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Abstract 

Surface heterogeneity is ubiquitous in both natural and man-made materials, and can significantly 

influences material properties. However, it is very challenging to non-invasively probe the 

variation of surface properties in porous materials. Recently, we have proposed a new method, 

Generalized Porod’s Scattering Law Method (GPSLM), to obtain the surface heterogeneity 

information in bulk porous materials by extending the classic Porod’s scattering method. However, 

it was not clear if the GPSLM can be applied to other more complex materials, such as porous 

materials with dead pores, i.e. pores that guest fluid molecules cannot access, or porous materials 

whose solid matrix can adsorb small guest molecules. In this paper, we theoretically extend the 

GPSLM to study those more complex situations. For all five cases with different levels of 

complexity discussed in this work, the scattering intensity at the Porod’s law region always follows 

a parabolic function of scattering length density (SLD) of the guest fluid. Moreover, the minimum 

value of the scattering intensity is all related to the surface heterogeneity of the porous materials. 
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The SLD of the guest fluid at which the minimum intensity is reached is always related to the 

surface-averaged SLD of materials. We also discuss the potential limitations and possible future 

applications of the GPSLM. As the GPSLM is based on the contrast variation method commonly 

used for a wide range of materials, such as geological materials, biomaterials, and colloidal 

suspensions, the theoretical development here is potentially useful for researchers who would like 

to apply the GPSLM to more complicated materials besides porous materials.   

  

I. INTRODUCTION  

Surface heterogeneity represents the coexistence of different chemical and structural properties at 

the interfaces of a system and it is ubiquitous in both natural and industrial materials. Many studies 

have shown that the surface heterogeneity can greatly influence the interactions [1–4], mechanical 

properties [5,6], surface reaction rate [7], and transport phenomena [8–10] at the surfaces of 

materials. It is therefore important to study the surface heterogeneity and further tune the surface 

properties of the materials to achieve desired properties in various fields such as pharmaceutical 

industry [11–13], catalysis [14,15], microfluids [9,10], and petroleum engineering [8].   

There are many methods commonly used for characterizing the surface heterogeneity of materials, 

including atomic force microscopy (AFM) [16], scanning electron microscopy (SEM) [5,6,17], 

energy dispersive spectroscopy (EDS) [5,6], X-ray photoelectron spectroscopy (XPS) [16], auger 

electron spectroscopy (AES) [18,19], and secondary ion mass spectrometry (SIMS) [20]. However, 

despite that these techniques are useful for many applications, they often require special sample 

pre-processing. There are always concerns that the surface properties of the original materials may 

be altered during the material processing required by these techniques. Further, it is very 

challenging to apply these methods non-invasively to obtain the properties of the interfaces buried 
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deeply inside porous materials [17,18]. There is therefore a strong need of developing non-invasive 

characterization methods to determine the surface heterogeneity.    

Scattering techniques are good candidates for the non-destructive surface characterization. The 

well-known Porod’s scattering law developed by Porod in 1951 for analyzing X-ray or neutron 

scattering data [21,22] has been widely used to determine the surface area and the scattering length 

density (SLD) of materials in various two-phase systems such as biological macromolecules [23], 

colloids [24], and porous materials [25]. SLD is an intrinsic property of a material that only 

depends on molecular formula and density of the components in materials. Despite its wide 

applications, the conventional Porod’s scattering law, originally developed for relatively 

homogeneous matrix, becomes less accurate when being applied to heterogeneous systems like 

natural rocks, cement pastes, and multi-phase alloys because these systems have more than two 

phases. Moreover, the classic Porod’s scattering can only report the average SLD of a material and 

total surface area. It cannot provide the information of the variation of the surface properties. This 

greatly limits the structure information that can be obtained from the scattering data of the 

heterogeneous samples.  

In order to determine the surface heterogeneity, we have recently developed a surface 

characterization method, the generalized Porod’s scattering law method (GPSLM) [26]. GPSLM 

is based on the conventional Porod’s scattering law and the contrast variation method, both of 

which are already widely used in the scattering community. Some attempts have already been 

made to use contrast variation to determine the structure of heterogeneous natural materials such 

as shale rocks and coals [27,28]. However, these works still adopted the two phase assumption and 

therefore much of the heterogeneity information was lost.  
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We previously demonstrated that the GPSLM [26] was very useful for porous materials that satisfy 

the following conditions: (1) there is a clear Porod’s scattering law region in the isotropic scattering 

pattern; (2) all pores are accessible to the guest fluids used for contrast variation; (3) SLD of the 

solid matrix does not change when changing SLD of the guest fluids inside the pores. This method 

was successfully applied to study kerogen, a porous organic matter that is important for the gas/oil 

storage in shales. The average SLD of kerogens isolated from natural shale rocks was found to 

increase with the maturity of kerogens, indicating the decrease in hydrogen atom content with 

maturity. It was demonstrated theoretically that the average SLD of materials obtained by the 

GPSLM is a surface-averaged SLD, not volume-averaged SLD. It is further found that isolated 

kerogens can have large surface heterogeneity depending on their maturity. For the three studied 

kerogens, the less mature sample has a large variation of the SLD, implying a large variation of 

hydrogen content in the kerogen, while the more mature sample tends to have more uniform matrix.  

However, many materials may have dead pores inside, i.e. not all pores can be accessed to guest 

molecules [27]. In addition, the solid matrix of some porous materials may change SLD during the 

contrast variation due to the adsorption of guest fluid molecules in “tiny” pores on the walls of 

pores. It thus remains an unanswered question whether the GPSLM is applicable to these more 

complicated porous materials.  

In this paper, we develop the theoretical framework to extend the GPSLM to more complicated 

situations. We focus on five different cases of porous materials with increasing level of complexity. 

Our previous work demonstrated the applicability of the GPSLM for the first case, the simplest 

case. We show in this work that for other four types of heterogeneous porous materials, the 

GPSLM is still applicable but the parameters have different meanings depending on the situations. 

We also discuss in details the limitations of our method. Our method is useful to study more 

complicated porous materials such as shale rocks with imbedded kerogens. 
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The structure of this paper is organized as follows. In Sec. II, we introduce the theoretical 

background of the GPSLM and the general formulae used in the GPSLM. We also describe the 

five different types of porous materials studied in this paper from the simplest one, Case 1, to the 

most complicated and general one, Case 5. Note that this classification is based on the assumptions 

used for the GPSLM method. Therefore, this classification is different from other classifications 

of porous materials based on different techniques, such as gas isotherm type according to the 

IUPAC Classification Scheme [29]. Sec. II A, B, C, D, and E give the mathematical expressions 

and physical meanings of the parameters in the general formulae of the GPSLM for Case 1, Case 

2, Case 3, Case 4, and Case 5, respectively. In Sec. III, a model system of Case 2 is simulated and 

used as an example to demonstrate the validity and the data analysis procedure of GPSLM. In Sec. 

IV, we discuss some limitations and possible solutions of the GPSLM. In Sec. V, we summarize 

the method of GPSLM and indicate some advantages of using GPSLM as a characterization 

method for the surface heterogeneity. Some potential systems that the GPSLM can apply to are 

also proposed. In Appendix A, B, C, D, and E, the derivations of the GPSLM formulae are 

provided for Case 1, Case 2, Case 3, Case 4, and Case 5, respectively. Appendix F elaborates the 

details of calculating the scattering intensity of the simulated system described in Sec. III. 

Appendix G gives the derivation of equations used in the potential remedy described in Sec. IV 

for the systems in which Porod’s scattering region is not present explicitly but can be decoupled 

from other scattering features.  

 

II. GENERALIZED POROD'S SCATTERING LAW METHOD (GPSLM) 

The conventional Porod’s scattering law [21,22] states that for two-phase systems with smooth 

interfaces, the coherent scattering intensity, I(Q), at high Q can be asymptotically formulated as:  
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𝐼(𝑄)
%→'
(⎯⎯* 2𝜋 -.

/
(∆𝜌)2𝑄34 ,                 (1) 

where Q is the scattering wave vector, and the contrast term, ∆𝜌 = 𝜌6 − 𝜌2, is the difference of 

the SLD between phase 1 and phase 2 in a two-phase system. 𝑆9 and V are the total surface area 

and total volume in a porous material, respectively, detected by the neutron or X-ray beam. The 

Porod’s law scattering pattern, i.e. the scattering pattern with 𝐼(𝑄) 	∝ 𝑄34, has been commonly 

seen in the scattering data obtained from small-angle neutron scattering (SANS) or small-angle X-

ray scattering (SAXS) for many complicated systems [23,30,31]. In principle, the conventional 

Porod’s law is only applicable to homogeneous two-phase systems (see Fig. 1(a)) or two-phase 

systems with small heterogeneity of the surface matrix. If the pore is empty, i.e., 𝜌2 = 0, 𝐼(𝑄)

%→'
(⎯⎯* 2𝜋 -.

/
(𝜌6)2𝑄34. Thus, by using the Porod’s scattering law, the SLD of the matrix, 𝜌6, or the 

total surface area, 𝑆9, can be obtained. 

However, for many porous materials, the SLD at different interfaces may have different values. 

To overcome the challenge to obtain the variation of the SLD of different surfaces, the GPSLM is 

recently developed  [26] and shows that for some simple porous materials with smooth interfaces 

(Case 1 porous material that will be defined later), the surface variation of SLD can be 

quantitatively obtained using scattering methods. Furthermore, it can provide a way to estimate 

the potential errors introduced by the conventional Porod’s law using Eq. (1) that is mainly 

applicable to homogeneous systems.  

In this paper, we extend the GPSLM [26] developed previously and demonstrate that the GPSLM 

is a powerful tool applicable to a wide range of materials, and provides additional new material 

information that cannot be obtained using Eq. (1). The GPSLM method is also essential to provide 

a way to interpret the data for contrast variation method at the Porod’s scattering region for 
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heterogeneous samples. It should be noted that although the Porod’s scattering pattern can also be 

present in the scattering curves of anisotropic scatterers with smooth interfaces [32], the 

anisotropic effect should be considered carefully in the mathematical formula of the Porod’s 

constant. For anisotropic scatters with smooth interfaces, the Porod’s law is applicable if all 

scatters can be considered randomly oriented..  

