probability distribution.
When an initial probability distribution, p0

j , is prepared

using a smaller N0
T (which corresponds to an initial state

further from stable equilibrium at the initial tempera-
ture, T ∗0 ), the transformation path changes. The effect
of system size can be seen from Fig. 4, where the initial
probability distributions for systems with sizes, N0

T =
1000, 500, 200, and 100, are calculated with Eq. (14) for
an A–50.0 at.% B alloy at T ∗0 = 0.30. The larger the N0

T
used to prepare the initial state, the sharper the peak
in the occupancy probability distribution. In the limit
of large N0

T , the distribution is a delta function (at the
most probable state of statistical mechanics).

The kinetic pathways the system follows from the ini-
tial probability distributions of Fig. 4 are shown in Fig. 5,
where the kinetic path calculated with N0

T = NT = 104

is shown as a dotted line. As seen from the enlarged
inset in the figure, the deviation from the curve for
N0
T = NT = 104 becomes more significant as the ini-

tial fluctuation becomes larger. Note that although the
initial states of each kinetic path in the energy–entropy
diagram (Fig. 5) are different, the final states of the paths
correspond to the same stable equilibrium state since in
each case the final state is one in which the alloy system
is in mutual stable equilibrium with the same reservoir.

The fact that the initial state can affect the kinetic
path has an interesting implication when it comes to
representing the spinodal limit. When a phase decom-
position process is continuous (spinodal in the present
example), there is a non-zero occupation probability be-

FIG. 5. The kinetic pathways of the phase separation pro-
cess calculated with the SEAQT model using the initial prob-
ability distributions shown in Fig. 4 with NT = 104 (A–
50.0 at.% B alloy with T ∗0 = 0.30 and T ∗R = 0.20). The initial
states of each path are indicated by arrows and the final states
are shown by an open circle. The specific energy and entropy
are normalized and denoted as e∗ and s∗, respectively.

tween the concentrations associated with the two stable
concentration peaks during decomposition. On the other
hand, when the transformation is discontinuous, there is
a concentration range over which the occupation proba-
bilities are zero when the second phase (precipitate) ap-
pears. Therefore, a spinodal curve can be determined by
checking if occupation probabilities are zero or not in the
concentration range between two peaks during decom-
position process. In a numerical calculation, however,
the probabilities have finite non-zero values even when
those values are close to zero (e.g., 10−20). Practically
speaking, we can select an arbitrary value, say, 10−5, as
a cutoff below which the occupation probability is taken
to be effectively zero to distinguish discontinuous occu-
pation probabilities from continuous (non-zero) values.
That is, when the second phase emerges and all proba-
bilities between two peaks in the occupation probabilities
are below 10−5, the transformation is taken to be discon-
tinuous. Limiting curves for continuous transformation
behavior calculated from this criterion are shown in Fig. 6
for different initial probability distributions. These limit-
ing curves clearly show that the appearance of continuous
transformation behavior is sensitive to the initial state of
the alloy system. Also, the limiting curves for continuous
transformation do not coincide with the dashed spinodal
limit determined from a free-energy analysis (the second
derivative of the free-energy versus c curve). This in-
dicates that the onset of a continuous transformation is
not simply a matter of the thermodynamic driving force
at the transformation temperature but as well depends
upon the concentration fluctuations of the initial state.
Note that the criteria used for the distinction between
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FIG. 6. The estimated limiting curves for continuous transfor-
mation using T ∗0 = 0.30 with the different initial probability
distributions, N0

T = 1000, 500, 200, and 100. When T ∗R is
inside/outside the spinodal curve, the transformation shows
a continuous/discontinuous behavior. The solvus line (solid
black line) and the classical spinodal curve (broken black line),
which is determined from the free-energy analysis, are also
shown together (Fig. 2).

continuous and discontinuous transformations, i.e., 10−5

here, should depend on the number of intervals in the
concentration of B atoms, R (see Sec. II B). When a
larger value of R is used, the criteria should be changed
to a smaller value (here R = 500 is used for the calcula-
tions).

