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We present a technique for obtaining an effective packing fraction for discontinuous shear thick-
ening suspensions near a critical point. It uses a measurable quantity that diverges at the critical
point — in this case the inverse of the shear rate 4, at the onset of discontinuous shear thickening —
as a proxy for packing fraction ¢. We obtain an effective packing fraction for cornstarch and water
by fitting 42 ' (¢), then invert the function to obtain ¢.s(¥.). We further include the dependence of
4- ' on the rheometer gap d to obtain the function ¢y s(¥e,d). This effective packing fraction ¢ s
has better resolution near the critical point than the raw measured packing fraction ¢ by as much
as an order of magnitude. Furthermore, ¢.ss normalized by the critical packing fraction ¢. can be
used to compare rheology data for cornstarch and water suspensions from different lab environments
with different temperature and humidity. This technique can be straightforwardly generalized to
improve resolution in any system with a diverging quantity near a critical point.

PACS numbers:
I. INTRODUCTION

Many densely packed suspensions such as cornstarch
and water are known to exhibit Discontinuous Shear
Thickening (DST). DST is defined by an effective vis-
cosity function n that increases apparently discontinu-
ously as a function of shear rate 4 (for reviews, see [1-
4]). DST fluids exhibit a number of unusual phenomena,
such as the ability to support a person running or walk-
ing on the surface [5], giant fluctuations in stress [6, 7],
hysteretic flow and oscillations [8-12], shear-induced jam-
ming [13-16], and anomalous relaxation times [17]. These
phenomena and DST tend to be found at packing frac-
tions ¢ just a few percent below the packing fraction of
the liquid-solid transition ¢. (also known as the jamming
transition). ¢. is a critical point, in the sense that the
magnitude of the viscosity and steepness of the shear
thickening portion of the 7(%) curve in stress-controlled
measurements diverge in the limit as the packing fraction
¢ is increased to ¢. [18-20]. Near such a critical point,
any uncertainty on the control parameter (in this case
packing fraction ¢) can lead to enormous uncertainties in
output parameters that are sensitive to the control pa-
rameter (e.g. viscosity magnitude or slope [19, 20], jam-
ming front propagation speeds [14], and relaxation times
[17]), making it challenging to study trends in packing
fraction in this range and identify how these phenomena
are related to each other or to DST.

Measurements of packing fractions of suspensions typi-
cally have uncertainties around 0.01 [19, 20], correspond-
ing to 20% of the DST range [17]. For cornstarch, this
error comes partly from adsorption of water from the air
onto the particles. While a suspension is being mixed,
placed, and measured it adsorbs water from the air, and
water evaporates, depending on temperature and humid-
ity. For example, a variation of 5% in relative humidity
results in an error of 0.01 in ¢ for cornstarch and wa-
ter at equilibrium [21]. Even samples that don’t interact

with water in the atmosphere typically have random un-
certainties in packing fraction around 0.01 [19, 20]. This
can result from the difficulty of loading a sample onto a
rheometer from a mixer without changing the proportion
of particles to solvent.

The sensitivity of ¢ to temperature and humidity can
also result in a huge systematic error when comparing to
data from different labs, or from different seasons in the
same lab where the humidity is different. For example, a
container of nominally dry cornstarch can be between 1%
and 20% water at equilibrium depending on humidity and
temperature where it is stored [21]. This, and along with
different packing fraction measurement techniques, can
result in systematic differences between different labs in
reported values of ¢, and thus ¢ of around 0.1 [17, 19, 22]
— larger than the 0.05 range in ¢ where DST is found.
Without a common packing fraction scale, datasets for
cornstarch suspensions from different labs have remained
for the most part uncomparable.

The random and systematic errors can be reduced by
using as a reference a measurable quantity that diverges
at the critical point, which can be converted to an ef-
fective packing fraction ¢.fr. In a previous work, we
used the inverse of the shear rate at the onset of DST
41 as a reference that allowed measurement of trends
in a relaxation time in the range ¢. — 0.02 < ¢efr < ¢¢
for cornstarch and water [17]. However, since measure-
ments have shown that the onset shear rate depends on
the rheometer gap d [22, 23], the fit function we used
previously cannot be applied to other experiments un-
less they are measured at the same gap size. This limits
he method’s applicability unless much of our work is re-
produced for each gap size. In this methods paper, we
expand on the technique we introduced previously [17]
to include the dependence of the effective packing frac-
tion on both onset shear rate 3. and rheometer gap d.
This produces a more generally useful conversion func-
tion which any investigator with data from any labora-



tory environment could use to obtain a value of ¢. for
cornstarch and water, requiring only measurements of
the critical shear rate 4. and the gap d to plug into a
function for ¢.rs. We also show how much the precision
on packing fraction measurements is improved using this
technique. While we present this technique using a DST
transition as an example, the technique could in princi-
ple be applied to improve resolution for any system with
measurable quantities that diverge at a critical point by
using as a reference parameter a quantity that diverges
at the critical point and calibrating to convert it to an
effective control parameter.