We will first show the general method of the GPSLM and describe briefly its experimental 

procedure. Then we will show the detailed meaning of the obtained results for the different types 

of porous materials. 

GPSLM requires the use of contrast variation. To do contrast variation, SLD of the guest fluid, 𝜌=, 

in accessible pores can be changed by mixing hydrogenated and deuterated solvents, such as H2O 

and D2O, with different ratios [28] for neutron scattering or loading gas with different pressures 

for both X-ray and neutron scattering [33–35]. Thus, the GPSLM can be used for both SAXS and 

SANS even though we use SANS as the example to demonstrate this method. 

For heterogeneous systems, the general equation for Porod’s scattering can be written as: 

𝐼(𝑄)
%→'
(⎯⎯* 2𝜋	 -.

/
〈∆𝜌2〉@	𝑄34 = 𝐶B𝑄34	,                 (2) 

where 𝐶B = 2𝜋	 -.
/
〈∆𝜌2〉@ is the Porod’s constant. 𝐶B can be easily obtained by fitting the intensity 

in Porod’s law region with 𝐼(𝑄) = 𝐶B𝑄34 . The mean square deviation of SLD (MSDSLD), or 

〈∆𝜌2〉@, in Eq. (2) is defined as:  

〈∆𝜌2〉@ ≡
6
-.
∫ ∆𝜌(𝑆)2	𝑑𝑆- .                  (3) 

Eq. (3) integrates through all the interface 𝑆 with the total interfacial area as 𝑆9 inside volume 𝑉 

of the sample. 〈∆𝜌2〉@  is thus the surface-averaged parameter instead of volume-averaged one. 
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Note that 𝑆9  includes both accessible and inaccessible interfaces. ∆𝜌(𝑆)  is the SLD contrast 

between the components at different sides of the interface 𝑆 . For accessible pores, ∆𝜌(𝑆) =

𝜌(𝑆) − 𝜌= since one side of interface 𝑆 is an open pore accessible to the guest fluid with SLD as 

𝜌= , and the other side of 𝑆 is the solid matrix with SLD as 𝜌(𝑆). For inaccessible interfaces 

between solid components of different SLD, ∆𝜌(𝑆) is the SLD difference of solid matrix on the 

two sides of the interface 𝑆. For the special case of inaccessible empty pores, ∆𝜌(𝑆) = 𝜌(𝑆). 

When applying contrast variation procedure, only 〈∆𝜌2〉@ (and thus 𝐶B) is changed with the guest 

fluid SLD, 𝜌=, in Eq. (2). It is therefore convenient to normalize the intensity to remove other 

constant terms, i.e. 2𝜋	𝑄34 -.
/

, at the same Q in the Porod’s scattering region. 𝑅H𝜌=I is defined to 

be the ratio of 𝐶B between the case when intensity 𝐼(𝑄) is measured with the guest fluid SLD as 

𝜌= and the case for 𝐼(𝑄) with 𝜌= = 0, i.e. 

𝑅H𝜌=I ≡
JK(LM)

JK(LMNO)
=

〈∆LP〉Q,SM
〈∆LP〉Q,SMTU

= VH%,LMI
VH%,LMNOI

 .               (4) 

Eq. (4) also shows that 𝑅H𝜌=I can be obtained by simply taking the ratio of scattering intensity 

𝐼(𝑄) at a given Q value with guest solvent molecules and without guest solvent molecules if the 

intensity of Porod’s law scattering region is so strong that the background signal can be ignored.   

We will demonstrate using five different situations from the simplest case, Case 1, to the most 

general case, Case 5, that in the Porod’s scattering region (𝐼(𝑄) 	∝ 𝑄34),  the scattering intensity 

will reduce to Eq. (2) with different mathematical expressions of 〈∆𝜌2〉@. In addition, 𝑅H𝜌=I for 

these five cases can all be expressed as a parabolic function of 𝜌= written as:  

𝑅H𝜌=I =
6

LPWP H𝜌= − 𝜌XI
2 + ∆Z2,                 (5) 
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The coefficients 𝜌X , 𝜌2[2 , and ∆Z2  have different physical meanings in different cases. The 

detailed derivations of Eq (5) in different cases can be found in Eqs. (A2), (B2), (C2), (D2), and 

(E2) in Appendix A, B, C, D, and E, respectively. In general, 𝜌X and 𝜌2[2 are related to the surface 

averaged SLD and the second moment of matrix SLD, respectively, and ∆Z2 is the heterogeneity 

parameter that is related to the surface heterogeneity of the materials. The minimum of the ratio, 

𝑅H𝜌=I\]^, takes place at 𝜌= = 𝜌=,\]^ and 𝑅H𝜌=I = 𝑅H𝜌=,\]^I. Based on the Eq. (5), we have 

𝜌=,\]^ = 𝜌X                   (6) 

𝑅H𝜌=,\]^I = ∆Z2                       (7) 

By doing contrast variation and plotting 𝑅H𝜌=I versus 𝜌=, the values of  𝜌X, ∆Z2, and  𝜌2[2 can 

be easily retrieved by experimentally searching for the SLD of guest fluid at which 𝑅H𝜌=I reaches 

its minimum. For the simplest case demonstrated in previous study [26] (the Case 1 that will be 

described below),  𝜌X is the surface-averaged SLD of the matrix and ∆Z2 is the normalized mean 

square deviation of matrix SLD from 𝜌X, or the surface heterogeneity. 

The five cases with different levels of complexity being discussed in this study are illustrated in 

Fig. 1(b)-(f). We try to incorporate as many types of porous materials as possible in this work. The 

solid matrices shown in Fig. 1 have different domains with SLD of 𝜌(𝑆) that depends on the 

interface 𝑆. Different SLDs are drawn in different colors. In Fig. 1, the dashed lines outline the 

interface that can be accessible to the guest fluid, i.e. one side of these dashed lines are open pores; 

the solid lines outline the inaccessible interface that fluid molecules cannot access to. The space 

outlined by solid lines can be either inaccessible pores or inaccessible compact solid pockets. The 

open pores are shown in the void space (the light green color) in between the domains. These open 

pores are accessible to the guest fluid whose SLD 𝜌= can be changed by contrast variation. Within 
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the solid domains, there might be also some very small pores with pore size much smaller than the 

length scale L of the Porod’s scattering region (𝐿 ≈ 2a
%

). Due to the length scale difference, these 

small pores only “look like” part of the solid domains in the Porod’s Q range and the domain SLD 

is the “average” SLD of solid matrix and these small pores. Because these small pores can be either 

accessible or inaccessible to the guest fluid, the SLD of domain d, 𝜌b, can be also changed by the 

guest fluid. Here, we adopt a straightforward assumption: 

 𝜌b = H1 − 𝜑(𝑆)I𝜌(𝑆) + 𝜑(𝑆)	𝜌= = 𝜑\(𝑆)	𝜌(𝑆) + H1 − 𝜑\(𝑆)I	𝜌=.           (8) 

𝜌(𝑆) is the solid matrix SLD that depends on the interface 𝑆 due to the chemical heterogeneity of 

the material, 𝜑(𝑆) and 𝜑\(𝑆) = 1 − 𝜑(𝑆) are the volume fraction of accessible small pores and 

solid matrix, respectively, within the domain. The inaccessible small pores are accounted as the 

solid matrix because their SLD is not changed by the guest fluid, just like solid. Different domain 

d may have different 𝜑(𝑆) and 𝜑\(𝑆) because of the structure heterogeneity and 𝜌b  will have 

different dependence of 𝜌= for each domain (Eq. (8)).  

Depending on the cases, different parameters can be extracted. The mathematical forms and the 

extractable parameters are introduced individually for each case. The detailed derivations of the 

formulae can be found in Appendix A, B, C, D, and E. 
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FIG. 1. (a) A homogeneous two-phase system. (b)-(f) Five different heterogeneous systems discussed in this work. 

The detectable structure is comparable to length scale of Porod’s Q range ≈ 2a
%

 . (b) Case 1: solid matrix is not changed 

by loading fluid and all the pores with length scale ≈ L are accessible. (c) Case 2: solid matrix is not changed by 

loading fluid and there are inaccessible pores or compact solid pockets with length scale ≈ L. (d) Case 3: solid domains 

have the same dependence of average domain SLD on guest fluid SLD and all the pores with length scale ≈ L are 

accessible. (e) Case 4: solid domains have different dependence of average domain SLD on guest fluid SLD and all 
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the pores with length scale ≈ L are accessible. (f) Case 5: solid domains have different dependence of average domain 

SLD on guest fluid SLD and there are inaccessible pores or compact solid pockets with length scale ≈ L. The solid 

lines outline the interfaces between the matrix and the pores/solid pockets inaccessible to the guest fluid; the dashed 

lines outline the interfaces between the matrix and the accessible open pores; the dotted lines (in (f)) outline the 

interfaces between inaccessible solid pocket (with non-changing SLD) and open pores. 

 

 

A. Case 1: All the pores are accessible and the SLD of the solid matrix is not changed by 

loading the guest fluid. 

This simplest case (Case 1 shown in Fig. 1(b)) has been discussed in our previous study. [26] For 

the completeness of the discussion, we also include the main results of the simplest case here. In 

this case, all pores are accessible by the guest fluid and the SLD of the solid matrix is not affected 

by the loaded guest fluid. This situation is common for many synthetic porous materials, such as 

mesoporous silica or carbon [34,36]. The Porod’s scattering from the mesopores is shown at high 

Q region, if the background and other type of scattering feature are properly subtracted [37]. 

Mixture of different kinds of mesoporous materials forms heterogeneous material whose Porod’s 

scattering region at high Q can be analyzed using the method described in Case 1.  