A limiting curve for continuous transformation deter-
mined from the SEAQT model differs from the so-called
“classical” spinodal curve determined from a free-energy
analysis on several accounts. First, whereas the classi-
cal spinodal curve arises from infinitesimal concentration
fluctuations, the continuous transformation boundaries
determined from the SEAQT framework stem from fi-
nite fluctuations. Although the classical spinodal curve is
qualitatively useful, it is well known that the initial state
of an alloy (which can include external stresses, grain
boundaries, and defects like dislocations) affects the ac-
tual decomposition process. For this reason alone, the
theoretical spinodal limit may be difficult to observe ex-
perimentally. Since the limiting curves determined with
the SEAQT model represent the boundaries for contin-
uous decomposition from starting fluctuations of finite
extent and amplitude, they reflect the starting state for
decomposition more realistically. Second, the strength of
the free-energy method (i.e., the Cahn-Hilliard theory) is
its elegance, but it assumes a type of local equilibrium to
calculate the second-order derivatives of the free energy
with respect to concentration in a non-equilibrium regime
(see, for example, reference [29]). This assumption is not
needed in the SEAQT model. Because it is less restrictive

and can readily incorporate the effects of finite fluctua-
tions on transformation behavior, the SEAQT framework
is more general than the classical free-energy approach.

C. Scaling to dimensional time

In the results shown in Fig. 3, the times, t∗, represent
a dimensionless time, which is related to the relaxation
time, τ , from the SEAQT equation of motion. The relax-
ation time represents a variable that tracks the dynamic
progress from the initial state to the final equilibrium
state. The dimensional time can be extracted from t∗

through a comparison with experimental data [13, 30] or
from ab initio calculations [15, 21, 31, 32].

While SEAQT framework predicts the transformation
mechanism (nucleation-growth or spinodal decomposi-
tion) for a given eigenstructure by selecting the path
from the initial state with the steepest entropy ascent
principle, the actual time required to traverse this path
depends upon the rate of entropy production associated
with the unit processes. For a nucleation process involv-
ing the assembly of subcritical embryos, entropy produc-
tion is much slower than for the diffusion throughout a
spinodally decomposing material. Thus, the scaling that
maps the relaxation time, τ , to dimensional time should
be different for the nucleation-growth and spinodal mech-
anisms.

Here, the dimensional time dependence is extracted
via comparisons of the relaxation time to experimen-
tal transformation kinetics from the Co–Cu alloy sys-
tem. The Cu–Co system has a positive mixing enthalpy
(positive V (0) in Eq. (6)) and a large miscibility gap
extending over almost the whole concentration range
(see the phase diagram in reference [33]). The discon-
tinuous transformation mechanism (nucleation-growth)
has been investigated extensively in the Cu-rich region
(Cu–0.5∼2.7 at.% Co alloys) [34–36], and the continuous
transformation mechanism (spinodal decomposition) has
been observed in Cu–10 at.% Co alloy at 713 K [37].

The procedures for scaling the dimensional time to
the relaxation time for each transformation mecha-
nism (nucleation-growth and spinodal decomposition)
are shown in Appendices A and B, respectively. After
scaling the relaxation time, τ , to experimental data, the
calculated kinetics from the SEAQT framework can be
presented in terms of dimensional time.

Figure 7 (a) shows the time-dependence of the precipi-
tate (the Co-rich phase) volume fraction during nucle-
ation and growth; the overall transformation rate ex-
hibits an incubation period and asymptotic decay typ-
ical of a nucleation and growth process. Figure 7 (b)
shows how the Co concentration in the matrix and pre-
cipitate phases changes with time during a nucleation-
growth transformation mechanism. This behavior can be
contrasted with the time-dependence of the Co concen-
tration during spinodal decomposition (Figure 8). The
predicted time-evolution processes show opposite tenden-
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(a) 

≈ ≈

(b) 