The remainder of this manuscript is organized as fol-
lows. The materials and experimental methods used are
given in Secs. II and III, respectively. Examples of viscos-
ity curves are shown in Sec. IV A. The method to calcu-
late the critical shear rate 4. from the viscosity curves in
shown in Sec. IV B. Fits to obtain ¢.ss(4.) are shown in
Sec. IV C, and fits of 4.(d) are shown in Sec. IV D, which
are combined to obtain ¢.¢f(je,d) in Sec. IVE. Section
V A compares the random errors on ¢ ¢ to those on ¢y,
which identifies the range of packing fraction where ¢y
has an improved error over ¢,;. Section V B shows how
systematic errors are improved by using ¢eys/¢ec.

II. MATERIALS

The suspensions used were the same as our previous
work [17]. Cornstarch was purchased from Carolina Bio-
logical Supply and suspended in tap water. The samples
were created at a temperature of 22.0 & 0.6 °C and hu-
midity of 48 +6%, where the uncertainties represent day-
to-day variations in the respective values. A four-point
scale was used to measure quantities of cornstarch and
water to obtain a weight fraction ¢,,;.

Each suspension was stirred until no dry powder was
observed. The sample was further shaken in a Scientific
Instruments Vortex Genie 2 for 30 seconds to 1 minute
on approximately 60% of its maximum power output.

III. EXPERIMENTAL METHODS

The experimental methods used are identical to our
previous work [17]. Suspensions were measured in an An-
ton Paar MCR 302 rheometer in a parallel plate setup.
The rheometer measured the torque M on the top plate
and angular rotation rate w of the top plate. The mean
shear stress is given by 7 = 2M/7TR® where R is the
radius of the sample. While the mean shear rate varies
along the radius of the suspension, the mean shear rate
at the edge of the plate is used as a reference parameter,
which is given by ¥ = Rw/d where d is the size of the
gap between the rheometer plates, equal to the sample
thickness. The viscosity of the sample is measured as
1 =7/% in a steady state. We took two data series with
approximately fixed gaps d = 1.250 mm and d = 0.610
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FIG. 1: (color online) Viscosity 1 as a function of shear rate 5,
at different effective packing fractions ¢cyy shown in the key.
Solid symbols: discontinuous shear thickening (DST) range.
Non-solid symbols: continuous shear thickening range.

mm. Within a series, we allowed d to vary with a stan-
dard deviation of up to 0.024 mm from experiment to
experiment in an attempt to reduce the uncertainty on
the sample radius R = 25.0 £ 0.5 mm. The experiments
were performed at a plate temperature of 23.5 £ 0.5 °C.
A solvent trap was used to slow down the moisture ex-
change between the sample and the atmosphere. The
solvent trap effectively placed a water seal around the
sample, with a lipped lid around the sample and the lips
touching a small amount of water contained on the top,
cupped, surface of the tool.

We pre-sheared the sample before viscosity curve mea-
surements to reduce effects of loading history. The pres-
hear was performed over 200 s with a linear ramp in
shear rate, covering the entire range of shear rates with
shear thickening for higher weight fractions (what we
later identify to be ¢.sr > 0.547), and the measurable
range of shear thickening for lower ¢.;s (this was lim-
ited by spillage of the sample at higher shear rates). The
net strain on the sample was at least 10 over the course
of the preshear, ensuring a well-developed sheared struc-
ture. We measured viscosity curves immediately after
this pre-shear by ramping the shear rate down then up
to minimize acceleration of the sample, performing the
ramps twice in sequence. The shear rate was ramped
at a rate of 250 to 500 seconds per decade of shear rate,
which was slow enough to obtain viscosity curves without
systematic trends or hysteresis, and with random varia-
tions from run to run with a typical standard deviation
of 30%.



