
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Spontaneous deswelling of microgels controlled by
counterion clouds

U. Gasser, A. Scotti, and A. Fernandez-Nieves
Phys. Rev. E 99, 042602 — Published  3 April 2019

DOI: 10.1103/PhysRevE.99.042602

http://dx.doi.org/10.1103/PhysRevE.99.042602


Spontaneous deswelling of microgels controlled by counterion clouds

U. Gasser,1 A. Scotti,1, 2, 3 and A. Fernandez-Nieves2, 4, 5

1Laboratory for Neutron Scattering and Imaging,
Paul Scherrer Institut, 5232 Villigen, Switzerland

2School of Physics, Georgia Institute of Technology, Atlanta, USA
3current address: Institute of Physical Chemistry,

RWTH Aachen University, 52056 Aachen, Germany
4Department of Condensed Matter Physics, University of Barcelona, 08028 Barcelona, Spain
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Concentrated pNIPAM microgel suspensions at a fixed temperature below the deswelling transi-
tion of pNIPAM exhibit spontaneous particle deswelling. The microgels deswell before they are in
direct contact and, in polydisperse suspensions, this deswelling is most pronounced for the largest
microgel particles; as a consequence, the polydispersity of the suspension is reduced. Recently, we
presented a model for this spontaneous deswelling that is based on the presence of counterions orig-
inating from charged groups on the surface of the pNIPAM microgels [A. Scotti et al., Proc. Natl.
Acad. Sci. USA 113, 5576 (2016)]. Here, we present numerical Poisson-Boltzmann calculations of
the electrostatic potential and osmotic pressure inside and outside a pNIPAM microgel that could
trigger the observed deswelling at high particle concentrations.

I. INTRODUCTION

Soft colloidal particles are not as well understood as
hard, incompressible colloids. In particular, this is the
case for high particle concentrations, where the colloids
are in close contact and their internal degrees of freedom
(deformability, compressibility) become relevant. This is
reflected in studies of the interaction and phase behav-
ior of soft colloids in the recent literature. For example,
the phase behavior of soft colloidal particles has been
studied in Monte Carlo simulations using soft sphere po-
tentials [1–4]; these simulations find a freezing point at
higher densities than in hard spheres, consistent with ex-
periments [5, 6]. Furthermore, the Hertzian potential
has been used to model the compressibility of soft micro-
gel particles [7–9], and interactions analogous to that of
polymer brushes have also been proposed to model the
contact interaction between the fuzzy outskirts of swollen
microgels [10–12].

Importantly, none of these interactions can account
for the remarkable spontaneous deswelling behavior ob-
served in concentrated suspensions of soft microgels that
also enables changes in suspension polydispersity. This
behavior, not generally observed in other materials, al-
lows crystallization in samples that would otherwise re-
main in the fluid or glassy state due to polydispersity. It
was first observed in mixtures of small and large micro-
gels based on poly(N -isopropylacrylamide) (pNIPAM)
[13], where the large particles spontaneously deswelled
preventing the formation of the point defects that would
otherwise hinder crystallization.

Recently, we have presented a model for this selec-
tive deswelling at high concentrations [14] and have
shown that the freezing point of polydisperse and bidis-
perse pNIPAM suspensions is directly linked to particle
deswelling [6]. Our findings suggest that the counterions
associated to the charged groups at the periphery of pNI-

PAM microgels and the osmotic pressure they exert at
high particle concentrations are the key to the deswelling
behavior. Despite pNIPAM is an uncharged polymer,
pNIPAM microgels often contain SO−3 groups originat-
ing from ammonium persulfate (APS, (NH4)2S2O8), a
common initiator used in the synthesis of the particles;
these SO−3 groups reside at the ends of pNIPAM strands
and are located at the periphery of the particles due to
mutual electrostatic repulsion and mixing with the sol-
vent [15]. The associated counterions are electrostati-
cally bound to the charged groups forming a cloud that
extends both inside and outside the particle. However,
a charged sphere cannot bind all of its counterions, and
a fraction of them are able to overcome the attraction
and wander far from the particle; this happens for en-
tropic reasons and is due to thermal fluctuations. At
low microgel volume fractions, φ, this small fraction of
counterions provides the most important contribution to
the osmotic pressure of the suspension. In contrast, at
high φ, the counterion clouds of neighboring particles
overlap, increasing the counterion concentration in the
space between the particles. When these overlap-regions
take most of the space between particles and percolate
through the suspension volume, the previously bound
counterions become free to explore the space between the
particles, hence contributing to the osmotic pressure of
the suspension which, therefore, increases. In our previ-
ous work [14], we showed with simple Monte-Carlo sim-
ulations that the osmotic pressure due to those counteri-
ons outside the particles is indeed higher than that inside
the particles for φ & 0.5. The counterion concentration
inside the particles does not increase with φ, as the elec-
trostatic conditions there are mostly unaffected provided
the configuration of fixed charges in the particle periph-
ery stays fixed. As a consequence, an osmotic pressure
difference, ∆Π, builds up between the inside and outside
of the microgel particles as the concentration increases.
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It is this ∆Π that is responsible for the spontaneous par-
ticle deswelling whenever ∆Π is comparable or exceeds
the bulk modulus, K, of the particles [14]. At this point,
the particles shrink until the elastic stress of the network
restores mechanical equilibrium.

In this paper, we adapt numerical Poisson-Boltzmann
calculations originally applied to charged colloids [16],
to estimate the counterion distribution both inside and
outside a charged spherical surface, which we take as a
simple model representing the essential electrostatic fea-
tures of pNIPAM microgels. We find that the resultant
osmotic pressure difference between the inside and out-
side of the particles is consistent with the experimentally
observed deswelling of pNIPAM microgels at high parti-
cle concentrations.

The paper is structured as follows: We start by review-
ing the experiments and discuss both the microgel parti-
cles and the observed deswelling at high concentrations.
We then present the Poisson-Boltzmann approach and
restrict ourselves to the effects of the counterions. We
consider the Wigner-Seitz cell for each microgel, and cal-
culate the osmotic pressure at its boundaries, which is re-
lated to the counterion concentration in that region, and
at the particle center, which also relates to the counterion
concentration there; the values of the osmotic pressure
obtained in this way agree with those obtained in Monte
Carlo simulations. The difference in these pressures qual-
itatively explains the observed deswelling at high micro-
gel concentrations. We then consider the full free energy
of Alexander et. al. [16], and obtain how the inside os-
motic pressure is modified due to the electrostatic energy
inside the particle; this contribution, however, does not
qualitatively change our conclusions. We emphasize that
our results for the inside pressure rely on inflating a neu-
tral, impermeable sphere, whose radius is subsequently
taken to zero. The last part of the paper is dedicated to
explore the effects of salt and how it can eventually elim-
inate the effects of counterion-induced deswelling. We
then conclude, and suggest possible future directions to
confirm our results and interpretations.