For Case 1, the intensity in Porod’s law Q range can be written as Eq. (2) with 〈∆𝜌2〉@ written as: 

〈∆𝜌2〉@ =
6
-.
∫ H𝜌(𝑆) − 𝜌=I

2𝑑𝑆- .                  (9) 

Therefore,  

𝑅H𝑄, 𝜌=I ≡

1
𝑆9 ∫

H𝜌(𝑆) − 𝜌=I
2	𝑑𝑆-

1
𝑆9 ∫

𝜌(𝑆)2	𝑑𝑆-

= 1 − 2𝜌=

1
𝑆9 ∫

𝜌(𝑆)𝑑𝑆-

1
𝑆9 ∫

𝜌(𝑆)2	𝑑𝑆-

+ 𝜌=2
1

1
𝑆9 ∫

𝜌(𝑆)2	𝑑𝑆-
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= 1 − 2𝜌=
Le
LPWP + 𝜌=2

6
LPWP =

6
LPWP H𝜌= − 𝜌XI

2 + 1 − LeP

LPWP       (10)  

The intensity ratio 𝑅H𝜌=I reduces to a parabolic function shown in Eq. (5) with the coefficients: 

𝜌X =
6
-.
∫ 𝜌(𝑆)	𝑑𝑆-                  (11) 

𝜌2[2 =
6
-.
∫ 𝜌(𝑆)2	𝑑𝑆- = 〈∆𝜌2〉@,LMNO                 (12) 

∆Z2=
LPWP3LeP

LPWP =
f gh.

∫ (L(-)3Le)P	b-h i

LPWP                 (13) 

Eqs. (11) and (12) show that 𝜌X and 𝜌2[2 are exactly the surface-averaged SLD and the surface-

averaged second moment of SLD. ∆Z is directly linked to the variation of the SLD along all pore 

surface (Eq. (13)).  𝜌X and ∆Z can be easily determined by finding the minimum of the parabolic 

function 𝑅H𝜌=I and applying Eqs. (6) and (7). 𝜌2[2 =
LeP

63∆jP
 can then be calculated through 𝜌X 

and ∆Z. 

After obtaining 𝜌X, ∆Z2, and 𝜌2[2 (and therefore 〈∆𝜌2〉@,LMNO), the surface area to volume ratio, 

-.
/

, can be calculated through Eqs. (2) and (12) using the scattering data at 𝜌= = 0, i.e.  

-.
/
= %k	V(%,LMNO)

2a
6

LPWP =
JK(LMNO)

2a
6

LPWP              (14) 

Since the total volume 𝑉  seen by neutron and X-ray is a known value from the experiment 

configuration, total surface area 𝑆9 can be straightforwardly obtained. 

By applying the commonly-used contrast variation procedure, the GPSLM provides more 

information such as the surface heterogeneity (∆Z2) of matrix SLD on all the interfaces relevant 

to the Porod’s scattering length scale. GPSLM in Case 1 was successfully applied to kerogens 
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isolated from natural shale rocks and the results showed that isolated kerogen with higher maturity 

has larger 𝜌X, i.e. smaller hydrogen content, and smaller ∆Z2, i.e. more homogeneous [26].  

In addition, the GPSLM can provide more accurate value of the surface-averaged SLD, 𝜌X, and 

the total surface area, 𝑆9. Note that simple version of the Porod’s scattering method (Eq. (1)) has 

been widely used for estimating 𝜌X and 𝑆9 even though the results would be less accurate. Using 

the GPSLM, we can estimate the possible errors introduced by simply using the Eq. (1). Eq. (5) 

shows that when ∆Z2  is small, i.e. ∆Z2→ 0 , or when 𝜌=  is very different from 𝜌X , i.e. 

H𝜌= − 𝜌XI
2 ≫ 𝜌2[2∆Z2, the parabolic function 𝑅H𝜌=Ireduces to the homogeneous equation, i.e. 

𝑅H𝜌=I →
6

LPWP H𝜌= − 𝜌XI
2 . Therefore, when one has some pre-knowledge of the approximate 

magnitude of 𝜌X  before an experiment, using guest fluid with 𝜌=  far away from 𝜌X  to conduct 

contrast variation will allow more accurate determination of real 𝜌X if traditional Porod’s method 

is applied to the heterogeneous materials. In previous work [26], we simulated the scattering 

intensity of heterogeneous systems with known surface properties, i.e. known  𝜌X and 𝑆9 , and 

analyzed the simulated data by Eq. (1). This allowed us to determine the surface heterogeneity 

effect on  𝑆9  and 𝜌X . The results showed that even though we can determine accurate 𝜌X  by 

choosing 𝜌=  with H𝜌= − 𝜌XI
2 ≫ 𝜌2[2∆Z2 , the traditional Porod’s method still either 

overestimates or underestimates 𝑆9 depending on the parameters used.  

 

B. Case 2: There are some dead pores or solid pockets inaccessible to guest fluids, but the 

SLD of solid matrix is still not changed by loading guest fluid. 

This case (shown in Fig. 1(c)) may be common for synthetic porous materials using functional 

groups to do interface modification of the pores [38]. In this type of materials, the functional 
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groups may detach from the pore surface or have inhomogeneous distribution on the pore surface 

and then block the pores. It is also viewed as a commonly encountered case in natural porous 

materials such as shales and coals [27]. Estimation of the exact amount of dead pores compared to 

accessible pores is still a challenging work. However, the surface properties of accessible pores 

are often the key factors to determine the storage and transport properties of guest molecules in 

this type of porous materials. The GPSLM still works for this case but the interpretation of some 

parameters needs to include the dead pore information. 

In this case, 〈∆𝜌2〉@ in Eq. (2) becomes 

〈∆𝜌2〉@ =
6
-.
m∫ H𝜌(𝑆X) − 𝜌=I

2𝑑𝑆X-e
+ ∫ H𝜌(𝑆nX) − 𝜌nX(𝑆nX)I

2𝑑𝑆nX-oe
p.                    (15) 

𝑆X represents the pore surfaces at which the pores can be accessed by the guest fluid. 𝑆nX, where 

NA is the abbreviation for “non-accessible”, indicates the interfaces inaccessible by the guest fluid. 

𝜌(𝑆X) is the SLD of the pore walls that can be accessed by guest fluid. 𝜌nX(𝑆nX) and 𝜌(𝑆nX) are 

the values of the SLD on the two sides of inaccessible surface 𝑆nX. 𝜌nX(𝑆nX) can be the SLD of 

the compact solid pockets or dead pores that cannot be reached by the guest fluid because they are 

imbedded in the solid grain with SLD of 𝜌(𝑆nX). It is noted that the total surface area, 𝑆9, is the 

sum of accessible surface area, 𝑆X, and inaccessible surface area, 𝑆nX, as 

𝑆9 = 𝑆X + 𝑆nX,                 (16) 

The second term in the square bracket of Eq. (15), i.e. the non-accessible term,  is a constant that 

does not vary with the guest fluid SLD 𝜌=. We thus define 

𝐶nX = ∫ H𝜌(𝑆nX) − 𝜌nX(𝑆nX)I
2𝑑𝑆nX-oe

.                           (17) 
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The intensity ratio 𝐼𝑅H𝜌=I can also be written as Eq. (5) as a parabolic function of 𝜌=. For Case 2, 

the results are now expressed as 

𝜌X =
6
-e
∫ 𝜌(𝑆X)𝑑𝑆X-e

.                            (18) 

𝜌2[2 =
6
-e
m∫ 𝜌(𝑆X)2𝑑𝑆X + 𝐶nX-e

p = -.
-e
〈∆𝜌2〉@,LMNO.                       (19) 

∆Z2=
LPWP3LeP

LPWP =
g
he
m∫ (L(-e)3Le)Pb-ehe

qJoep

LPWP ,                        (20) 

It is important to point out that 𝜌X for Case 2 is the surface-averaged SLD integrated only over the 

“accessible” surface area 𝑆X, not all the surface area. Therefore, the obtained average SLD is a 

surface-averaged value of the pores accessible to guest fluid. It does not contain any information 

of the interfaces inaccessible to guest fluid. The heterogeneity parameter, ∆Z , still shows the 

surface heterogeneity of the accessible surface but needs to consider the contribution from 𝐶nX 

(Eqs. (19) and (20)). Thus, the extracted inhomogeneity information is also affected by 

inaccessible pore surfaces. 𝜌2[2 is the second moment parameter of SLD that gives the average 

of the square of SLD contrast at 𝜌= = 0 per accessible surface area (Eq. (20)). 

It is straightforward to determine the coefficients 𝜌X and  ∆Z2 from the experimental data 𝑅H𝜌=I 

using Eqs. (6) and (7). 𝜌2[2 can be calculated using 𝜌2[2 =
LeP

63∆jP
. Then the specific accessible 

surface area, -e
/

, can be obtained:  

-e
/
= JK(LMNO)

2a
6

LPWP                 (21) 
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Because the scattering volume, 𝑉, is a known value, the accessible surface area ,	𝑆X, can now be 

determined. Note that the obtained surface area is not the total surface area, 𝑆9 but only includes 

the surface area accessible to the guest fluid. 

The above results can lead to a very interesting observation. For a special situation of a 

homogeneous solid matrix with both dead pores and accessible pores, the GPSLM method can 

now be used to quantify the amount of dead pores. For this special case, 𝜌(𝑆X) = 𝜌(𝑆nX) = 𝜌X =

𝜌=,\]^, and 𝜌nX(𝑆nX) = 0, which lead to 𝐶nX = 𝜌X2𝑆nX, 𝜌2[2 =
-.
-e
𝜌X2and ∆Z2=

-oe
-.

. Therefore, 

after applying contrast variation, the minimum of 𝑅H𝜌=I , which gives 𝜌X  and ∆Z2  of the 

homogeneous materials, provides the surface fraction of inaccessible surface area among the total 

surface area. This value is very difficult to be obtained with any other method.  

 

C. Case 3: All pores are accessible. The SLD of solid domains changes with the SLD of 

loading guest fluid. All the solid domains have the same dependence of average domain SLD 

on guest fluid SLD. 

Comparing to Case 1, Case 3 (Fig. 1(d)) is applicable to the situations when the SLD of solid 

matrix can change with the loading guest fluid. The change of domain SLD with guest fluid is 

illustrated by the mesh drawn in Fig. 1(d). This can happen when there are lots of fluid-accessible 

small pores with size much smaller than the length scale L detectable by Porod’s scattering region 

(𝐿 ≈ 2a
%

) and therefore Porod’s scattering cannot distinguish the small pores from the solid matrix. 

As a result, the average SLD of domains changes with SLD of the loading fluid as shown in Eq. 