IV. OBTAINING THE EFFECTIVE PACKING
FRACTION ¢.;¢

A. Steady state viscosity curves

To obtain an effective packing fraction ¢esr(e), we
need to obtain a well-defined onset shear rate 4. from
steady state viscosity curves. Figure 1 shows curves of
viscosity 1 as a function of shear rate § for d = 0.610
mm. FEach of these curves is an arithmetic average of
the four ramps measured [28]. Different packing frac-
tions are represented by the values of ¢.s; in the legend
of Fig. 1 (These are obtained from Eq. 3 which will be
explained in Sec. IVE). Shear thickening is defined by
the regions of positive slope of n(¥). For ¢crp > 0.547
(solid symbols in Fig. 1), sharp jumps in 7 are observed
at a critical shear rate .. Such sharp jumps are usually
identified as discontinuous shear thickening (DST). The
shear thickening is relatively weak at lower ¢.rs (i.e. the
slope is shallower), which is usually identified as contin-
uous shear thickening. For ¢,,; > 0.610 + 0.007 = ¢., we
observe a large yield stress even at very low shear rates
(not shown here) [17], corresponding to a jammed solid
state. The examples here are similar to other examples
of shear thickening in the literature [1-4].

B. Method to obtain 7.

We define 4. at the onset of DST for the average of the
four viscosity curves, where the viscosity increase is the
sharpest near the onset of shear thickening. Identifying
this onset is trivial for discontinuous-looking curves, as
the increase is very sharp. At lower ¢.ys, there is no
sharp transition, but a more gradual increase in the slope
of n(¥). To account for both of these regimes, we identify
4. as the average of the smallest adjacent pair of 4 values
where the local slope dlogn/dlogy > 1. For weaker
shear thickening, this condition on the slope is never met,
SO ¢eys is not defined, although ¢.;; would likely be
less useful so far away from the critical point anyway.
We define the viscosity 7. at the onset of DST as the
viscosity at the lower of the two shear rates used for 4,
as representative of the viscosity on the lower side of the
shear thickening transition. This method of averaging
the four viscosity curves before finding 4. leads to more
consistent ordering of viscosity curves shown in Fig. 1 in
terms of increasing 7. and 4, ! with ¢ tf, compared to
calculating 4. individually for each viscosity ramp then
averaging over multiple ramps as done in our previous
work [17].

Since the ramps vary randomly from run to run, the
random errors can be characterized by the standard de-
viation of the four ramps, which is on average 32% for
e, and 28% for n. for ¢.rr < 0.54, similar to the run-
to-run variation in viscosity [29]. For smaller ¢.sy, the
slopes of the viscosity curves become closer to the thresh-
old dlogn/dlog+ = 1, so noise in the data causes errors
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FIG. 2: (color online) Weight fraction ¢+ as a function of
the inverse shear rate 4, * at the onset of DST. Solid symbols:
gap d = 1.25 mm. Open symbols: d = 0.61 mm. Black lines:
power law fit for d = 1.25 mm (solid line) and for d = 0.61 mm
(dashed line). Red lines: model curves for ¢.s corresponding
to the best simultaneous fit of Eq. 3 to the data at both gaps
d. Dotted line: critical packing fraction ¢. = 0.610.

on the calculation of 7. that tend to be larger than the
typical run-to-run variation of viscosity of 30%. We will
show in Sec. V A that the effective packing fraction does
not improve resolution over ¢, for ¢.ry < 0.54 anyway.

C.  ders(¥e)

To obtain the function for ¢e (%) we fit ¢yt (Fe) [17].
Figure 2 shows a plot of ¢,:(¥.) for two different gaps d.
The data for d = 1.25 mm are reproduced from our previ-
ous work with the same experimenter and methods [17].
The data are plotted in terms of 4. ! so that the effective
packing fraction increases from left to right. The fact
that the two sets of data do not collapse confirms that
there is a dependence of . on gap size [23]. To obtain a
conversion function ¢,:(%), we fit a semi-empirical

¢wt = A’YCB + ¢c (1)

to the data with fit parameters A and B. Since the onset
stress of DST is mostly independent of packing fraction
[3], the divergence of viscosity with packing fraction leads
to the divergence of 4. ! in the limit as ¢,,; approaches ¢,
[17, 19], and Eq. 1 is equivalent to the Krieger-Doherty
relation [18]. For the purposes of finding an effective
packing fraction, the primary need is a calibration func-
tion that fits closely to the data, and power law fits tend
to be good at fitting smooth curves and can converge
at the critical packing fraction ¢., otherwise the method
does not rely on the form of the conversion function cho-
sen. The black lines in Fig. 2 show least squares fits
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FIG. 3: Onset shear rate 4. as a function of gap d. Data is
reproduced from Fall et al. [23]. Solid line: best fit of Eq. 2
for d < 1.8 mm.