II. MICROGEL SUSPENSIONS

Microgels are crosslinked polymer networks suspended
in a solvent. Depending on the temperature [17, 18], the
hydrostatic pressure [19–21], or the pH of the suspension
[22, 23], they can exist in swollen or deswollen states,
and they can reversibly change from one to the other
in response to changes in their environment. pNIPAM
microgels are temperature sensitive with a lower critical
solution temperature in water of TLCST ≈ 32 ◦C. They
are swollen for T < TLCST, and deswell for T > TLCST.
In the deswollen state, they still contain a significant
amount of solvent. The spontaneous deswelling at high
concentrations, which is the focus of our work, happens
at temperatures below TLCST where particles in dilute
conditions are fully swollen.

We have studied pNIPAM microgels containing
2.7 wt% of crosslinker N,N’-methylene-bis(acrylamide)
(BIS) with hydrodynamic radii in the range from 110 nm
to 190 nm. The details of the particle synthesis are de-
scribed in the supporting information (SI) of our previous
work [14].

Because the crosslinker reacts faster than the NIPAM
monomer during synthesis, the microgels have a core-
shell structure, with a shell whose polymer density decays
from the compact core towards the periphery [18, 24, 25].
Their structure is, therefore, modeled by a spherical core
with radius Rcore and homogenous density that is convo-
luted with a Gaussian to obtain a shell with decreas-
ing polymer density. This model is well accepted for
pNIPAM microgels and correctly describes the measured
form factors of our particles [14, 26]. The width of the
fuzzy shell is given by 2σ, where σ is the standard de-
viation of the Gaussian convolution kernel. The poly-
mer density is approximately constant up to a radius
≈ Rcore − 2σ, and decays to nearly zero at RSANS =
Rcore + 2σ.

Although pNIPAM is an uncharged polymer, the mi-
crogels contain SO−3 groups that originate from the am-
monium persulfate initiator used in the polymerization
reaction. During polymerization, the sulfate splits into
two SO−4 groups, which react with carbon double bonds
and attach to a carbon chain, Cn, as SO−3 −O−Cn·, where
the ‘·’ at the end indicates the radical on the distal car-
bon. The SO−3 groups remain on the ends of pNIPAM
chains and have been found to be located in the par-
ticle periphery [15]. The corresponding counterions are
ammonium ions (NH+

4 ) from the initiator or Na+ ions
from the sodium dodecyl sulfate (SDS) used to control
the particle size during synthesis [27]. We note that the
SDS is removed with repeated dialysis after the synthesis.
Most of the counterions are bound due to strong electro-
static attractions with the fixed SO−3 groups and form a
counterion cloud that can be considered to be part of the
microgel particle.

The concentration of colloidal suspensions is often
quantified with the volume fraction, φ, occupied by the
colloidal particles. However for soft and compressible mi-
crogels, the particle volume is not straight forward to de-
termine, particularly at high concentrations, and, there-
fore, we use a generalized volume fraction ζ = NpVsw/V ,
where Np is the number of particles in the suspension, V
is the total volume of the suspension, and Vsw = 4π

3 R
3
sw

is the fully swollen volume of one microgel, with Rsw the
radius obtained from dynamic light scattering measure-
ments (see SI of [14] and [28]). In practice, ζ is calculated
as

ζ = c
ρsol

ρpNIPAM

R3
sw

R3
coll

, (1)

where c is the mass fraction of polymer in the suspension,
ρsol and ρpNIPAM are the mass densities of the solvent and
pNIPAM, respectively, and Rcoll is the particle radius in
the fully collapsed state without any solvent in the par-
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ticle. The latter is obtained from viscosimetry measure-
ments with dilute suspensions (see SI of [14]). Recall that
in these conditions, the microgels are fully swollen and
ζ = φ. At high concentrations, the microgels deform,
deswell, and/or interpenetrate and, therefore, ζ can be
significantly larger than φ and can even exceed 1. In
contrast, φ is always limited to values ≤ 1 and to . 0.74
in the case of hard spheres.

III. PRIOR RESULTS: DESWELLING AT
HIGH ζ

As presented in our previous work, the studied micro-
gels exhibit low interpenetration [14, 26] but deswell at
effective volume fractions below random close packing,
ζ < φrcp ≈ 0.64 [6, 14]. This behavior is revealed with
SANS measurements using contrast matching: A small
fraction, (2.9 ± 0.3)%, of large microgels, with swollen
radius Rl = (176 ± 4) nm and that are fully hydro-
genated, were suspended with a majority of small parti-
cles, with swollen radius Rs = (117±7) nm, and that are
partly deuterated and contrast-matched with H2O/D2O
solvent. This allows the direct measurement of the form
factor of the hydrogenated particles. We followed the
spontaneous particle deswelling with this bidisperse sus-
pension to obtain direct measurements of the size of the
large particles. The same kind of deswelling is, however,
expected in monodisperse suspensions.

FIG. 1. RSANS (+), Rcore (3), and width of the fuzzy shell, 2σ
(4), of the large particles in a bidisperse suspension versus ζ
as obtained using SANS. The bidisperse suspension contains
(2.9± 0.3)% large particles with swollen radius (176± 4) nm
and a majority of small particles with radius (117±7) nm. In
the range 0.4 < ζ < 0.7, the scatter in the data is somewhat
larger than the error bars. The latter are obtained from form
factor fits carried out independently at each ζ, while the scat-
ter originates from the independent measurements at different
ζ. The origin of these two aspects of the data is thus distinct.
The right Y -axis shows the osmotic pressure (◦) measured
with the same suspension as used for SANS. Data taken from
our prior work [14].

Our SANS data show a slight compression of the par-
ticles below random close packing, ζ < φrcp; see Fig. 1.
The fuzzy shell is found to shrink first, while the core
is only compressed for ζ & 0.8. This can be understood
from the fact that the polymer density decreases towards
the particle periphery [18, 25]. Hence, the particle out-
skirts are expected to be the softest part of the particle
and that is why it is compressed first.