(8). In this case, the Porod’s scattering is not sensitive to the surface of small pores but only 

sensitive to the surface of large domains. In some works, [39] the surface of large domains is called 
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“envelope” surface. As a simple example, the Porod’s scattering from the grain boundaries of 

mesoporous materials shown at low Q region cannot pick up the mesopore structure because the 

size of mesopores is too small compared with the Porod’s scattering length scale L [33,34,40]. 

Case 3 can be applied to analyze the Porod’s scattering region at low Q for a mixture of 

mesoporous materials composed of different chemical components.    

In Case 3, the volume fraction of accessible small pores is further assumed to be the same for all 

the different domains, i.e. 𝜑(𝑆) = 𝜑 and 𝜑\(𝑆) = 𝜑\ = 1 − 𝜑 in Eq. (8). Here the small pores 

not accessible to loading fluid and with size much smaller than L are considered as part of solid 

matrix and contribute to 𝜑\ instead of 𝜑 because their SLD is not changed with contrast variation.  

In this case 〈∆𝜌2〉@ in Eq. (2) can be expressed as  

〈∆𝜌2〉@ = mrs
P

-.
∫ H𝜌(𝑆) − 𝜌=I

2𝑑𝑆- p,               (22) 

Eq. (22) is very similar to Eq. (9) for Case 1 except that 〈∆𝜌2〉@ is now weighted by the square of 

matrix volume fraction in the domains, 𝜑\2 . Note that the integration is over the “envelope” 

surface, i.e. the surface of large domains. Interestingly, 𝑅H𝜌=I for Case 3 still follows a parabolic 

function. Moreover, the parameters 𝜌X and ∆Z2 in 𝑅H𝜌=I for Case 3 have the same formulae as 

those for Case 1, i.e. 𝜌X =
6
-.
∫ 𝜌(𝑆)	𝑑𝑆-  (Eq. (11)) and ∆Z2=

f gh.
∫ (L(-)3Le)P	b-h i

LPWP  (Eq. (13)). 

Therefore, when all the domains have the same volume fraction of small pores, the fact that the 

matrix may change its SLD due to the small pore filling inside the solid domains does not affect 

the conclusions that 𝜌X is exactly the surface-averaged SLD and ∆Z is directly the variation of the 

SLD along the surface. The only difference is that in the Case 3 all the surface means the “envelope” 
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surface relevant to the Porod’s scattering length scale L, which does not include the surface of tiny 

pores in solid matrix.  

𝜌2[2 is also similar to Case 1 (Eq. (12)) except for its relation with 〈∆𝜌2〉@ (last equality): 

𝜌2[2 =
6
-.
∫ 𝜌(𝑆)2	𝑑𝑆@ = LeP

63∆jP
= 6

rsP 〈∆𝜌2〉@,LMNO,            (23) 

Therefore, finding the minimum of 𝑅H𝜌=I through contrast variation and applying the GPSLM 

allow to determine the envelope surface average of SLD (𝜌X), second-moment of SLD (𝜌2[2), and 

heterogeneity parameter (∆Z2). In addition, combining Eqs. (2) and (23), the 𝜑\2𝑆9, i.e. the total 

surface area weighted by 𝜑\2, can be retrieved through 

rsP	-.
/

= JK(LMNO)
2a

6
LPWP                (24) 

It is worth pointing out in some special cases [39,41] when the Q range is wide enough to cover 

both length scales of tiny pores buried inside the large domains and the large domains themselves, 

the SANS pattern will contain two Porod’s scattering regions: low Q region (Case 3) gives the 

surface heterogeneity information of the envelope surfaces and high Q region (Case 1) provides 

the surface heterogeneity of all the interfaces including both tiny pores and large domains.     

 

D. Case 4: The SLD of solid domains have different dependence of average domain SLD on 

guest fluid SLD and all the pores with length scale larger than L are accessible. 

Case 4 (Fig. 1(e)) is similar to Case 3 except that the domains have different volume fractions of 

the tiny pores accessible to guest fluid, 𝜑(𝑆). 𝜑(𝑆) and 𝜑\(𝑆) = 1 − 𝜑(𝑆)	now depend on which 

domain the surface 𝑆 is located at. According Eq. (8), the 𝑆-dependent 𝜑(𝑆) and 𝜑\(𝑆) result in 
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different relations between domain SLD, 𝜌b, and guest fluid SLD, 𝜌=, for different domains, d. 

The meshed patterns in Fig. 1(e) are therefore drawn differently for different domains. Case 4 can 

be applied to the synthetic porous materials composed of different chemical compounds which are 

not mixed well in space and result in different grains with different pore volume fractions. 

In Case 4, 〈∆𝜌2〉@ in Eq. (2) becomes 

〈∆𝜌2〉@ = m 6
-.
t∫ 𝜑\(𝑆)2	𝜌(𝑆)2	𝑑𝑆- − 2𝜌= ∫ 𝜑\(𝑆)2	𝜌(𝑆)	𝑑𝑆- + 𝜌=2 ∫ 𝜑\(𝑆)2	𝑑𝑆- up          (25) 

The 𝑅H𝜌=I again follows the parabolic function as shown in Eq. (5). The results for different 

parameters are 

𝜌X = ∫ 	𝑓(𝜑\)	𝜌(𝑆)	𝑑𝑆- ,                  (26) 

𝜌2[2 = ∫ 	𝑓(𝜑\)	𝜌(𝑆)2𝑑𝑆- = -.
∫ rs(-)P	b-h

〈∆𝜌2〉@,LMNO,                          (27) 

∆𝐻2 = LPWP3LeP

LPWP =
m∫ =(rs)	(L(-)3Le)P	b-h p

LPWP ,              (28) 

where 𝑓(𝜑\) is a probability density function that is defined as 

𝑓(𝜑\) =
	rs(-)P

∫ rs(-)P	b-h

, and                          (29)  

∫ 𝑓(𝜑\)	𝑑𝑆- = 1.                (30) 

𝑓(𝜑\)𝑑𝑆 is the probability of finding the square of matrix volume fraction in the domains to be 

	𝜑\(𝑆)2 on a surface element, 𝑑𝑆. Note that Eqs. (25)-(30) are all integrated through the “envelope” 

surface 𝑆. 
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Eqs. (26)-(28) for Case 4 are similar to Eqs. (11)-(13) for the simplest Case 1 except that all the 

integral is now weighted by the probability density function 𝑓(𝜑\). Therefore, the minimum of 

𝐼𝑅H𝜌=I  gives the 𝑓(𝜑\) -weighted envelope surface-averaged SLD (Eqs. (6) and (26)) and 

𝑓(𝜑\)-weighted surface heterogeneity (Eqs. (7) and (28)). 𝜌2[2 is the 𝑓(𝜑\)-weighted envelope 

surface-averaged second moment of SLD and it can be easily obtained through 𝜌2[2 =
LeP

63∆jP
 (Eqs. 

(27) and (28)). After determining 𝜌X, ∆𝐻2, and 𝜌2[2 and combining Eqs. (2), (25), and (27), the 

intensity 𝐼(𝑄) at the contrast point 𝜌= = 0 can be used to retrieved the summation of the square of 

matrix volume fraction of domains on the envelope surface, i.e. ∫ 𝜑\(𝑆)2	𝑑𝑆- , if the total volume 

𝑉 is known: 

 ∫
rs(-)P	b-h 	

/
= JK(LMNO)

2a
6

LPWP               (31) 

Note that in this case, it is impossible to obtain the true surface area anymore. From equation (31), 

the obtained value is a 	𝜑\(𝑆)2-weighted total envelope surface area (not including the surface 

area of the tiny pores with size much smaller than Porod’s scattering length scale L). Hence, unless 

we know the distribution function of the pore volume fraction in different domains, it is not 

possible to obtain the true surface area using scattering methods. As the result of Eq. (31), the 

domains with larger 𝜑\(𝑆) have larger contribution to the final value of 	𝜑\(𝑆)2-weighted total 

envelope surface area.  

 

E. Case 5: Solid domains have different dependence of average domain SLD on guest fluid 

SLD and there are inaccessible pores/solid pockets. 
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The most general Case 5 (Fig. 1(f)) adds additional structure complexity to Case 4 (Fig. 1(e)) by 

including the presence of non-accessible pores/compact solid pockets with size detectable in the 

Porod’s Q range, 𝐿 ≈ 2a
%

. In this case, there are three kinds of interfaces relevant at the length scale 

𝐿: (1) the accessible interface between the matrix and the guest pore fluid (𝑆X, shown by dashed 

lines in Fig. 1(f)); (2) the non-accessible interface between non-accessible solid/pore and matrix 

(𝑆nX3\, shown by solid line in Fig. 1(f)); (3) the interface between compact solid pocket and guest 

pore fluid (𝑆nX3=, shown by dotted line in Fig. 1(f)). For the solid pocket with 𝑆nX3= interface, 

the fluid cannot diffuse into the pocket and therefore the “interior” of the pocket is inaccessible to 

the fluid and the SLD of the pocket does not change with fluid loading. However, the periphery of 

the pocket can be accessed to the guest fluid. 𝑆nX3= is different than 𝑆X in the sense that both sides 

of 𝑆X varies with loading fluid (one side is matrix with lots of tiny accessible pores in length scale 

<< 𝐿 and the other side is open pore in length scale ≈ 𝐿 accessible to the guest fluid). The total 

surface area is the summation of the three kinds of interfaces, i.e. 

𝑆9 = 𝑆X + 𝑆nX3\ + 𝑆nX3=.               (32) 

〈∆𝜌2〉@ in Eq. (2) for Case 5 is written as   

〈∆𝜌2〉@ =
6
-.
x[∫𝜑\(𝑆X)2	𝑑𝑆X + 	𝐶6]	𝜌=2 − 2	[∫𝜑\(𝑆X)2	𝜌(𝑆X)𝑑𝑆X +	𝐶2]	𝜌= + 	[∫𝜑\(𝑆X)2	𝜌(𝑆X)2	𝑑𝑆X + 𝐶{	]|.                  (33) 

In Eq. (33),  

𝐶6 = ∫H1 − 𝜑\(𝑆nX3\)I
2	𝑑𝑆nX3\ + ∫𝑑𝑆nX3=                  (34) 

𝐶2 = ∫H1 − 𝜑\(𝑆nX3\)I	H𝜌(𝑆nX3\) ∗ 𝜑\(𝑆nX3\) − 𝜌nX(𝑆nX3\)I𝑑𝑆nX3\ + ∫𝜌nXH𝑆b,nX3=I	𝑑𝑆nX3=            (35) 

𝐶{ = ∫H𝜌(𝑆nX3\) ∗ 𝜑\(𝑆nX3\) − 𝜌nX(𝑆nX3\)I
2	𝑑𝑆nX3\	 + 	 ∫ 𝜌nXH𝑆b,nX3=I

2	𝑑𝑆nX3=      (36) 
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The 𝑅H𝜌=I is still a parabolic function as described in Eq. (5). The coefficients of Eq. (5) are 

formulated as follows: 

𝜌X =
∫=(rs)	L(-e)b-eqJP~

6q	Jg~
,                 (37) 

𝜌2[2 =
∫=(rs)	L(-e)P	b-eqJ�~	

6q	Jg~
= -.