of Eq. 1 to each set of data with a fixed d. We fixed
¢ = 0.6104+0.007 at the value of the jamming transition
¢ (where the yield stress is non-zero for ¢ > ¢.), as that
was obtained from a best fit of the same function [17], and
the same value of ¢, is expected for different d as long as d
is more than a few particle diameters [24, 25]. We use the
standard deviation of the mean on 4. of 16% as an input
error. We also adjust errors in ¢,,; to a constant value
of 0.008 to obtain a reduced x> = 1. The input error
of 0.008 indicates a combination of the sample-to-sample
uncertainty on ¢,,; for our measurements plus any devia-
tion of the fit function from the ‘true’ function describing
the data. The fit yields A = —0.0210+£0.0022 (for 4! in
units of seconds) and B = 0.303+0.038 for d = 1.25 mm.
As a self-consistency check, if we instead additionally fit
the value of ¢, then we obtain ¢. = 0.609 £ 0.008 with-
out significant reduction in y2. This is consistent with
the value of ¢. = 0.610 4+ 0.007 obtained from an earlier
fit [17], as well measurements of a yield stress at ¢ > ¢,
[17]. The fit of Eq. 1 to data at d = 0.61 mm shown
in Fig. 2 yields A = —0.0495 4 0.0038 (for 4. in units of
seconds) and B = 0.24140.031, with a sample-to-sample
uncertainty of 0.011 required to obtain a reduced x? = 1.
These exponents B for the different gaps d are consistent
with each other within their errors, while the different
coefficients A are are a result of the d-dependence of 4.
[22, 23]. We define ¢.¢s(%.) using the best fit parameters
from Eq. 1 with ¢.yy in place of ¢, so that our effective
packing fraction is based on the measurement of 5., but
is still can be interpreted as a packing fraction with a
value close to ¢ [17].

D. Gap dependence

We saw that the onset shear rate 7. depends on the
rheometer gap size d, as found previously [22, 23]. In

order to obtain a more complete conversion function
derr(Ye,d), we fit the data of Fall et al. [23]. Fall et
al. [23] presented the dependence of the onset shear rate
4. on the gap d for a parallel plate tool of radius R = 20
mm. They used a density matched suspension of corn-
starch in a 55 wt% solution of CsCl in demineralized wa-
ter at a nominal packing fraction ¢,; = 0.44 (which is in
the DST range on their scale). While the use of CsCl for
density matching is different than the solvent used in our
measurements, to our knowledge there is no qualitative
effect of density matching on shear thickening measure-
ments of cornstarch and water. The solvent viscosity is
also somewhat larger with CsCl. Since we only want to
obtain the scaling of 4.(d) from this data, we assume and
confirm later that the scaling in d is independent of these
parameter values.

The onset shear rate 4. as a function of gap d from
Fall et al. [23] is reproduced in Fig. 3. There is a trend
of increasing 4. up to a point where it reaches a plateau
for d > 1.8 mm. The vast majority of rheometer mea-
surements are done with d < 1.8 mm. At larger gaps,
samples tend to spill easily because they are comparable
to the capillary length of water (2.7 mm) so the surface
tension of the solvent is not enough to hold the sample
in place against gravity. Therefore, for our analysis we
only use data at d < 1.8 mm.

To obtain a fit function for d < 1.8 mm, we assume a
power law relationship

e o dM Pa (2)

Since we already obtained a fit coefficient A in Eq. 2, a
proportionality coefficient is not needed here when com-
bining the expressions to obtain ¢cf¢(e,d). This elimi-
nates the need to account for differences such as packing
fraction or solvent viscosity that would affect the value
of that proportionality. A least squares fit of Eq. 2 to the
data for d < 1.8 mm in Fig. 3 yields By = 0.284 4+ 0.022
with the uncertainty in 4. adjusted to 20% to obtain a
reduced x? = 1. This value of By is consistent with the
values of B = 0.303 4+ 0.038 and B = 0.241 4+ 0.031 ob-
tained in the fits of Eq. 1, indicating that 4. scales with
both d and ¢. — ¢, in the same way.