We also found that the osmotic pressure is governed
by the counterions [14]: At low volume fractions, most
of the counterions are bound by the charged groups and
form a cloud of counterions on the particle outskirts, ex-
tending both inside and outside the particle. The osmotic
pressure of the suspension is set by the small fraction of
counterions that are weakly bound to the particle and
that are able to escape the attraction and explore the
whole volume of the suspension. However at high con-
centrations, the bound counterion clouds of neighboring
particles overlap. This causes the counterion concentra-
tion to increase in the space between the particles, while
the concentration inside the particles shows no marked
increase with the concentration of the suspension. Above
a critical concentration, ζ∗, we expect the osmotic pres-
sure difference between the outside and inside of the par-
ticles to be larger than the bulk modulus of the particles,
causing the microgel particle to deswell until mechanical
equilibrium is again reestablished. We thus expect the
osmotic pressure difference between the outside and in-
side of the particles to cause the spontaneous deswelling
at high concentrations.

From the amounts of NIPAM and ammonium persul-
fate used in the synthesis of the particles and from the
measured particle sizes, we can estimate the number of
SO−3 groups on one particle, as presented in the SI of
Ref. [14]. We estimate to have a charge of -68000e on the
periphery of one microgel particle, where e is the elemen-
tary charge. Osmotic pressure measurements carried out
with the suspensions used to study the deswelling of the
large particles with SANS show an increase in osmotic
pressure, Π, with ζ, as shown by the ◦ symbols in Fig. 1.
For ζ . 0.8, Π(ζ) can be approximated to the ideal gas
expression: Π = Nfree kBT ζ/Vsw, where Nfree is the num-
ber of free counterions per particle. This approximation
allows us to estimate Nfree, which we find corresponds to
8 · 103 free counterions per microgel [14]. As the number
of free counterions per particle is � 1, these free coun-
terions determine the osmotic pressure of the microgel
suspension in dilute conditions; note, however, that most
counterions are bound to the microgel due to the elec-
trostatic attraction with its fixed charges. For ζ & 0.8,
the measured Π(ζ) is found to increase faster than lin-
early. This coincides with the beginning of the strong
compression of the large microgels in the binary suspen-
sions. We interpret this as a consequence of a strong
overlap of the counterion clouds of neighboring particles,
which strongly increases the number of counterions that
can effectively unbind in these conditions and contribute
to the osmotic pressure of the suspension.
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Further, the bulk moduli of our microgels (see SI of
Ref. [14]) are expected to decrease with particle size. This
is due to the higher reactivity of the crosslinker during
synthesis and the fact that the polymerization reaction
is left to last longer for larger particles, which means
that the crosslinker concentration decays more towards
the periphery than for smaller particles, making their
outskirts softer. As a consequence of this size-dependent
softness, the large particles in the bidisperse suspension
deswell before the small ones.

The deswelling due to the overlap of counterion clouds
was directly followed with SANS in bidisperse suspen-
sions. However, the same mechanism is at work in
monodisperse suspensions, where all particles are ex-
pected to deswell in unison when the osmotic pressure
due to the counterions exceeds the particle bulk modu-
lus.

IV. POISSON-BOLTZMANN CALCULATIONS

To understand the deswelling in more detail, we use
Poisson-Boltzmann calculations to estimate the osmotic
pressure given by the counterion cloud at a given ζ.

As the counterions are much more mobile than the
microgel particles, we assume the counterions find their
equilibrium distribution before the microgels change their
configuration in any significant way. Therefore, we con-
sider the charged groups on the microgel surface to be
fixed. We model a microgel particle as a sphere with
a homogenous surface-charge density that is open for
ions to move in and out of the particle through the
charged surface. Note that microgels contain a large
amount of solvent and, therefore, do indeed have an
open structure. The counterions must arrange inside
and outside the particle surface such that their charge
distribution minimizes their free energy. With the as-
sumption that correlations between counterions are not
important, which implies that a mean-field approxima-
tion is valid, the equilibrium configuration is given by
the Boltzmann factor: ρc(r) = ρ0 exp[−βeψ(r)], where
β = (kBT )−1 is the inverse thermal energy and ρ0 is
the counterion density in the region with vanishing elec-
trostatic potential ψ(r). Therefore, the Boltzmann fac-
tor exp[−βeψ(r)] gives the ratio of the probabilities to
find a counterion at distance r from the center of the
particle and in the region with vanishing ψ(r). The
charge density due to the fixed charges on the surface
of the particle is −eρf(r) = −Ze δ(r − R)/(4π R2) and
gives the second contribution to the total charge density
eρ(r) = e {ρ0 exp[−βeψ(r)]− ρf(r)}, where R is the par-
ticle radius and Z is the number of charged groups on
the particle. The electrostatic potential, ψ(r), is found
using the Poisson-Boltzmann equation

∆ψ(r) = − e

εrε0

[
ρ0e
−βeψ(r) − ρf(r)

]
. (2)

Following Alexander et al. [16], we assume every microgel
to sit in its Wigner-Seitz cell, which we approximate as a

sphere with radius Rc given by the volume fraction of the
microgel suspension: Rc = Rφ−1/3. Due to the spheri-
cal symmetry of the model, we use spherical coordinates
and thus ∆ψ = 1

r2 ∂r
(
r2∂rψ

)
. The resulting equation

can be solved numerically by iteratively calculating the
total charge eQ(r) = 4π

∫ r
0
dr′ r′2 e ρ(r′) inside the sphere

with radius r, the electric field strength E(r), the electro-
static potential ψ(r), and the total density of unit charges
ρ(r) = ρc(r) − ρf(r). The calculation starts at the edge
of the cell at r = Rc, where Q(Rc) = 0, E(Rc) = 0,
and ρ(Rc) = ρc(Rc) = ρ0, with ρc(r) the counterion den-
sity. The calculation proceeds towards r = 0 using the
equations

Q(r) = Q(r + dr)− 4π r2 dr ρ(r + dr) (3)

E(r) =
eQ(r)

4π εrε0r2

ψ(r) = E(r)dr + ψ(r + dr)

ρ(r) = ρc(r)− ρf(r) = ρ0 exp[−βeψ(r)]− ρf(r).