FIG. 7. The dimensional time dependencies of the (a) pre-
cipitate volume fraction and the (b) Co concentration in
the Cu- and Co-rich phases during nucleation and growth
in Cu–1.0 at.% Co annealed at 823 K calculated with the
SEAQT model using T ∗R = 0.089, T ∗0 = 0.30, NT = 104, and
N0

T = 102. The relaxation time is correlated with the experi-
mental kinetics of Cu–1 at.% Co alloy annealed at 823 K [36].
The inset in figure (a) has a time range of 0-4 min and the
incubation period for the nucleation process obtained from
the intercept with the abscissa is approximately 1.2 min.

cies: the speed of the transformation slows as nucleation
and growth proceeds, whereas spinodal decomposition is
predicted to accelerate as the transformation proceeds.
Thus, the different experimental scalings for τ make it
possible to place nucleation-growth and spinodal decom-
position on very different dimensional time scales: spin-
odal decomposition is scaled to times less than a second
whereas nucleation-growth extends over a period of 2 or
3 hours.

The real time dependencies shown here depend on the
approaches used for the scaling. However, because both
elementary processes are the same, i.e., involve an atomic
jump, it would be desirable to use the same approach
for scaling the time in the continuous and discontinu-
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FIG. 8. The dimensional time dependence of the Co con-
centration in the Cu- and Co-rich phases during spinodal de-
composition in Cu–50.0 at.% Co annealed at 823 K calculated
with SEAQT using T ∗R = 0.089, T ∗0 = 0.30, NT = 104, and
N0

T = 102. The relaxation time is correlated with the exper-
imental diffusion coefficient [38] and the characteristic wave
length of the spinodal microstructure [39].

ous phase transformations. The problem is that, as can
be seen from Fig. 3 (a) and (b), there is not much differ-
ence in the time-scale of the relaxation processes between
the continuous and discontinuous phase transformations.
Nonetheless, it is known that in the nucleation-growth
mechanism, there is a stage of creation and dissolution
of subcritical embryos, which makes the transformation
process much slower than that for spinodal decomposi-
tion. This is strongly related to the emergence of an inter-
face between the matrix and precipitated phases. Thus,
to see the difference in the time-scale of the predicted re-
laxation processes without the use of different scaling ap-
proaches, an extension to a heterogeneous system would
be required. This is left for future work.

Finally, note that in classical spinodal theory or phase
field models, the system under consideration is heteroge-
neous and an explicit expression for the interfacial energy
is required. The interfacial energy arises from an excess
energy contribution from gradients associated with fluc-
tuating concentration waves. Decomposition kinetics of
such systems depend upon the gradient energy through
a postulated diffusion-type transport equation, which is
assumed. The SEAQT framework has a different starting
point. It assumes a homogeneous system, and gradient
energy is implicitly built into the energy eigenstructure
— it does not need to be included as a separate, explicit
factor. A diffusion transport equation is not required
since the starting assumption (in fact, the fundamen-
tal principle) is that of maximum entropy production or
steepest entropy ascent, which involves gradients of all
the generators of the motion (including the energy) and
the entropy in state space at every instant of time. This
assumption is consistent with that of classical spinodal
theory, but it also is more general in that it applies more
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broadly to nucleation and growth processes.

IV. CONCLUSIONS

The SEAQT framework was used with an energy land-
scape constructed from a mean-field approximation to
investigate the decomposition kinetics of a binary solid-
solution. On the SEAQT framework, the different op-
erative paths, continuous and discontinuous transforma-
tions, are produced without resorting to ad hoc assump-
tions (e.g., a rate-limiting assumption). It was demon-
strated that the kinetic paths predicted by the SEAQT
approach are qualitatively consistent with the notion that
transformation mechanism is related to the transforma-
tion driving force. In particular, the SEAQT kinetic
path is sensitive to the initial state of the alloy and
the annealing temperature in ways that parallel spinodal
decomposition and nucleation and growth mechanisms.
However, the limiting curves for continuous transforma-
tion estimated from the SEAQT model show quantita-
tive differences from the conventional spinodal limit cal-
culated from a free-energy analysis. Furthermore, the
dimensional time dependencies of the continuous and dis-
continuous transformation mechanisms are readily ob-
tained from the SEAQT model by calibrating the re-
laxation time to experimental spinodal and nucleation-
growth data.