E. (;Seff(;}/md)

An expression for ¢eys(¥c, d) can be obtained by com-
bining the relations for ¢.rs(%.) and 4.(d) from Egs. 1
and Eq. 2. Since the exponents B and By are consis-
tent with each other, we set By = B to obtain a simpler
expression:

A/
Geff = e — F%B ‘ (3)

To obtain values of A’ and B for a general model, we
simultaneously fit Eq. 3 to the data for both gaps in
Fig. 2. Adjusting the input error on ¢, to 0.010 to
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FIG. 4: Viscosity n. at the onset of DST as a function of
packing fraction. Solid symbols: directly measured weight
fraction ¢.¢. Open symbols: effective packing fraction ¢eyys
using Eq. 3. Vertical line: critical packing fraction ¢.. Solid
curve: fit of Nec(pesy) for pers > 0.586. The scatter in desy is
less than the scatter in ¢, in this range.

obtain a reduced x? = 1 yields B = 0.268 & 0.018 and
A’ = 0.0290+0.0020 when 7, is in units of s~ and d is in
units of mm. Corresponding model curves at fixed d that
correspond to the data in Fig. 2 are plotted as red lines in
that figure. These curves are seen to agree extremely well
with the fits of Eq. 1 without the dependence on gap d.
The error here of 0.010 is the average of the errors on the
fits of the individual curves in Fig. 2, so Eq. 3 captures
the d-dependence of that data accurately without any
additional error. This agreement confirms the validity of
the assumption that the different materials used by Fall
et al. [23] have the same scaling for ¢ (d).

®ess can now be calculated from Eq. 3 for any suspen-
sion of cornstarch and water where 7, is measured. The
usefulness of resolving data near ¢, can be seen in Fig. 1.
The viscosity curves plotted in Fig. 1 are ordered by de-
creasing ¢y from upper left to lower right. In contrast,
data taken using the same methods plotted in terms of
¢wt are not well-ordered, due to the uncertainty of 0.01
in ¢yt [17].

V. IMPROVED PRECISION AND RANGE OF
APPLICABILITY

A. Random errors

Here we show how much the scatter is reduced by us-
ing effective packing fraction ¢.r¢ compared to the di-
rectly measured weight fraction ¢,;. A comparison can
be made by plotting another quantity that varies strongly
near ¢, as small errors in ¢ would be clearly apparent.
Specifically, we use the viscosity 7. at the onset of DST
as defined in Sec. IVB. In Fig. 4, we plot the onset
viscosity 7. vs. both ¢, and ¢erp for d = 1.25 mm.
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FIG. 5: (color online) Random error A¢gess as a function of
¢eyy for different measurement and analysis methods. Solid
circles: d = 1.25 mm. Squares: d = 0.61 mm. Open circles:
d = 1.25 mm, using a different analysis method to obtain
4e [17]. Triangles: data from a different laboratory with a
different flow geometry, control mode, experimenter, and en-
vironmental conditions [19]. Solid line: ideal random error on
¢esr from Eq. 4. Dotted line: 6 times the ideal error as a guide
to the eye. Dashed line: error on ¢:. Generally, the random
error Ageyy is less than the error on ¢y for ¢esy 2 0.56,
and decreases as ¢.rs approaches ¢., with some variation in
between 1-6 times the ideal propagated error.

This uses the same data as a similar plot in Ref. [17]
with a slightly different analysis method as explained in
Sec. IVB. It can be seen that there is less scatter for
¢ess than for ¢, near the critical point. To quantify
the scatter, we fit a power law plus a constant ¢, = 0.61
to @esr(ne) to the data, analogous to Eq. 1 with 7, in
place of 4.. This fit function has the expected diver-
gence of n.(¢ers) at ¢ [18, 19]. We fit the inverted form
to avoid problems with fit algorithms near a singularity.
We input a 14% error on 7, equal to the standard devi-
ation of the mean, and adjust the error Agerr on ¢eyy
to obtain a reduced x? = 1. This fit is shown in Fig. 4
for ¢.sr > 0.586. For this range, we find the required
input error A¢.rs = 0.0008. This error corresponds to
the root-mean-square (rms) difference from the fit, which
includes sample-to-sample scatter plus any deviation of
the fit function from the ‘true’ function describing the
data. Thus, this uncertainty A¢.ss reported is an up-
per bound on the random error of ¢.rs. Alternatively,
fitting 7. (¢wt) for the same data using the same method
requires an error Ag,,; = 0.0082. The error is an order
of magnitude smaller using ¢cry.