Using Eqs. 3, we obtain the number of charges inside
the sphere with radius r from the number of charges
in the larger sphere with radius r + dr. The quantities
E(r), ψ(r), and ρ(r) are then calculated at the reduced
radius r. Note that this procedure does indeed give a
solution of the Poisson-Boltzmann equation. For the cal-
culation of E(r), we use Gauss’ law: For a spherically
symmetric arrangement of charges, the E-field at dis-
tance r from the center is given by the total charge in
the sphere with radius r and equals the field of the to-
tal charge concentrated in the center. This guarantees
that the Poisson equation for the spherically symmetric
problem −∆ψ(r) = ∂rE(r) = eρ(r)/(ε0εr) is fulfilled.
Further, ρc(r) is calculated using the Boltzmann factor.
Also note that the fixed charges are located at r = R
and, therefore, have to be taken into account when r is
reduced from r > R to r < R. At this point, Q(r) is
reduced by the number of fixed charges, Z.

We also use the boundary condition dψ
dr (Rc) = 0, as

the total charge inside the Wigner-Seitz cell equals zero
and, as a consequence, the E-field at r = Rc vanishes.
We can also require that ψ(Rc) = 0, which we indeed do,
as the potential can be varied with an arbitrary constant.

The only free parameter in the iterative calculation is
the counterion density at the edge of the cell, ρc(Rc) =
ρ0. The calculation is started with an estimation for
ρ0. Whether that ρ0 gives the solution, is checked at the
end of each round by calculating the total mobile charges

4π
∫ Rc

0
dr r2 ρ0 exp[−βeψ(r)], which must equal the num-

ber of fixed charges, Z, due to charge neutrality. If this
condition is not fulfilled within the desired accuracy, ρ0
is corrected and the next round is started. By solving the
Poisson-Boltzmann problem, we thus fix ρ0, the potential
ψ(r), and the counterion density ρc(r).

The calculated electrostatic potential for three volume
fractions of the suspension is shown in Fig. 2a. The po-
tential ψ(0) in the center of the particle increases relative
to ψ(Rc) = 0 at the boundary of the cell, as φ increases



5

(a)

(b)

FIG. 2. (a) Electrostatic potential for a particle with radius
130 nm and Z = 70000 mobile charges for the volume frac-
tions φ = 0.05 (—), 0.25 (− − −), and 0.50 (− · −). The
curves end at r = Rc, where ψ(Rc) = 0. (b) The correspond-
ing counterion densities. For r . 140 nm, all three densities
virtually agree.

from 0.05 to 0.5. While ψ(0) is lower than ψ(Rc) for
φ = 0.05, it is higher for φ = 0.5. This behavior is re-
flected by the counterion density shown in Fig. 2b. In
dilute conditions (e.g. φ = 0.05), the counterion density
inside the particle is larger than that at the edge of the
cell. However, the situation is reversed at high concentra-
tions (e.g. φ = 0.5), and this reversal is a consequence of
the proximity of neighboring particles causing the coun-
terion clouds to overlap in the space between particles.
We note that the counterion density has its maximum
at r = R, where the electrostatic energy of a counterion,
eψ(r), is minimal. Also, the counterion density inside the
particle is virtually independent of φ. This is expected,
as the environment of the counterions inside the particle
remains almost unaffected by a change in the available
space outside the particle with a change in φ. Also note
that, in contrast to the counterion density, ψ(r) shows
a large change for r < R as φ is varied from 0.05 to
0.5. This is a consequence of our boundary condition

ψ(Rc) = 0.

The Poisson-Boltzmann calculation treats the counte-
rion cloud in a mean-field approximation that is expected
to break down when correlations between counterions be-
come important. This would occur first at the minimum
of ψ(r), where the concentration of counterions is high-
est (see Figs. 2a and b). We use our Monte-Carlo sim-
ulations of the counterion cloud presented in the SI of
Ref. [14] to estimate this effect. The simulations assume
Z = 7 · 104 mobile counterions with charge e that ar-
range around a smooth spherical surface charge −Ze at
R = 130 nm. The counterions are confined to a spher-
ical Wigner-Seitz cell and are treated as hard spheres
with radius 0.01 lB, where lB ≈ 0.7 nm is the Bjerrum
length in water at T ≈ 20◦C. The counterions are vir-
tually point like, as their radius is much smaller than
lB. We take the counterion positions in a thin spherical
shell of thickness given by the Bjerrum length around the
particle radius, r = R, and calculate the pair distribu-
tion function g(s), where s is the distance from an ion
within the thin spherical shell to a neighbouring ion also
located in the shell. The results for φ = 0.05, 0.25, and
0.5 are shown in Fig. 3. The Coulomb repulsion of the
counterions is apparent from the correlation hole, which
has an approximate width of ≈ 2 nm. The structure
of the counterion cloud appears to be gas like, as g(s)
approaches a constant value without showing the peaks
that would indicate the presence of shells of nearest or
higher order neighbor correlations and that would reflect
the existence of local-range order. The correlation hole
has the size expected from the nearest-neighbor distance
following from the peak value of ρc(r) shown in Fig. 2b:
dnn = 2[3/(4πρc,peak)]1/3 ≈ 2.7 nm. These results con-
firm the validity of the Poisson-Boltzmann approach.

FIG. 3. Pair distribution functions of counterions in a spher-
ical shell with thickness 0.7 nm at the potential minimum at
the particle radius R = 130 nm. The volume fractions are
φ = 0.05 (−), φ = 0.25 (−−), and φ = 0.50 (· · ·).



6

V. OSMOTIC PRESSURE

The osmotic pressure due to the counterions is ob-
tained as the partial derivative of the Helmholtz free en-
ergy with respect to the volume of the Wigner-Seitz cell
with T and Z fixed:

Π = −
(
∂F

∂V

)
T,Z

. (4)

We first use a simplified free energy that includes the
mobile counterions but neglects the fixed charge on the
surface of the microgel: F = −kBT lnZ with Z the con-
figurational integral of the counterions inside the Wigner-
Seitz cell. The kinetic energy of the ions is omitted, as it
contributes a mean energy 3

2ZkBT , which is constant as
long as T and Z are fixed. Since the Poisson-Boltzmann
equation follows from a mean-field approach, correlations
between counterions are assumed negligible, and each
counterion is thought to experience the same environ-
ment, with the presence of other ions entering only via
ψ(r). Therefore, the configurational integral can be writ-
ten as Z = zZ , where

z = 4π

∫ Rc

0

dr r2e−βeψ(r). (5)

is the configurational integral of a single counterion.
Thus, F = −kBT log zZ . Note this procedure is anal-
ogous to that followed in developing the van der Waals
model of a fluid, which is also a mean-field theory assum-
ing equivalent environments for all molecules in the fluid
and that also neglects correlations between the molecules;
the many-particle configurational integral of the van der
Waals model is, therefore, also written as the product of
the configurational integrals of single molecules.