Finally, it is noteworthy that the SEAQT model with
a mean-field approximation is computationally efficient.
Kinetic paths from an initial state to stable equilibrium
in the system considered here were obtained in minutes
on a standard laptop computer.
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APPENDIX

A. SCALING TO DIMENSIONAL TIME FOR
NUCLEATION-GROWTH

The nucleation-growth mechanism has been investi-
gated in the Cu–Co alloy system [34–36]. The relaxation
time can be related to the dimensional time, t, in the
calculated discontinuous phase transformation using ex-
perimental data for a Cu–1 at.% Co alloy isothermally
aged at 823 K [36].

The measured data of the precipitated volume frac-
tion at Cu–1 at.% Co alloy at 823 K is shown in Fig. A.1,
where the following fitting function is shown as well:

fp = fmax
p − e−Kt

n

, (A.1)
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FIG. A.1. The experimentally measured volume fraction
of precipitate (or Co-rich phase) in a Cu–1 at.% Co alloy
isothermally aged at 823 K. The black circles are the orig-
inal data [36] and the dotted line is the fitting function,

fp = fmax
p − e−Ktn , where fmax

p = 0.71, K = 0.3217, and
n = 0.5004.

where fp is the volume fraction of the precipitate, fmax
p

is the maximum measured value of fp, t is the annealing
time, and K and n are the fitting parameters. Equa-
tion (A.1) is rewritten as

t =

[
− 1

K
ln(fmax

p − fp)
] 1

n

. (A.2)

The annealing time, t, can be determined once the vol-
ume fraction, fp, is known at each time.

Although the real temperatures of the calculated phase
diagram (shown in Fig. 2) were estimated using the re-
ported regular solution parameter, Ω = V (0)/2 = 33, 300
(J/mol) [36], the phase diagram had some differences
with the experimentally determined one [33]. For this
reason, the normalized temperature, which corresponds
to 823 K, is found by searching for the condition for which
the calculated fmax

p becomes 0.71. Since fmax
p ≈ 0.71

at T ∗R = 0.089, the normalized annealing temperature,
T ∗R = 0.089, is used here for the calculation. The cal-
culated time dependence of the volume fraction of pre-
cipitate, fp, predicted by SEAQT is shown in Fig. A.2.
The determined time dependence of the relaxation time,
τ , is shown in Fig. A.3. Note that Eq. (A.1) has negative
values below t ≈ 1 (see Fig. A.1), but this does not cause
difficulties when determining the relaxation time.

B. SCALING TO DIMENSIONAL TIME FOR
SPINODAL DECOMPOSITION

To scale the relaxation time, τ , to dimensional time
for a continuous transformation, the reported diffusion
coefficient [38] and the characteristic wave length of
the spinodal microstructure [39] in a Cu–Co alloy sys-
tem are used. Atomic diffusion is assumed between the
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FIG. A.2. The time dependences of the volume fraction of
precipitate (or B-rich phase) in a A–1.0 at.% B alloy system
calculated with the SEAQT modeling using T ∗R = 0.089, T ∗0 =
0.30, NT = 104, and N0

T = 102.
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FIG. A.3. The time dependence of the relaxation time, τ ,
in a Cu–1.0 at.% Co alloy system when a sample with some
initial concentration fluctuations is annealed at 823 K. It is
estimated using Eq. (A.2) with the result shown in Fig. A.2.

cube-shaped A-rich (α) and B-rich (β) phases in a A–
50.0 at.% B alloy system, where the edge length of the
phases, L, corresponds to half the characteristic wave
length of the spinodal microstructure, λc (see Fig. B.1).
The diffusion equation for a constant diffusivity is given
by