To illustrate how this uncertainty decreases as ¢.r; ap-
proaches ¢., we plot the random error A¢. s for different
fit ranges as a function of ¢.;¢ in Fig. 5. This is plotted
as a function of the center of the fit range, where the
upper end of the fit range is always fixed at ¢.. Results
are shown for both d = 0.61 mm (solid circles), d = 1.25
mm (squares) in Fig. 5. In each case, A¢.s; tends to de-
crease as ¢.rs approaches ¢., and is smaller than A¢.,



for ¢erp 2 0.56.

Here we check if the random error A¢, ¢ remains small
when using different analysis methods. In Ref. [17], 4.
was obtained for each ramp individually, then these val-
ues were averaged over 4 ramps to obtain a value of 7,
for that ¢:. Using this method, A¢.sy is plotted as the
open circles in Fig. 5 for d = 0.61 mm. These results are
in a similar range as solid circles which used the analy-
sis technique explained in Sec. IV A. This confirms the
scatter in data is reduced significantly on the ¢.s; scale
compared to ¢,,; even for different analysis methods.

As the ultimate test of the ability of ¢css to reduce
scatter, we analyzed data under the most different ex-
perimental conditions we could obtain. We use a dataset
from a previous publication [19]. This dataset had a
different experimenter, taken in a different laboratory,
with different environmental conditions (relative humid-
ity 40 £+ 2%, air temperature 22.8 + 0.1° C, and the
rheometer controlled at 20.0° C), a different rheome-
ter and flow geometry (cylindrical Couette with a gap
of d = 1.13 mm), a different measurement procedure
(stress-controlled measurements with a ramp rate of 500
s/decade), and a different preshear (covering a wider
range of stress above Tp,qz for all ¢.ry). We did the same
fit of ¢esr(ne), using a 10% error on 1, which represents
the run-to-run standard deviation for that dataset [19].
Ageys is plotted as triangles in Fig. 5 for different fit
ranges. A¢csy is similar to that found for the experi-
ments described in Sec. III, and again decreases as ¢y
approaches ¢., and is smaller than the uncertainty on ¢,
for large ¢csr (Adw: was 0.009 for this experimenter).
This confirms the scatter in the data is reduced signifi-
cantly on the ¢.rs scale compared to ¢, regardless of
experimenter, methods, or measurement conditions.

To illustrate why the error A¢.s; decreases near ¢,
we calculate the ideal propagated error from Eq. 3

A(beff = <¢c - (beff)BAﬁ/c/;Yc ) (4)

assuming that only the error A%, on 4. contributes to
the random error on ¢.r¢. We plot this ideal Agqrs in
Fig. 5 for B = 0.268 and A#./3. = 0.16, correspond-
ing to the random error we measured (Sec. IVB). The
measured random errors are somewhat larger than this
prediction, in the range of 1-6 times the expected error
in the DST range (the dotted line in Fig. 5 shows 6 times
the propagated error as a guide to the eye). The differ-
ence between the measured errors for different data sets
account for other sources of random error such as inher-
ent irreproducibility of the sample from run-to-run and
batch to batch. The observation that the measured errors
are roughly proportional to Eq. 4 in Fig. 5 suggests the
uncertainty in ¢.s¢ likely comes primarily from uncer-
tainties in measurements of ., or a systematic difference
between the fit functions and true functions that describe
Ne(desr) and Ye(pers), which is expected to increase far-
ther from ¢, where the divergent scaling becomes less
dominant. In both the data and the propagated error
from Eq. 4, the error A¢.ss decrease and go to zero at
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FIG. 6: Normalized weight fraction ¢.:/¢. as a function of
inverse onset shear rate 4, ' for data taken in a different lab-
oratory [19]. Solid triangles: plotted as a function of #,*
measured at the onset of DST. Open triangles: plotted as a
function of 4, ! measured at the onset of shear thickening.
Solid line: effective packing fraction ¢esy from Eq. 3 with
the parameters from Sec. IV E. Dashed line: best fit power
law function to the solid triangles. The model of Eq. 3 differs
from the best fit by a rms difference of 0.013 in ¢e s /e, corre-
sponding to a systematic error on ¢,y when comparing data
from different labs with different temperature and humidity.
The difference between the open and solid triangles indicates
a much larger systematic error due to different definitions of
the onset shear rate.

the critical point ¢. because the constant percentage er-
ror on . propagates to a smaller error on ¢.rr as e
varies more strongly with ¢, and the error goes to zero
as . diverges at at the critical point ¢..