With this, we obtain the osmotic pressure

Π = − 1

4π R2
c

(
∂F

∂Rc

)
T,Z

=
1

4π R2
c

(
∂

∂Rc
kBT log zZ

)
T,Z

= kBT
Z

z
= kBT ρ0. (6)

where we have used the first fundamental theorem of
integral calculus. The osmotic pressure of the suspen-
sion then only depends on temperature and the counte-
rion density at the edge of the Wigner-Seitz cell, where
E(Rc) = 0. At this location, the counterions are thus
‘free’, hence determining Π. We emphasize that the
mean-field approach gives the same result as a more fun-
damental treatment of the problem taking all the elec-
trostatic interactions of the mobile ions and the fixed
charged surface into account without relying on the
mean-field approximation of the Poisson-Boltzmann the-
ory [29, 30].

To estimate the osmotic pressure due to the counte-
rions inside the particle, Πi, we again only consider the

free energy due to the counterions and fix the cell radius
Rc but think of a small, spherical volume with radius ε
in the center of the particle that is enclosed by a semi-
permeable membrane, which is open for the solvent but
does not let the ions through – this is a usual setting to
calculate an osmotic pressure. Therefore, no mobile ions
are allowed in this small volume. This implies that the
integration range for the configurational integral starts
at the hard-sphere radius ε:

z(ε) = 4π

∫ Rc

ε

e−βeψ(r)r2 dr.

The osmotic pressure in the particle center is then ob-
tained from the derivative of the free energy with respect
to this excluded volume, taking the limit ε → 0 subse-
quently:

Πi =
1

4π ε2

(
∂F

∂ε

)
T,Z

= −kBT
Z

z(ε)

(
∂z(ε)

∂ε

)
T,Z

= kBT
Z

z(ε)
e−βeψ(ε)

ε→0→ kBT
Z

z
e−βeψ(0) = kBT ρ(0). (7)

Similarly to the osmotic pressure outside the particle,
the osmotic pressure inside the particle is given by the
density of ‘free’ counterions at r = 0, where E(0) = 0
due to the spherical symmetry.

The osmotic pressure outside (+) and our estimate for
the pressure inside (∗) a microgel particle are shown in
Fig. 4, where we also show the measured osmotic pressure
(◦) for comparison. The mean-field approximation used
to calculate this Πi also gives the same result as the more
fundamental approach presented in the Appendix.

To confirm our results, we also use Monte-Carlo simu-
lations and obtain the osmotic pressure through the well
known relation [31]:

Π = kBTρ+
1

3V

〈∑
i

ri · fi

〉
, (8)

where ri is the position of counterion i, and fi is the
total force acting on this ion, which includes the force
due to the other counterions and the force due to the
fixed charge:

fi =

Z∑
k=0
k 6=i

kBT lB
|ri − rk|2

ri − rk
|ri − rk|

+

{
0 ri ≤ R
−kBT lBZ

r2i

ri
ri

ri > R
.

We estimate Πi by averaging over all counterions within
0 ≤ r < 0.5R in Eq. 8. This is done for 10 time-steps of
the simulation after it has reached the equilibrium state.
One simulation was performed for each volume fraction
φ. The values of Πi are comparable to those obtained
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FIG. 4. (◦) Osmotic pressure obtained from osmometry mea-
surements versus effective volume fraction, ζ, and (+) osmotic
pressure obtained from numerical Poisson-Boltzmann calcu-
lations as a function of volume fraction, φ. The calculated
pressure inside the microgels is shown by (*) symbols. The
dashed horizontal line at the osmotic pressure Π = 4.8 kPa
maps the measurement at ζ = 1.05 and the calculation at
φ = 0.63.

TABLE I. Inside osmotic pressures obtained for R = 130 nm
and Z = 70000. Calculations are done using Eq. 7. Eq.
8 is used to obtain pressures from Monte-Carlo simulations.
For each simulation, pressures calculated from 10 times-steps
taken after the simulation has reached the equilibrium state
are averaged and the errors reflect the variation of these 10
pressures.

φ
Πi (Pa)

calculation simulation

0.05 287± 2 (21± 2) · 10

0.25 292± 6 (22± 3) · 10

0.5 285± 1 (21± 3) · 10

using Eq. 7, as shown in Table I. This indicates that our
calculation using Eq. 7 is reasonable.

We emphasize that our simplified free energy only con-
siders the counterions and neglects the electrostatic con-
tribution due to the fixed surface-charge. We will, how-
ever, see in Section VII that including this contribution
does not qualitatively change the results. In addition,
it is worth emphasizing that our result for the inside
osmotic pressure relies on deflating a neutral, imper-
meable sphere in a sea of charged counterions. While
this approach is certainly valid for obtaining the pres-
sure of neutral gases and liquids, it may require further
assessment for charged systems. The agreement with the
Monte Carlo simulation results, however, suggests that it
may nevertheless be a reasonable approximation. How-
ever, additional theoretical work, maybe based on the
approach presented in [32], is needed to more rigorously

calculate Πi.

VI. COMPARISON WITH EXPERIMENTAL
RESULTS

In Fig. 4, we plot the calculated osmotic pressure, Eqs.
6 and 7, and the results from osmometry. For small ζ, cal-
culation (+) and measurement (◦) are comparable. With
increasing ζ, the measured osmotic pressure does not in-
crease as fast as the calculated osmotic pressure. This
reflects particle deswelling and the additional volume the
free counterions have available due to the reduced parti-
cle size. We use the data shown in Fig. 4 to estimate the
actual volume fraction, φ, for a given ζ. We do this by
mapping the calculated osmotic pressure in the outside of
the particles onto the experimental measurements. For
instance, we obtain that the suspension at ζ = 1.05 with
osmotic pressure Π = 4.8 ± 0.2 kPa corresponds to an
actual volume fraction φ ≈ 0.62 (see dashed line in Fig.
4). Remarkably, the random close packing limit, φrcp,
is not reached at ζ = 1.05, the highest concentration
we used in our osmometry measurements. This confirms
that particle deswelling happens in the absence of direct
interactions between the microgels.