∫ rs(-e)P	b-he
qJg

〈∆𝜌2〉@,LMNO,           (38) 

∆Z2=
LPWP3LeP

LPWP = �∫ =(rs)	L(-e)P	b-eqJ�~	�	[6q	Jg~]3	[∫ =(rs)	L(-e)b-eqJP~]P

[∫ =(rs)	L(-e)P	b-eqJ�~	]	[6q	Jg~]
,                    (39)  

In above equations, 𝑓(𝜑\)	𝑑𝑆X is the probability of finding the square of matrix volume fraction 

in the domains to be 	𝜑\(𝑆X)2 on all accessible interface 𝑆X, i.e.  

𝑓(𝜑\) =
	rs(-e)P

∫ rs(-e)P	b-ehe

, and               (40) 

∫ 𝑓(𝜑\)	𝑑𝑆X = 1-e
.                 (41) 

𝐶6~, 𝐶2~ , and 𝐶{~  are 𝐶6, 𝐶2, and 𝐶{ normalized by ∫ 𝜑\(𝑆X)2	𝑑𝑆X-e
, i.e. 

𝐶6~ =
Jg

∫ rs(-e)P	b-ehe

,                 (42) 

𝐶2~ =
JP

∫ rs(-e)P	b-ehe

,                     (43) 

𝐶{~ =
J�

∫ rs(-e)P	b-ehe

.                 (44) 

Similarly, the minimum of 𝑅H𝜌=I found by contrast variation gives 𝜌X (Eqs. (6) and (37)) and ∆Z2 

(Eqs. (7) and (39)). Moreover, by combining Eqs. (2) and (38) and scattering data at 𝜌= = 0, we 

can obtain 



24 
 

∫ rs(-e)P	b-he
qJg	

/
= JK(LMNO)

2a
6

LPWP.               (45) 

Because the porous materials of Case 5 are so complicated, the values obtained by the GPSLM are 

not surprisingly complicated. However, if the probability density function of 𝑓(𝜑\) is known, the 

above results can be simplified further. 

 

III. GPSLM DATA ANALYSIS PROCEDURE ILLUSTRATED FROM 

SIMULATED SMALL-ANGLE SCATTERING DATA 

In our previous work [26], kerogens isolated from the natural shale rocks of different maturity 

were used as examples of the simplest Case 1 to demonstrate the procedure of using GPSLM to 

extract surface heterogeneity of materials. Future works are still needed to apply the GPSLM to 

samples corresponding to the Case 2, 3, 4, and 5. 

Here a heterogeneous model system of compact solid matrix with inaccessible pores (Case 2) is 

simulated and the corresponding theoretical scattering intensity is calculated. We use this model 

system (with known parameters) to demonstrate the data analysis procedure of GPSLM and show 

how to extract the parameters of 𝜌X, ∆Z2, 𝜌2[2, and -e
/

 from a scattering experiment.  

In the simulated model system, four different kinds of particles with hollow cores and different 

shell SLDs are mixed to generate a heterogeneous system as shown in Fig. 2(a). Each particle can 

be treated as a domain with the shell as the solid matrix in the material. The hollow cores (outlined 

by the solid lines in Fig. 2(a)) are inaccessible to the guest fluid and their SLDs are fixed as zero 

during contrast variation. The shells are compact solids without tiny pores so guest fluid cannot 

penetrate through the shells and the shell SLDs are unchanged during the contrast variation 
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experiment. However, the SLD contrast across the interface between the shell and the accessible 

pore (drawn as dashed lines) keeps changing with the loading fluid. The core radius 𝑅�, the average 

shell radius 〈𝑅@〉, the polydispersity of shell radius 𝜎�Q, shell SLD 𝜌@, and particle number density 

𝑛 for the different particles are listed in Table I. Note that the concentration of particles in Fig. 2(a) 

is not drawn to the real scale. Artificial constant incoherent background with random noise is added 

to the signal to simulate the likely outcome of real data. The scattering intensity 𝐼(𝑄) for the 

heterogeneous system at different loading fluid SLDs, 𝜌= , is calculated (details are given in 

Appendix F). Fig. 2(b) plots several simulated intensity curves, which show clear Porod’s 

scattering law region that follows 𝐼(𝑄) 	∝ 𝑄34 (for 0.02 Å-1 < Q < 0.57 Å-1 ). Fitting the scattering 

intensity at the Porod’s scattering Q region with Eq. (2) allows us to determine the Porod’s constant 

𝐶B. The ratio of 𝐶B, JK(LM)
JK(LMNO)

, gives the 𝑅H𝜌=I at 𝜌= (Eq. (4)).  

Fig. 2(c) plots 𝑅H𝜌=I vs. 𝜌= and 𝑅H𝜌=I is shown to be a parabolic function of  𝜌= as predicted in 

Eq. (5). Note that the curve in Fig. 2(c) is obtained by fitting 161 simulated SANS patterns by 

systematically varying 𝜌= from 0 cm-1 to 8×10-6 cm-1. The minimum of 𝑅H𝜌=I gives the values of 

𝜌X and ∆Z2 (Eqs. (6) and (7)) as indicated in Fig. 2(c). In this case (an example of Case 2), 𝜌X 

represents the average SLD of the “accessible surface” (Eq. (18)) and ∆Z2 is the heterogeneity 

parameter with contributions from both the surface heterogeneity of accessible interfaces and a 

constant 𝐶nX due to the SLD contrast between the hollow cores and solid matrix (Eqs. (17) and 

(20)). 𝜌2[2 can be easily calculated through 𝜌2[2 =
LeP

63∆jP
 (Eq. (19)) and in this special case it 

represents the SLD square for “all” the interfaces per “accessible” surface area (note that the cores 

are hollow so 𝐶nX = ∫ 𝜌(𝑆nX)2𝑑𝑆nX-oe
  (Eq. (17)) and 𝜌2[2 =

6
-e
m∫ 𝜌(𝑆)2𝑑𝑆- p  (Eq. (19))). 
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With 𝜌2[2 and 𝐶B(𝜌= = 0), the accessible surface area per unit volume, -e
/

, can be determined by 

Eq. (21). The extracted 𝜌X, ∆Z2, 𝜌2[2, and -e
/

 by analyzing the scattering intensity shown in Fig. 

2(b) with the GPSLM, together with the corresponding theoretical known values are listed in Table 

II. Table II clearly shows that GPSLM can faithfully retrieve the values of the essential surface 

parameters. Similar calculations can be made for particles with smaller sizes. The Porod’s law 

region will shift to larger Q range. Two examples are given in the Appendix F. Even though the 

estimation of -e
/

 is slightly different from the true value, it is mainly due to the slight oscillation of the 

form factors of spheres that cause a small deviation of scattering curves from a smooth Q-4 decay. 
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FIG. 2. (a) Illustration of the simulated heterogeneous model system. Different colors represent different SLDs. Solid 

and dashed curves outline the inaccessible and accessible interfaces, respectively, to the guest fluid (the continuous 

medium with green color). Particles have shells with different SLDs and hollow cores inaccessible to the fluid. The 

structure parameters of the four different kinds of particles are listed in Table I. (b) The simulated scattering intensity 

𝐼(𝑄) vs. Q for the model system loaded with fluid of different SLDs, 𝜌=. (c) 𝑅H𝜌=I =
JK(LM)

JK(LMNO)
 vs. 𝜌= for the model 

system with 𝐶B(𝜌=) as the Porod’s constant obtained at guest fluid SLD = 𝜌= using Eq. (2). 

 

 

TABLE I. Structure parameters of the simulated model core-shell system illustrated in Fig. 2(a). 

Four kinds of core-shell particles with different shell scattering length densities (SLDs) and hollow 

cores are used for simulating heterogeneous compact domains with inaccessible pores (Case 2). 𝑟�, 

〈𝑟@〉, 𝜎�Q, 𝜌𝑠, 𝜑�, and 𝑛 are core radius, average shell radius, polydispersity of shell radius, SLD of 

the shell, volume fraction, and number density of each kind of particle, respectively.  

Parameters Particle 1 Particle 2 Particle 3 Particle 4 

𝑟�	(Å) 6000 8000 5000 4000 

〈𝑟@〉	(Å) 12000 10000 10000 9000 

𝜎�Q	(Å) 1200 1000 1000 900 

𝜌@	 (1014 m-2) 7.44 6.30 1.00 0.40 

𝜑� 0.02 0.05 0.03 0.04 

𝑛 (1015 m-3) 2.76 11.94 7.16 13.10 
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TABLE II. Exact values and experimental values of accessible specific surface area -e
/

, accessible-

surface-averaged scattering length density (SLD) 𝜌X , and surface-averaged second moment 

parameter 𝜌2[2, and heterogeneity parameter ∆Z2. The exact structural parameters are directly 

calculated from the heterogeneous simulation system with known parameters described in Table I 

using the definition of Eqs. (17)-(19). The experiment parameters are extracted from GPSLM data 

analysis of simulated small-angle neutron scattering (SANS) intensity in Fig. 2(b).  

 

 

 

 

 

 

 

IV. DISCUSSIONS 

For different cases discussed in this paper, the exact meaning of ∆Z varies slightly. But ∆Z is all 

related with the variation of the SLD along the interface in a sample. Therefore, we term ∆Z as the 

surface heterogeneity parameter. And the average scattering length density, 𝜌X, is shown to be the 

accessible surface averaged or related SLD for all cases. If two different fluids/gases can access 

different interfaces in a same sample, this difference can also be quantitatively evaluated by 

measuring the difference of 𝜌X for different guest fluids/gases. 