We generally found the error Agq¢¢ is smaller than
the error on ¢y for ¢.rs 2 0.56 in Fig. 5. On the other
hand, for ¢.ry < 0.55, that means the error Aggys is
larger than the error on ¢,; due to the propagation of
uncertainties on the measured critical shear rate. Since
the precision of ¢ relies on the large slope of 4, ! near
the critical point ¢., it is not surprising that it is less
precise farther away from ¢.. Thus, we only recommend
using ¢ers for ¢epr 2 0.56, which coincidentally corre-
sponds to the DST range (shown in Fig. 1). The packing
fraction where this transition occurs depends on the in-
tersection of the trends for the errors A¢ and A¢.ry in
Fig. 5, and thus can change with the relative magnitude
of the measurement errors on ¢ and ..

B. Systematic errors

Here we identify systematic error on ¢.ss, which is
useful for comparing data from different labs, experimen-
tal procedures, equipment, environmental conditions, or
experimenters. As an example between very different
datasets, we consider the dataset of Ref. [19], where the



difference in ¢, based on ¢, is 0.12. Since ¢, is the crit-
ical point that controls the strength of DST, we hypothe-
size that this systematic error could be reduced if packing
fractions are normalized by this critical point. We plot
this normalized ¢,:/¢. for the data from Ref. [19] in
Fig. 6 (solid triangles) as a function of 4. !. For compar-
ison, we plot Eq. 3 with d = 1.13 mm as the solid line.
We exclude data from the quantitative analysis that were
so close to the critical point that the yield stress shifted
4. away from the diverging trend [19]. The data of [19]
agree closely with our @efs/dc, with a rms difference of
0.013 between the best fit of Eq. 1 to the data in Fig. 6
and the parameters from Sec. IV E. This corresponds to
the systematic error due to all of the different measuring
conditions and methods between the two experiments.
The small difference indicates that the same relationship
Guwt(Ye)/be O Gesr(Ye)/Pe holds for experiments in dif-
ferent labs within a systematic error of 0.013.

The small systematic error reported above for differ-
ent experiments assumes that data are analyzed the same
way. If we calculate 7. for each viscosity ramp before av-
eraging (the method of Ref. [17]), we find a nearly iden-
tical systematic error on ¢ss/¢. of 0.014. On the other
hand, a larger systematic error could result from a dif-
ferent definition of the onset shear rate. If we instead
analyze the onset of shear thickening %,,;» based on the
lowest shear rate where (%) has a positive slope (as is
often done), we obtain the open triangles in Fig. 6. There
is a large systematic difference from ¢.r¢ based on 7. at
the onset of DST. Since other groups may record iin
instead of 4., we provide a conversion function to apply
¢ers for datasets in terms of ¥y,s,. To obtain this con-
version function, we fit a power law to 4. (¥min) using the
data of Ref. [19], again excluding data where 7. is shifted
by a yield stress. This yields 4, = (0.60i0.04)"ygl‘?2i0'03.
This conversion can be applied before applying Eq. 3.
This extra conversion adds a systematic error of 17% on
e, and up to 0.004 on ¢css/¢. in the DST range based
on a propagation of the fit errors from Eq. 4.

C. Renormalized effective packing fraction
equation

Since the normalized scale ¢,y ¢/¢. has smaller system-
atic errors when comparing data from different labs, and
it is not tied to any specific environmental conditions of
the lab, it is desirable to present packing fraction data
on this scale. The normalized version of Eq. 3 is

¢eff:1_A/.B (5)

¢C d’}/c I

where A’ = 0.0475, and B = 0.268 for 7, is in units of
s~! and d is in units of mm.

It could be insightful to normalize 4. in Eq. 3 to
rewrite Eq. 5 in terms of separate length and timescales
as Gefr/de =1 — (do/d)(T75:)P where A’ = dyT”. How-

ever, to our knowledge, there is no timescale or length-
scale relevant to DST that is independent of packing frac-
tion that would allow us to do this. The only other raw
parameter that we could substitute in is the particle di-
ameter a = 0.014 mm, which leads to T' = 95 s for dy = a.
However, this parameter value is much larger than any
reported timescale relevant to DST. Using a cooperativ-
ity length — corresponding roughly to a correlation length
or minimum shear band width — for dy corresponding to
a few particle sizes [26] in place of a could reduce the
timescale; for example dy = 4a results in T = 0.5 s.
This timescale is in the range of relaxation times mea-
sured in DST suspensions [17], but this is at best a rough
correspondence because the relaxation times depend on
packing fraction. Since the cooperativity length is not a
constant but varies with other system parameters [26], it
is plausible a combination of the cooperativity length and
a relaxation time could produce A’, but this hypothesis
would have to be tested in a future study to be confirmed.