From the φ(ζ) estimates, we calculate the actual ζ-
dependent particle radius as Rsc(ζ) = [φ(ζ)/ζ]1/3Rs,
where the subindex sc indicates the corrected, swollen
radius. To compare this calculated deswollen radius with
measurements, we plot the ratio R/Rcoll in Fig. 5, where
R is either the calculated radius Rsc(ζ) or a measured ra-
dius R(ζ) obtained using SANS, and Rcoll is the radius in
the collapsed state. We find that the calculated ratio (2)
is close to the measured ratios for the deswelling of large
particles in a suspension with a (97.1±0.3)% majority of
small particles (4) and for the deswelling of small parti-
cles in a suspension with (84± 3)% of large particles (�).
Therefore, our model for the pressure-induced deswelling
at high concentrations appears to qualitatively capture
the deswelling mechanism. This agreement is obtained
with the rather simple model presented above for the so-
lution of the Poisson-Boltzmann equation and without
taking any details of the microgel structure into account.
The only particle property enabling deswelling is the par-
ticle bulk modulus; if too large, deswelling might be hin-
dered.

To more realistically model pNIPAM microgels, we
consider that the fixed charges are smeared out around a
spherical shell with radius R. This accounts for the SO−3
groups being fixed to the ends of pNIPAM chains, which
are crosslinked to other chains. The charged ends of the
chains are expected to be located near the periphery of
the particle [15], and we use a Gaussian distribution cen-
tered at R to account for this. This broader distribution
of the fixed charges reduces the depth of the minimum
in ψ(r) compared to the simpler model presented above,
as shown in Fig. 6a. As a consequence, the counterions
are somewhat more spread out, and the osmotic pressure
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FIG. 5. Radius ratio R/Rcoll versus effective volume fraction
ζ for the (2) calculated deswelling of microgels with swollen
radius Rsw = 117 nm and collapsed radius Rcoll = 43.6
nm, and the (3) deswelling measured by SANS for micro-
gels with swollen radius RSANS = (137 ± 4) nm and col-
lapsed radius Rcoll = (51.0 ± 0.6) nm, as well as with (4)
RSANS = (176 ± 4) nm and Rcoll = (65.5 ± 0.4) nm. Note
Rsw/Rcoll = RSANS/Rcoll = 2.68. The calculation for the
case of a spread-out cloud of fixed charges is shown by the (◦)
symbols with dashed line.

is slightly increased, as can be seen from the counterion
densities shown in Fig. 6b. Due to the higher osmotic
pressure, the deswelling at high concentrations is slightly
stronger with a broader distribution of the fixed charges
at the microgel periphery. This is shown by the (◦) sym-
bols in Fig. 5, which show R/Rcoll for spread-out fixed
charges and appear below the symbols representing the
case with all fixed charges on a spherical surface (2).
However, this effect is small, indicating that the approx-
imation with all fixed charges located on a thin spherical
shell is reasonable.

As shown by the (+) and (∗) symbols in Fig. 4, the
osmotic pressure of the microgel suspension is expected
to exceed the osmotic pressure inside the microgel par-
ticles for φ & 0.24. This osmotic pressure difference
suggests that the softest part of a microgel particle, the
fuzzy corona, might deswell before a strong overlap of
the counterion clouds is reached and the particle shows
pronounced deswelling. This is observed in Fig. 1, where
the fuzzy shell of the microgels seems to decrease from
2σ ≈ 55 nm at ζ = 0.23 to ≈ 49 nm at ζ = 0.64, while
the core of the particle essentially retains its size.

Since the swelling of a microgel is given by the balance
of the osmotic pressures inside and outside the particle
[33], we can estimate the bulk modulus from the calcu-
lated and measured osmotic pressures. As the first signs
of deswelling are found at ζ ≈ 0.23 in our SANS measure-
ments and as the calculated osmotic pressure outside the
particles starts to exceed the osmotic pressure inside the
particles at about the same ζ (Fig. 4), we estimate the

(a)

(b)

FIG. 6. (a) Electrostatic potential for a particle with radius
130 nm and a Gaussian distribution of the fixed charges with
mean deviation 14.3 nm for the volume fractions φ = 0.05
(—), 0.25 (−·−), and 0.50 (−···−). The potential correspond-
ing to when the fixed charges are concentrated at r = RSANS

and φ = 0.05 is shown by the dashed curve (−−−). ψ(r) = 0
is highlighted with a horizontal dotted line. (b) Correspond-
ing counterion densities. The density distribution of the fixed
charges is shown by the dotted curve (· · ·).

bulk modulus of the fully swollen microgel at ζ . 0.23 to
be given by our calculated osmotic pressure at ζ = 0.23:
Ksw ≈ 300 Pa. This value is in good agreement with
the Young’s modulus of swollen pNIPAM particles de-
termined using Atomic Force Microscopy [34]. The bulk
modulus of the core is obtained from the osmotic pres-
sure at ζ ≈ 0.8, where the core starts to be compressed.
We find Kcore = (2.5 ± 0.2) kPa. Comparing with the
literature, bulk moduli on the same order of magnitude
have been reported for pNIPAM-based microgels at high
concentrations or in the deswollen state [34, 35].
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VII. OSMOTIC PRESSURE INCLUDING
COUNTERIONS AND FIXED CHARGE

Here, we use the free energy F = U − TS [16], where
U is the total electrostatic energy

U =
4πe

2

∫ Rc

0

dr r2
[
ρc(r)−

Z

4πR2
δ(r −R)

]
ψ(r)

and S = −ZkB
∫
d3r p(r) log p(r) is the entropy due to

the mobile counterions, with p(r) = 1
z e
−βeψ(r) the nor-

malized probability density to find a counterion at dis-
tance r from the center and z the configurational integral
of a single counterion given in Eq. 5. Writing the entropy
as

S = −ZkB 4π

∫ Rc

0

dr r2 p(r) [− log z − βeψ(r)]

= ZkB log z +
4π

T

∫ Rc

0

dr r2ψ(r)eρ0e
−βeψ(r),

the free energy becomes:

F = −Ze
2
ψ(R)− ZkBT ln z

−2π

∫ Rc

0

dr r2 ψ(r) eρ0e
−βeψ,

where we have used the counterion density ρc(r) =
Z
z e
−βeψ(r) = ρ0e

−βeψ(r). We take ρ0 to be constant,
as in Ref. [16], and equal to the value obtained by self-
consistently solving the Poisson-Boltzmann equation, see
section IV.

To obtain the outside osmotic pressure due to the coun-
terions we vary the volume of the spherical Wigner-Seitz
cell by considering small changes of the cell radius Rc.