Parameters 

 

Exact  

 

GPSLM 

(Simulation) 

-e
/

 (m-1) 427535 

 

460896±621 

𝜌X (1014 m-2) 3.4496 3.4496±0.0006 

𝜌2[2 (1028 m-4) 31.56 31.57±0.02 

∆Z2 0.623 0.6230±0.0001 
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Although we have tried to include as broad range of scenarios as possible for the GPSLM, there 

are still some potential limitations due to the prerequisite of the presence of Porod’s scattering 

feature in the scattering data, i.e. 𝐼(𝑄) 	∝ 𝑄34. However, many materials have been shown to have 

scattering intensity with power-law feature but with the fractal exponent a not equal to 4, i.e. 

𝐼(𝑄) 	∝ 𝑄3� and 𝑎 ≠ 4 [42]. In these situations, if 𝑎 ≈ 4, we feel that the GPSLM should still 

serve as a good approximation and can be used to compare the surface heterogeneity among a 

series of samples with similar fractal exponents. If the exponent significantly deviates from 4 when 

a surface is not smooth with a fractal dimension, future works are needed to evaluate if the 

proposed method can be extended to surfaces with fractal dimensions.  

In some systems, the Porod’s scattering may be hidden by other scattering features with relatively 

large scattering intensity [37]. In this situation, the scattering pattern may not look like to have 

𝐼(𝑄) 	∝ 𝑄34 dependence. However, if Porod’s scattering can be decoupled from other scattering 

features, the GPSLM can still be applied as demonstrated in Fig. 2. The simplest and common 

example of this situation is the Porod’s scattering hidden in a constant incoherent scattering at high 

Q region: 

𝐼(𝑄) = 𝐶BH𝜌=I	𝑄34 + 𝐼V^�H𝜌=I,               (46)  

where 𝐼V^�H𝜌=I is the incoherent scattering background, which usually depends on the SLD of 

guest fluid. If 𝐼V^�H𝜌=I can be properly determined and subtracted from the intensity, the GPSLM 

can be intuitively applied. It should be noticed, however, if the scattering at high Q region (Porod’s 

scattering region) is very weak, the obtained results may have large error bars. In these cases, the 

accuracy of 𝐼V^�H𝜌=I is very crucial for getting meaningful surface heterogeneity parameter from 

Porod’s scattering at high Q.  
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Another example that Porod’s scattering can be decoupled from the rest of scattering is that there 

are some intrinsic structures in the system that does not change during the contrast variation. For 

example, the scattering can be due to the structure of components deeply buried inside the samples 

and not accessible to the guest fluid. For the simplicity of discussion, we only deal with the simple 

scattering form here as: 

𝐼(𝑄) = 𝐼B(𝑄) + 𝐼=(𝑄) = 𝐶BH𝜌=I	𝑄34 + 𝐶=	𝑄3�,             (47) 

𝐼B(𝑄) represents Porod’s scattering, which has the same mathematical expressions as described 

before and it changes with contrast variation. 𝐼=(𝑄) is the extra scattering from the same system, 

but does not change with the change of the guest fluid. One example is that 𝐼=(𝑄) can be due to 

some fractal structure that can be described as 𝐶=	𝑄3�. 𝑎 again is fractal exponent and 𝐶= is the 

fractal scattering pre-factor, both are independent of the SLD of guest fluid, 𝜌= . To apply the 

GPSLM, the scattering intensity can be first subtracted by the minimum intensity at 𝜌= = 𝜌=,\]^, 

and the modified intensity can then be normalized to get modified intensity ratio, i.e. 𝑅\H𝜌=I: 

𝑅\H𝜌=I =
VH%,LMI3VH%,LMN	LM,s��I

VH%,LMNOI3VH%,LMN	LM,s��I
= 6

LeP
H𝜌= − 𝜌XI

2.                              (48) 

Derivation of Eq. (48) can be found in Appendix G. Eq. (48) shows that for scattering intensity as 

described by Eq. (47), where Porod’s scattering can be decoupled from the rest of scattering, one 

is still able to determine 𝜌X  by finding the 𝜌=  at the lowest modified intensity ratio, 𝑅\H𝜌=I. 

Depending on the situations, the coefficient 𝜌X has different formulae and physical meanings as 

for the five cases described above. However, information of heterogeneity (∆Z), and consequently 

the accessible surface area, are lost and not able to be extracted using Eq. (48).  
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Note that when using SANS/SAXS to study pore structure by loading gas into a sample, it is 

always good to check the difference pattern of SANS/SAXS data within the Porod’s scattering 

region, i.e. the difference of the scattering patterns before and after the gas is loaded. If the 

difference pattern has different shape than the total scattering pattern, such as the change of the 

slope, this implies that part of the scattering features may be due to the scattering from some 

intrinsic structures in the material not affected by the gas loading. Thus, in order to analyze the 

pore structure of a system, it is more appropriate in this case to analyze the difference scattering 

pattern instead of the absolute scattering data.  

The contrast variation method has been widely used for many decades. It is well-known that if a 

material is not homogenous, the scattering pattern cannot be completely tuned to zero intensity for 

all Q range by simply varying the SLD of a guest solvent or gas. The residual scattering is due to 

the fact that different domains in a sample cannot be matched by the solvent/gas SLD 

simultaneously. Hence, it is not surprising that the residual scattering should contain some 

information of the heterogeneity of a material. Here, we demonstrate that if there is a Porod’s 

scattering region for the SANS pattern, the residual scattering with the contrast variation method 

is exactly the surface heterogeneity parameter.  

It is also important to emphasize that the average SLD, 𝜌X, obtained by the contrast variation in 

the Porod’s scattering region is the accessible surface averaged SLD. In some cases, the accessible 

surface may have different SLD than the bulk materials. The GPSLM can provide the information 

for accessible surface areas only. In addition, if different liquids or gases can access different type 

of surfaces, the accessible surface averaged SLD can shed some quantitative information of the 

difference of these different types of surfaces.    
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Because  𝜌X is not the volume averaged SLD that we typically think of, such as the Stuhrmann’s 

plot based on the Guinier scattering region. This indicates that the SLD of the solvent/gas needed 

to reach a minimum value for a sample can be different for different Q values. Thus, it is useful to 

examine theoretically the meaning of both 𝜌X  and ∆Z  at other scattering regions, which may 

contain more information of the heterogenous distributions. Hence, the contrast variation method 

can provide us much more information other than an average SLD. And some future theoretical 

and experimental works are needed to fully realize the power of the contrast variation method to 

obtain more information from heterogeneous samples, which are very commonly encountered in 

different research areas. 

The five cases discussed in this work all show that the scattering intensity at Porod’s region is a 

parabolic function of the SLD of loading guest fluid, 𝜌= (Eq. (5)). This is a direct result from the 

independence (Case 1 and Case 2) or linear dependence (Case 3, Case 4, and Case 5) of the average 

domain SLD, 𝜌b, on  𝜌= (Eq. (8)). We haven’t observed in our experiments that the intensity as a 

function of the SLD of the guest fluid does not follow a parabolic function. However, conceptually, 

the non-parabolic dependence of Porod’s scattering intensity on 𝜌= may appear when the average 

domain SLD is not linearly dependent on 𝜌= , i.e. 𝜌b  does not follow Eq. (8). This situation, 

however, is beyond the scope of current work. 

 

V. CONCLUSIONS 

In this study, we extend the generalized Porod’s scattering law method (GPSLM) previously 

developed for a relatively simple case (the Case 1 described in this work) to a few more 

complicated cases of heterogeneous porous materials, which are commonly encountered in many 
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man-made and natural porous materials. The applicability of GPSLM to five different classes of 

heterogeneous porous materials is fully discussed. The scattering intensity at Porod’s scattering 

region for the discussed cases is all shown to be a parabolic function of the scattering length density 

(SLD) of the loading guest fluid, 𝜌= (Eq. (5)).  

The parameters of the parabolic function, 𝜌X, 𝜌2[2, and ∆Z2, are related to surface-averaged SLD, 

second moment of SLD, and the surface heterogeneity of the materials, respectively. These 

parameters can be easily determined from the minimum of the parabolic function (or simply fitting 

the parabolic function using Eq. (5)). For different cases, the mathematical formulae and physical 

meanings of these parameters obtained by the GPSLM are rigorously derived and discussed. Even 

though there are many techniques that can probe the surface heterogeneity information, it has been 

extremely challenging to obtain the heterogeneous information of porous materials non-invasively. 

The GPSLM is thus a powerful method to quantify the surface heterogeneity. It is worth noting 

that the surface heterogeneity parameter obtained from the GPSLM can be related to the variation 

of compositional properties of materials through the calculation of SLD. In addition, the GPSLM 

can provide the surface area more accurately compared with the classic Porod’s law method 

applicable to mainly relatively homogeneous materials. 

Overall, the GPSLM is a non-destructive and model-independent method that can be directly 

applied to bulk materials. It is based on the Porod’s scattering law and the contrast variation, which 

have been already commonly used in the scattering community. By combining these two methods, 

the GPSLM can extract more information. In general, the GPSLM can be applied to any system 

that can be carried out with the contrast variation procedure using either the mixture of 

hydrogenated and deuterated solvents or pressure change of gas. Therefore, the applicability of the 

GPSLM can cover a wide range of materials such as biomolecules, colloidal suspensions, 

multicomponent alloys, and cement pastes.   
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APPENDIX A: DERIVATION OF GPSLM EQUATIONS FOR CASE 1 

In Case 1, all the pores are accessible by the guest fluid and the SLD of the solid matrix is not 

changed by loading the guest fluid. The intensity of Case 1 at Porod’s scattering Q range can be 

written as: 

𝐼H𝑄, 𝜌=I
%→'
(⎯⎯* 2𝜋	 -.

/
〈∆𝜌2〉@	𝑄34 = 2𝜋	 -.