The normalization of packing fractions by the critical
point value ¢, has is also useful for collapsing DST data
even for particles of different materials or shapes [20]. If
¢. is really a critical point, then it is the proximity to
the critical point that matters. Even though the value of
the jamming transition ¢. depends on numerous different
parameters of the particles, liquid, and environment, the
normalized scale ¢e /P could be a general scale where
different suspensions can be compared as in Ref. [20].
From this viewpoint, if parameters such as particle shape,
roughness, friction coefficient, and polydispersity do not
affect the stress scales of the onset of shear thickening or
the upper bound of the shear thickening range [27], then
their effect on DST could be quantified primarily by how
they shift ¢..

VI. SUMMARY

In this methods paper, we presented a technique to
reduce uncertainty in measurements when there is a
divergence in another quantity at a critical point, us-
ing the specific example of an effective packing frac-
tion ¢crs of shear thickening suspensions of cornstarch
and water. The empirically fit conversion function is
beff/de = 1—A'%B Jd where B = 0.268, and A’ = 0.0475
when 7, is in units of s~ and d is in units of mm, over a
range of 0.61 mm < d < 1.8 mm (Figs. 2, 3). Obtaining
Geft/dc for a sample requires only a measurement of the
steady-state 4. at the onset of DST and the rheometer
gap size d, and plugging into the function ¢esr/dc(Ye, d).
If the shear rate %, is measured at the onset of shear
thickening instead of 4. at the onset of DST, then 4. can
be obtained from 4, = 0.609%:5¢ before applying Eq. 3.

The main advantage of the effective packing fraction
is that the random error A¢.fs is smaller than the er-
ror Ag¢yy on packing fractions measured by weight for
0.92 2 ¢esr/pe < 1 (Figs. 4, 5), corresponding to the
packing fraction range of DST (Fig. 1). Because of the



divergence of 4! at the critical point, the error on ¢, 1T
gets even smaller closer to the critical point (Fig. 5).
This allows observations of trends over the narrow pack-
ing fraction range where DST occurs. Our recent report
of two distinct anomalous relaxation times in the range
0.97 < ¢efr/pe < 1is an example in which trends could
not be clearly observed when plotting data as a function
of ¢yt with errors of 0.013 in ¢y /de (40% of the mea-
surement range), but trends could be resolved in terms
of ¢eff [17]

A second advantage of ¢ers/d. is that it has a small
systematic error of 0.013 when applied to datasets taken
under different conditions, (i.e. different labs, equip-
ment, measurement techniques, experimenters, temper-
ature and humidity) a significant improvement on the
systematic errors on the order of ~ 0.1 in ¢, (Fig. 6).
This small error on ¢ /¢, makes it possible to compare
data from different labs or seasons with high precision in
the DST range.

Finally, while we used the specific example of corn-
starch and water, this method to reduce uncertainties is
expected to work in other suspensions with different fit
parameters, as well as different critical phenomena where
a measurable quantity diverges at a critical point. To
apply this method to other suspensions requires fitting
Eq. 3 to ¢uwi(Ye,d) to obtain the fit parameters A’ and
B. While the value of B is related to the exponent in the
Krieger-Doherty relation, and we find consistent values
for B for suspensions in different solvents (e.g. compar-

ing to the data of Fall et al. [23]), the value of B may be
expected to depend on geometric properties of the parti-
cles like shape and roughness [19]. For different critical
phenomena, this approach relies on measuring a quan-
tity that diverges at that critical point, and using that
as a proxy to characterize the system. A fit function can
convert this to an effective parameter of choice for ease
of interpretation. The propagated errors are generally
expected to be smaller on the effective scale because the
error on a diverging quantity shrinks dramatically when
propagated back to a non-diverging scale.

On another topic, the observed gap-dependence of the
critical shear rate [22, 23] remains a puzzling observation
that is not trivially explained by current models for shear
thickening. The confirmation of this result serves as a
reminder of the need to address this issue theoretically.
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