Π = − 1

4π R2
c

(
∂F

∂Rc

)
T,Z

=
1

4π R2
c

(
∂

∂Rc
ZkBT log z

)
T,Z

+2πR2
cψ(Rc)eρ0e

−βaψ(Rc)

= kBT
Z

z
= kBT ρ0,

where we have used that ψ(Rc) = 0. We obtain the same
result as with the simplified free energy used in section
V, which did not include the electrostatic energy.

To estimate the osmotic pressure inside the charged
spherical surface, we again consider a small, spherical
volume with radius ε located at the center that is not
allowed to contain counterions, as done in section V. Due
to the hard repulsion of counterions at r = ε, there are
no charges for r < ε. The free energy now becomes:

F = −Ze
2
ψ(R)− ZkBT ln z(ε)

−2π

∫ Rc

ε

dr r2 ψ(r) eρ0e
−βeψ(r)

with

z(ε) = 4π

∫ Rc

ε

e−βeψ(r)r2 dr.

Here, we keep the counterion density, ρ0e
−βeψ(r), and

the potential, ψ(r), fixed and as obtained by solving the
Poisson-Boltzmann equation. We now estimate the in-
side osmotic pressure by calculating how F varies with
ε:(

∂F

∂ε

)
T,Z

= −ZkBT
z(ε)

∂z(ε)

∂ε
+ 2πε2ψ(ε) eρ0 e

−βeψ(ε)

Πi =
1

4π ε2

(
∂F

∂ε

)
T,Z

= kBTρ(ε)− e

2
ψ(ε)ρ(ε)

ε→0→ kBTρ(0)− e

2
ψ(0)ρ(0). (9)

This result differs from Eq. 7; it has an additional contri-
bution related to the product ψ(0)ρ(0). As a result, Πi

now varies with volume fraction, as shown by the ∗ sym-
bols in Fig. 7. The result remains qualitatively the same
to when we only considered the role of the counterions:
The difference in osmotic pressure between the outside
and inside of the particle remains negative for low parti-
cle concentrations, favoring particle swelling, and positive
for high particle concentrations, favoring deswelling. In
addition, the values obtained at low φ are comparable to
those obtained experimentally. However, more rigorous
calculations of Πi, which do not rely on our proposal of
deflating an inside sphere, would be desirable to confirm
the validity of our simple calculations.

VIII. EFFECT OF SALT

The importance of the counterions in our model for
deswelling suggests that the addition of salt could have
a strong influence. Since the microgel structure is open
for ions, salt ions are expected to explore the outside and
inside of the microgel. Therefore, the presence of salt at
a concentration similar or larger than the average coun-
terion concentration is expected to decrease the osmotic
pressure difference between the inside and the outside of
the particles [36, 37].

The Poisson-Boltzmann equation including monova-
lent salt ions can be solved with a procedure analogous
to that outlined in section IV. The right-hand side of Eq.
2 changes due to the presence of salt ions:

∆ψ(r) = − e

εrε0
[ρ+(r)− ρ−(r)− ρf(r)] (10)

= − e

εrε0

[
ρ+e

−βeψ(r) − ρ−eβeψ(r) − ρf(r)
]
,

where ρ+(r) and ρ−(r) are the densities of ions with
charge e and −e, respectively, and the constants
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FIG. 7. (◦) Osmotic pressure obtained from osmometry mea-
surements versus effective volume fraction, ζ, and (+) osmotic
pressure obtained from numerical Poisson-Boltzmann calcu-
lations as a function of volume fraction, φ. The calculated
pressure inside the microgels is obtained using Eq. 9 and is
shown with (*) symbols. The dashed horizontal line at the
osmotic pressure Π = 4.8 kPa connects the measurement at
ζ = 1.05 and the calculation at φ = 0.63.

ρ+ and ρ− are the corresponding densities at r =
Rc. The iterative solution of the Poisson-Boltzmann
equation also applies for the case with salt. How-
ever, both ρ+ and ρ− need to be adjusted to find
the solution, and the condition for charge neutrality

changes to 4π
∫ Rc

0
dr r2 ρ+ exp [−βeψ(r)] = Z + S and

4π
∫ Rc

0
dr r2 ρ− exp [βeψ(r)] = S, where S is the number

of salt ion pairs per microgel particle.

Poisson-Boltzmann calculations with salt confirm the
leveling effect of the salt, as can be seen in Fig. 8a, where
ψ inside the particle progressively approaches the value
ψ(Rc) = 0 as S increases. This is also reflected by the to-
tal ion density, ρ+(r)+ρ−(r), shown in Fig. 8b, where the
rather low salt concentration corresponding to S = 103 is
found to reduce the osmotic pressure difference between
the outside and inside of the particle by ≈35% according
to our simple model for the inside osmotic pressure, Eq.
7. Further, we find a salt concentration ≈ 1 mM corre-
sponding to S = 104 is sufficient to essentially eliminate
the osmotic pressure difference for the Z value used in
our calculations, corresponding to 3Z/(4πR3

c NA) ≈ 6.3
mM. Therefore, sufficient added salt could suppress the
particle deswelling triggered by the overlap of counte-
rion clouds. In this case, the microgels are expected not
to deswell until they come into direct contact. Conse-
quently, their direct interaction is expected to determine
their deswelling behavior at high concentrations.

A size-dependent shrinking in bidisperse microgel sus-
pensions could, however, be observed even at relatively
high salt concentration, since the fuzzy corona contains
less crosslinker than the core and is, therefore, the soft-
est part of the microgel particle. Furthermore, larger

(a)

(b)

FIG. 8. (a) Electrostatic potential for a microgel with radius
130 nm and fixed charge −Ze = −70000 e at a volume fraction
φ = 0.5 with S = 105 (− · −), S = 104 (−−), S = 103 (—),
and without salt (· · · ). (b) The corresponding densities of
mobile ions, ρ+(r) + ρ−(r).

particles are typically softer than smaller ones, if they
are synthesized with the same cross-linker concentration:
The synthesis of large microgels is continued for longer
than for smaller but otherwise identical microgels. This
implies that the crosslinker density in the corona of large
particles has decayed more than in small particles, fur-
ther implying that the larger the microgel, the softer the
polymer network in its periphery. Whether deswelling is
triggered by the osmotic pressure difference between the
inside and outside of the particles or due to direct inter-
action, the largest and softest particles are expected to
deswell first and show the most pronounced deswelling.
A change in polydispersity is, therefore, expected in ei-
ther case. Experimental work with charged microgels
addressing the swelling behavior with added salt and at
high concentrations is thus desirable.
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IX. CONCLUSIONS