∂cα/β

∂t
= D∇2cα/β , (B.1)

where D is the diffusion coefficient and cα/β is the con-
centration of B-type atoms in the α/β-phase. The Lapla-
cian can be replaced by expressing the concentration on
each of the six surfaces of the cube as a Taylor series

expanded about cα/β at the cube center, c
α/β
0 , and sum-

ming the series (up to the quadratic terms). With this

𝐿

c

x

𝜆#	(= 2𝐿)

(a)
(b)

FIG. B.1. (a) One dimensional atomic diffusion between as-
sumed cube-shaped phases with side length, L (each phase
corresponds to either α- or β-phase). (b) the schematic time-
evolution process of spinodal decomposition; the broken lines
are part way through the evolution process, and the solid lines
are the final distribution. The side length of the cube-shaped
regions shown in (a) would correspond to half of the charac-
teristic wave length of the spinodal microstructure, λc; i.e.,
L = λc/2.

����� ����� ����� ����� �����
���

���

���

���

���

���

������������� ����� �*

�
�
��
��
�
��
�
��
�
��
��
��
�
��
�
��
�
�
�

FIG. B.2. The time dependence of average concentration of
B-type atoms in A-rich (α) and B-rich (β) phases calculated
with the SEAQT model using T ∗R = 0.089, T ∗0 = 0.30, NT =
104, andN0

T = 102. The averages are, respectively, taken from
the calculated occupation probabilities in the concentration
ranges 0∼50 at.% B and 50∼100 at.% B.

approximation, Eq. (B.1) becomes

∂cα/β

∂t
≈ D 6

(L/2)2
(cβ/α − cα/β0 ) , (B.2)

where L is the edge length of the cube-shaped phases
and given as L = λc/2. When an average quantity of
concentration of B-type atoms in each phase, 〈c〉α/β , is
taken, Eq. (B.2) is written as

∂〈c〉α/β

∂t
= D

6

(L/2)2
(〈c〉β/α − 〈c〉α/β) . (B.3)

For the equivalent SEAQT system, the concentration
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FIG. B.3. The time dependence of the relaxation time,
τ , in a Cu–50.0 at.% Co alloy system when a sample with
some initial concentration fluctuations is annealed at 823 K.
It is estimated using Eq. (B.5) with the result shown in
Fig. B.2 and the reported experimental data [38, 39], D =
0.43 exp(−2.22 eV/kBT ) and λc ≈ 3.5 nm.

change rate is given as

∂〈c〉α/β

∂t
⇒ d〈c〉α/β

dt∗
, (B.4)

where t∗ is a normalized time (t∗ =
∫ t

0
1

τ(~p(t′))dt
′). Thus,

the relaxation time, τ , is derived as

τ =
(λc/2)2

24D(〈c〉β/α − 〈c〉α/β)

d〈c〉α/β

dt∗
. (B.5)

Note that 〈c〉α/β is a function of time, and D is also time-
dependent because the temperature in an alloy system
changes with time. Here, however, it is assumed that D
is time-independent and the value used for D is that at
the annealing temperature.

The experimental data of the diffusion coefficient and
the characteristic spinodal wave length in a Cu–Co alloy
system are, respectively, D = 0.43 exp(−2.22 eV/kBT )
(for Cu–0.1 ∼ 0.15 at.% Co with 640 ∼ 848 K) [38] and
λc ≈ 3.5 nm [39]. Since it is estimated that T ∗R = 0.089
corresponds to 823 K in Appendix A, the spinodal de-
composition behavior at 823 K is investigated here for
Cu–50.0 at.% Co alloy assuming that the diffusion coef-
ficient is not sensitive to the composition. The calcu-
lated time dependence of the average concentration of B
atoms in each phase using the SEAQT model is shown in
Fig. B.2, where the averages of each phase are, respec-
tively, taken in the concentration ranges 0∼50 at.% B
and 50∼100 at.% B. The determined time dependence
of the relaxation time, τ , using Eq. (B.5) is shown in
Fig. B.3.
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