/
m 6
-.
∫ H𝜌(𝑆) − 𝜌=I

2	𝑑𝑆- p	𝑄34.         (A1) 

The scattering intensity ratio between intensity measured at SLD of guest fluid = 𝜌= and intensity 

measured at 𝜌= = 0 can be derived: 

𝑅H𝑄, 𝜌=I ≡
VH%,LMI

VH%,LMNOI
=

g
h.
∫ HL(-)3LMI

P	b-h
g
h.
∫ L(-)P	b-h

=
g
h.
	m∫ L(-)P	b-h 32LM ∫ L(-)b-h qLMP ∫ b-h p

g
h.
∫ L(-)P	b-h

= 1 −

2𝜌=
g
h.
∫ L(-)b-h

g
h.
∫ L(-)P	b-h

+ 𝜌=2
6

g
h.
∫ L(-)P	b-h

= 1 − 2𝜌=
Le
LPWP + 𝜌=2

6
LPWP =

6
LPWP H𝜌= − 𝜌XI

2 + 1 − LeP

LPWP =

6
LPWP H𝜌= − 𝜌XI

2 + ∆Z2= 𝑅H𝜌=I               (A2) 
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Eq. (A2) proves that intensity ratio of Case 1 is a parabolic function of 𝜌= that can be formulated 

as Eq. (5). The coefficients of the parabolic function, 𝜌X, 𝜌2[2, and ∆Z2 are expressed in Eqs. 

(11)-(13).  

At 𝜌=  = 0, 𝐼H𝑄, 𝜌= = 0I = 2𝜋	 -.
/
m 6
-.
∫ 𝜌(𝑆)2	𝑑𝑆p	𝑄34 = 2𝜋	 -.

/
𝜌2[2𝑄34  and therefore -.

/
=

%k	V(%,LMNO)
2a

6
LPWP , which gives Eq. (13) to calculate the specific surface area, -.

/
. Note that 

𝑄4	𝐼H𝑄, 𝜌= = 0I = 𝐶B(𝜌= = 0). 

 

APPENDIX B: DERIVATION OF GPSLM EQUATIONS FOR CASE 2 

In Case 2, some dead pores and compact solid pockets are inaccessible to guest fluid, but the SLD 

of solid matrix is still not changed by loading guest fluid. The intensity at Porod’s scattering region 

for Case 2 is  

𝐼H𝑄, 𝜌=I
%→'
(⎯⎯* 2𝜋	 -.

/
〈∆𝜌2〉@	𝑄34 = 2𝜋	 -.

/
� 6
-.
m∫ H𝜌(𝑆X) − 𝜌=I

2𝑑𝑆X-e
+ ∫ H𝜌(𝑆nX) −-oe

𝜌nX(𝑆nX)I
2𝑑𝑆nXp�	𝑄34.                 (B1) 

The scattering intensity ratio: 

𝑅H𝑄, 𝜌=I ≡
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VH%,LMNOI
=
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2 + ∆Z2= 𝑅H𝜌=I          (B2)  
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Eq. (B2) above reduces to the general parabolic function described in Eq. (5) with the coefficients, 

𝜌X, 𝜌2[2, and ∆Z2, formulated as Eqs. (18)-(20).  

At 𝜌=  = 0, 𝐼H𝑄, 𝜌= = 0I = 2𝜋	 -.
/
�-e
-.

6
-e
m∫ 𝜌(𝑆X)2𝑑𝑆X-e

+ 𝐶nXp�	𝑄34 = 2𝜋	 -e
/
𝜌2[2𝑄34  and 

therefore gives the accessible specific surface area -e
/
= JK(LMNO)

2a
6

LPWP in Eq. (21). 

 

APPENDIX C: DERIVATION OF GPSLM EQUATIONS FOR CASE 3 

In Case 3, the solid domains have the same dependence of average domain SLD, 𝜌b, on guest fluid 

SLD, 𝜌=, and all the pores with length scale comparable to L are accessible. By setting a constant 

volume fraction of solid matrix as 𝜑\ in Eq. (8), we get  𝜌b(𝑆) = 𝜑\	𝜌(𝑆) + (1 − 𝜑\)	𝜌=. 

The Porod’s scattering can be expressed as: 

𝐼H𝑄, 𝜌=I
%→'
(⎯⎯* 2𝜋	 -.

/
〈∆𝜌2〉@	𝑄34 = 2𝜋	 -.

/
m 6
-.
∫ H𝜌b(𝑆) − 𝜌=I

2	𝑑𝑆- p 𝑄34 =

2𝜋	 -.
/
m 6
-.
∫ H𝜑\	𝜌(𝑆) + (1 − 𝜑\)	𝜌= − 𝜌=I

2	𝑑𝑆- p𝑄34 = 2𝜋	 -.
/
mrs

P

-.
∫ H𝜌(𝑆) − 𝜌=I

2	𝑑𝑆- p𝑄34.          

      (C1) 

Therefore, 〈∆𝜌2〉@ =
rsP

-.
∫ H𝜌(𝑆) − 𝜌=I

2	𝑑𝑆-  as described in Eq. (22).  

𝑅H𝑄, 𝜌=I ≡
VH%,LMI

VH%,LMNOI
=

�sP

h.
∫ HL(-)3LMI

P	b-h
�sP
h.

∫ L(-)P	b-h

=
g
h.
∫ HL(-)3LMI

P	b-h
g
h.
∫ L(-)P	b-h

.           (C2) 

Eq. (C2) reduces to Eq. (A2) as Case 1. Therefore, the coefficients for the parabolic function 𝜌X, 

𝜌2[2, and ∆Z2, have the same expressions as Case 1 too, i.e. Eqs. (11)-(13). 
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At 𝜌=  = 0, 𝐼H𝑄, 𝜌= = 0I = 2𝜋	 rs
P-.
/

m 6
-.
∫ 𝜌(𝑆)2	𝑑𝑆- p 𝑄34  and therefore rs

P-.
/

= JK(LMNO)
2a

6
LPWP 

(Eq. (24)). In Case 3, we can only determine the total surface area weighted by the square of matrix 

volume fraction, 𝜑\2𝑆9. 

 

APPENDIX D: DERIVATION OF GPSLM EQUATIONS FOR CASE 4 

In Case 4, the solid domains have different dependence of 𝜌b on 𝜌= and all the pores with length 

scale comparable to L are accessible. The matrix and pore volume fractions are not constant for 

different domains and Eq. (8) is used to describe 𝜌b. The Porod’s scattering can be expressed as: 

𝐼(𝑄)
%→'
(⎯⎯* 2𝜋	 -.

/
〈∆𝜌2〉@	𝑄34 = 2𝜋	 -.

/
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-.
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2𝑑𝑆p𝑄34.                      (D1)  

Therefore, we can obtain 〈∆𝜌2〉@ as described in Eq. (24).  
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The derivation in Eq. (D2) again reduces to the general parabolic function described in Eq. (5). 

The coefficients 𝜌X, 𝜌2[2, and ∆Z2 for Case 4 are indicated in Eqs. (26)-(28).   

At 𝜌=  = 0, 𝐼H𝑄, 𝜌= = 0I = 2𝜋	 -.
/
m 6
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we can determine the specific surface area weighted by the square of the matrix volume fraction 

at each surface position, i.e. ∫
rs(-)Pb-h
/

= JK(LMNO)
2a

6
LPWP as described in Eq. (31). 

 

APPENDIX E: DERIVATION OF GPSLM EQUATIONS FOR CASE 5 

In Case 5, the solid domains have different dependence of 𝜌b on 𝜌= and there are inaccessible 

pores or compact solid pockets with length scale comparable to L. This is the most general case 

and we consider three different kinds of interfaces: (1) the accessible interface 𝑆X between the open 

pore and the matrix domain whose average SLD can change with 𝜌= ; (2) the interface 𝑆nX3\ 

between non-accessible pore or compact solid pocket whose SLD will not change with 𝜌= and the 

matrix domain; (3) the interface 𝑆nX3= between non-accessible solid pocket and the open pore. 

The average domain SLD, 𝜌b(𝑆), again changes with 𝜌= according to Eq. (8). 

The Porod’s scattering can be written as: 
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This ends up with the complicated formula of 〈∆𝜌2〉@ shown in Eq. (33) of the main text. 

𝑅H𝑄, 𝜌=I ≡
VH%,LMI

VH%,LMNOI
=

m∫ rs(-e)P	L(-e)P	b-ehe
qJ�p32LM	m∫ rs(-e)P	L(-e)b-eqJPhe

pqLMPm∫ rs(-e)P	b-ehe
qJgp

m∫ rs(-e)P	L(-e)P	b-ehe
qJ�p

= 1 −

2𝜌=

f∫ �sHheI
P
	SHheI�he��Phe

i

∫ �sHheI
P
	�hehe

f∫ �sHheI
P
	SHheI

P
	�hehe

���i

∫ �sHheI
P	�hehe

+ 𝜌=2

f∫ �sHheI
P
	�hehe

��gi	

∫ �sHheI
P
	�hehe

f∫ �sHheI
P
	SHheI

P
	�hehe

���i

∫ �sHheI
P	�hehe

= 1 − 2𝜌=
m∫ =(rs)L(-e)b-ehe

qJP�p

m∫ =(rs)L(-e)Pb-ehe
qJ��p

+
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𝜌=2
�6qJg��

m∫ =(rs)L(-e)Pb-ehe
qJ��p

= 1 − 2𝜌=

f∫ M(�s)SHheI�hehe
��P

� i

�g��g
� �

f∫ M(�s)SHheI
P
�hehe

���
� i

�g��g
� �

+ 𝜌=2
6

f∫ M(�s)SHheI
P
�hehe

���
� i

�g��g
� �

= 1 −

2𝜌=
Le
LPWP + 𝜌=2

6
LPWP =

6
LPWP H𝜌= − 𝜌XI

2 + ∆Z2= 𝑅H𝜌=I.           (E2) 

We can see that even for the most complicated Case 5, the intensity ratio 𝑅H𝜌=I reduces to the 

same general equation, the Eq. (5), with the coefficients 𝜌X, 𝜌2[2, and ∆Z2 defined as Eqs. (37)-

(39). 

At 𝜌=  = 0, 𝐼H𝑄, 𝜌= = 0I = 2𝜋	 -.
/

6
-.
m∫ 𝜑\(𝑆X)2	𝜌(𝑆X)2	𝑑𝑆X-e

+ 𝐶{p	𝑄34 =

2𝜋	
m∫ rs(-e)Pb-ehe

p�6qJg��

/
𝜌2[2𝑄34 = 2𝜋	

m∫ rs(-e)Pb-ehe
qJgp

/
𝜌2[2𝑄34.  

In Case 5, a specific surface area weighted by different factors, depending on the interface, can be 

determined: 

m∫ rs(-e)Pb-ehe
qJgp

/
=

f∫ rs(-e)Pb-ehe
q∫ H63rs(-oe�s)I

P	b-oe�shoe�s
q∫ b-oe�Mhoe�M

i

/
=

f∫ rs(-e)Pb-ehe
q∫ r(-oe�s)P	b-oe�shoe�s

q∫ b-oe�Mhoe�M
i

/
= JK(LMNO)

2a
6

LPWP, which gives the Eq. (44). 

  

APPENDIX F: CALCULATION OF SCATTERING INTENSITY OF 

SIMULATED HETEROGENEOUS CORE-SHELL SYSTEM 

Here we demonstrate how to calculate the scattering intensity 𝐼(𝑄) of the simulated core-shell 

system described in Fig. 2(a) and Table I. The heterogeneous system is composed of four kinds of 

core-shell hollow particles with different size (different hollow core radius 𝑅𝑐, average shell radius 
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〈𝑅@〉, the polydispersity of shell radius 𝜎�Q), and different shell SLD, 𝜌𝑠. We can treat the shells are 

different compact domains that fluid molecules cannot penetrate through and the hollow cores are 

the inaccessible dead pores. The voids between the particles are accessible to the fluid. In this case, 

the Porod’s law scattering region is at relatively high Q compared with the first diffraction peak of 

the inter-particle structure factor, we can ignore the inter-particle structure factor, i.e. 𝑆(𝑄) ≈ 1.  

𝑃](𝑄) is the form factor of core shell particle type i with core radius as 𝑟�,], shell radius as 𝑟@,], core 
SLD as 𝜌�,] and shell SLD as 𝜌@,]. 𝜌= is the SLD of the guest fluid. 

𝑃]H𝑄, 𝑟�,], 𝑟@,] , 𝜌�,], 𝜌@,] , 𝜌=I = �
{tk�a��,�

�u

%��,�
H𝜌�,] − 𝜌@,]I  

¡¢£H%��,�I

H%��,�I
P − ¤¥¡H%��,�I

%��,�
¦ +

{tk�a�Q,�
�u

%�Q,�
(𝜌@,] −

𝜌=)	 
¡¢£	(%�Q,�)
(%�Q,�)P

− ¤¥¡	(%�Q,�)
%�Q,�

¦�
2

                (F1) 

The polydispersity of shell radius 𝑅@ of particle i is assumed to be: 

 

𝑓H𝑅𝑠,𝑖I =
6

¨2a©𝑟𝑠,𝑖
P
exp	 f− (𝑟𝑠,𝑖3〈𝑟𝑠,𝑖〉)P

2©𝑟𝑠,𝑖
P i            (F2) 

〈𝑅@,]〉 and 𝜎𝑅𝑠,𝑖 are the average shell radius and standard deviation of shell radius of particle type i, 
respectively. The ensemble form factor of particle type i: 

 

〈𝑃](𝑄)〉 = ∫𝑃](𝑄)	𝑓H𝑟𝑠,𝑖I𝑑𝑟𝑠,𝑖             (F3) 

 

The small-angle scattering intensity of this system can be calculated as: 

𝐼H𝑄, 𝜌=I = ∑ 	[𝑛]〈𝑃](𝑄)〉]]  ,               (F4) 

where 𝑛� is the number density of the particle p.      

One example is given in the main text. We have also simulated the scattering patterns with similar 

surface heterogeneity, but with much smaller particle sizes. The simulated patterns are shown in 
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Fig. S1. Fig. S1(a) and (c) are for the Sample 1 with the sample information listed in Table S1. 

And Fig. S1 (b) and (d)  are for Sample 2 with the sample information listed in Table S2. Note that 

the curves in Fig. S1(c) and S1(d) are obtained by fitting 161 simulated SANS patterns by 

systematically varying 𝜌= from 0 cm-1 to 8×10-6 cm-1.  Table S3 lists the results obtained with the 

GPSLM compared with the exact values. Note that the error bars estimated in Table S3 are based 

on the assumption that any deviation from the theoretical values using the GPSLM is due to the 

statistics errors following the Gaussian distribution. This is just a guide to estimate theoretically 

how close the values from the GPSLM are to the exact values.  
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Fig. S1. (a) The simulated scattering intensity 𝐼(𝑄) vs. Q for the model system (Sample 1)  loaded with fluid of 

different SLDs, 𝜌=. The structure parameters of the four different kinds of particles are listed in Table S1. (b) The 

simulated scattering intensity 𝐼(𝑄) vs. Q for the model system (Sample 2)  loaded with fluid of different SLDs, 𝜌=. 

The structure parameters of the four different kinds of particles are listed in Table S2.  (c) 𝑅H𝜌=I =
JK(LM)

JK(LMNO)
 vs. 𝜌= for 

the model system with 𝐶B(𝜌=) as the Porod’s constant obtained at guest fluid SLD = 𝜌= using Eq. (2) for Sample 1. 

(d) 𝑅H𝜌=I =
JK(LM)

JK(LMNO)
 vs. 𝜌= for the model system with 𝐶B(𝜌=) as the Porod’s constant obtained at guest fluid SLD = 

𝜌= using Eq. (2) for Sample 2. 

Table S1. Information for Sample 1. Four kinds of core-shell particles with different shell scattering length 

densities (SLDs) and hollow cores are used for simulating heterogeneous compact domains with inaccessible pores. 

𝑟�, 〈𝑟@〉, 𝜎�Q, 𝜌@, 𝜑�, and 𝑛 are core radius, average shell radius, polydispersity of shell radius, SLD of the shell, 

volume fraction, and number density of each kind of particle, respectively. 

Parameters Particle 1 Particle 2 Particle 3 Particle 4 

𝑟�	(Å) 2000 2667 1667 1333 

〈𝑟@〉	(Å) 4000 3333 3333 3000 

𝜎�Q (Å) 400 333 333 300 

𝜌@	 (1014 m-2) 7.44 6.30 1.00 0.40 

𝜑� 0.002 0.005 0.003 0.004 

𝑛 (1015 m-3) 7.46 32.23 19.34 35.37 

 

Table S2. Information for Sample 2. Four kinds of core-shell particles with different shell scattering length 

densities (SLDs) and hollow cores are used for simulating heterogeneous compact domains with inaccessible pores. 

𝑅�, 〈𝑅@〉, 𝜎�Q, 𝜌@, 𝜑�, and 𝑛 are core radius, average shell radius, polydispersity of shell radius, SLD of the shell, 

volume fraction, and number density of each kind of particle, respectively. 
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Parameters Particle 1 Particle 2 Particle 3 Particle 4 

𝑟�	(Å) 600 800 500 400 

〈𝑟@〉	(Å) 1200 1000 1000 900 

𝜎�Q (Å) 120 100 100 90 

𝜌@	 (1014 m-2) 7.44 6.30 1.00 0.40 

𝜑� 0.002 0.005 0.003 0.004 

𝑛 (1015 m-3) 276.31 1193.66 716.20 1309.92 

 

Table S3. Exact values and experimental values of accessible specific surface area -e
/

, accessible-surface-

averaged scattering length density (SLD) 𝜌X, and surface-averaged second moment parameter 𝜌2[2, and 

heterogeneity parameter ∆Z2  for Sample 1 and Sample 2. The exact structural parameters are directly 

calculated from the heterogeneous simulation system with known parameters described in Table S1 and S2. 

The experiment parameters are extracted from GPSLM data analysis of simulated small-angle neutron  

scattering (SANS) intensity in Fig. S1. 

Parameters 

 

Sample 1 

 Exact  

 

Sample 1 

GPSLM 

(Simulation) 

Sample 2 

Exact  

 

Sample 2 

GPSLM 

(Simulation) 

-e
/

 (m-1) 128261 
141087±209 

427536 
456784±619 

𝜌X (1014 m-2) 3.4496 3.4487±0.0006 3.4496 3.6317±0.0006 

𝜌2[2 (1028 m-4) 31.56 30.73±0.02 31.56 34.21±0.02 

∆Z2 0.6230 0.6129±0.0002 0.6230 0.6144±0.0001 
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APPENDIX G: POROD’S SCATTERING DECOUPLED FROM OTHER 

SCATTERING FEATURES INDEPENDENT OF CONTRAST VARIATION 

For scattering intensity that has both contributions from Porod’s scattering and other scattering 

pattern, such as power-law decay, the GPSLM for the five cases being discussed may be still 

applicable if Porod’s scattering can be decoupled and the rest scattering features do not depend on 

the SLD of guest fluid. Here we derive the equations for the special case with scattering intensity 

formulated as Eq. (47). In this situation, we use modified intensity ratio, 	𝑅\H𝜌=I =

VH%,LMI3VH%,LMN	LM,s��I
VH%,LMNOI3VH%,LMN	LM,s��I

 (Eq. (47)), instead of 𝑅H𝜌=I (Eq. (4)) to apply GPSLM. 

Combining Eqs. (4), (5), and (46), we can write 𝐼H𝑄, 𝜌=I as:  

𝐼H𝑄, 𝜌=I = 𝑅H𝜌=I	𝐼BH𝑄, 𝜌= = 0I + 𝐶=	𝑄3� = m 6
LPWP H𝜌= − 𝜌XI

2 + ∆Z2p 𝐼BH𝑄, 𝜌= = 0I + 𝐶=	𝑄3�  .

                (G1) 

Plugging 𝐼H𝑄, 𝜌=I to the definition of 𝐼𝑅\H𝜌=I, we can obtain Eq. (48). 

𝑅\H𝜌=I =
VH%,LMI3VH%,LMN	LM,s��I

VH%,LMNOI3VH%,LMN	LM,s��I
=

f g
SPWPHLM3LeI

PiVKH%,LMNOI

f g
SPWP	LePiVKH%,LMNOI

= HLM3LeI
P

LeP
 .          (G2) 
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