Counterions originating from charged groups due to
ionic initiators employed in the polymerization reaction
of pNIPAM are found to cause deswelling of pNIPAM
microgels at volume fractions below random close pack-
ing. This deswelling also reduces the polydispersity of
the suspension, as large particles are usually softer and,
therefore, deswell more than smaller ones. Using Poisson-
Boltzmann calculations for the counterion clouds and a
simple model for the osmotic pressure, we have found
that the pressure due to the counterions can explain the
observed particle-deswelling at high concentrations. Our
calculation of the inside osmotic pressure, however, relies
on deflating an inside neutral and impermeable sphere.
More rigorous calculations would be desirable to fully as-
sess the validity of our treatment. Within these consider-
ations, our simplified model captures the most important
aspects of the spontaneous deswelling process observed
experimentally. As completely uncharged pNIPAM mi-
crogels are hard to synthesize, our model is expected to
apply for most microgels based on pNIPAM without ad-
ditional charges added to the polymer network. Further-
more, our deswelling mechanism can be expected to also
apply to other microgels with an uncharged polymer net-
work but synthesized with an ionic initiator in the ab-
sence of significant added salt.

Appendix: A more rigorous calculation of the
osmotic pressure inside a charged spherical surface

when only considering the contribution of the
counterions to the free energy

We consider a spherical cell containing a fixed charge
surface-density at r = R representing a charged parti-
cle and Z mobile ions. The system is assumed to be
charge neutral and all the Coulomb interactions between
the ions and between the ions and the charged surface
are considered. In addition, the ions are assumed to re-
pel each other like hard spheres. The interaction between
the ions i and j carrying zi and zj unit charges and hav-
ing radii Ri and Rj , respectively, is

ui,j =

{
e2zizj

4πε0εr ri,j
ri,j ≥ Ri +Rj

∞ ri,j < Ri +Rj ,

and the interaction of the ions with the charged surface
with radius R is

up,i =

{
−e2ziZ
4πε0εr ri

ri ≥ R
−e2ziZ
4πε0εr R

ri < R.

−Ze is the total charge on the surface of the parti-
cle, and e

∑
i zi = Ze due to charge neutrality. With

these interactions, we can write the Hamiltonian as:
H =

∑
i up,i +

∑
i<j ui,j , where we ignore the kinetic

energy, as it amounts to a constant average energy. The

configurational integral of the N ions is given by

Z =

∫ Rc

0

dr1 r
2
1...

∫ Rc

0

drN r
2
N

∫
dΩ1...

∫
dΩNe

− H
kBT

with the upper integration limit Rc corresponding to
the radius of the spherical Wigner-Seitz cell contain-
ing the charged particle and the counterions and dΩi =
sin θi dθi dφi for the integration of the spherical surface
areas at r = ri.

To calculate the osmotic pressure in the center of the
charged particle, we think of a small, spherical volume
with radius ε in the center of the particle that is enclosed
by a semi-permeable membrane, which is open for the
solvent but does not let the ions pass. Therefore, no
mobile ions are allowed in this small volume. As a con-
sequence, it has a zero osmotic pressure inside and does
not have a Coulomb interaction with any charges, as it is
uncharged. However, it has a hard-sphere repulsion with
the ions:

uε,i =

{
∞ ri < ε

0 ri ≥ ε
.

Due to the infinite repulsion at r = ε, the ri-integrals of
the ions now run from ε to Rc, and the configurational
integral depends on ε:

Z(ε) =

∫ Rc

ε

dr1 r
2
1...

∫ Rc

ε

drN r
2
N

∫
dΩ1...

∫
dΩNe

− H
kBT .

Note that the Hamiltonian, H, in the integrand is not
affected by the presence of the excluded region at r < ε
and that only the integration range changes, since the
excluded sphere in the center is uncharged. This dif-
fers from the treatment of a similar problem in Ref. [30],
where the radius of a charged excluded spherical volume
is varied and not the radius of an uncharged counterpart.

To calculate the pressure inside the particle, we vary
the volume by changing the radius ε:

Πi = −
(
∂F (ε)

∂V

)
T,N

=

(
∂[kBT lnZ(ε)]

∂ε

)
T,N

dε

dV

=
−1

4π ε2
kBT

Z(ε)

(
∂Z(ε)

∂ε

)
T,N

,

where we have used that dV
dε = 4π

3
d
dε

(
R3

c − ε3
)

= −4π ε2.
For the derivative of the configurational integral with re-
spect to ε, we assume all counterions to be equivalent
with the same valence, zi = z, and we obtain

∂Zε
∂ε

= −
N∑
i=1

∫ Rc

ε

dr1 r
2
1...

∫ Rc

ε

drN r
2
N

×
∫
dΩ1...

∫
dΩN δ(ri − ε)e−

H
kBT

= −N
∫ Rc

ε

dr1 r
2
1...

∫ Rc

ε

drN r
2
N

×
∫
dΩ1...

∫
dΩNδ(r1 − ε)e−

H
kBT , (A.1)
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where the minus sign appears due to the differentiation
with respect to the lower integration limit, and the δ-
function fixes the radial distance of one ion at ri = ε. In
the last step, we have used that all ions are equivalent
and, therefore, give the same contribution.

Due to the radial symmetry of the colloidal particle,
the ion density is also radially symmetric. As a conse-
quence, the exact position of the ion fixed on the spherical
shell at r = ε does not matter, and the ion density only
depends on the radial distance, r, and not on the angles
θ and φ giving the position of the fixed ion on that spher-
ical shell. For this reason, the result of the integrations
is always the same, irrespective of θ1 and φ1. Therefore,
the Ω1-integral simply contributes a factor 4π, while the
r1-integral gives ε2 due to the δ-function. We obtain

∂Zε
∂ε

= −4πε2N

∫ Rc

ε

dr2 r
2
2...

∫ Rc

ε

drN r
2
N (A.2)

×
∫
dΩ2...

∫
dΩN exp

[
−H(|r1| = ε, r2, ..., rN )

kBT

]
.

Now, we use the ion density at position r defined as

ρ(r) = N

∫
V

d3r1...

∫
V

d3rN δ(r1 − r)
e
− H
kBT

Z(ε)

=
N

Z(ε)

∫
V

d3r2...

∫
V

d3rN

× exp

[
−H(r1 = r, r2, ..., rN )

kBT

]
.

Here, the r1-integral is absorbed by the δ-function, as the

position of ion 1 is fixed at r. In the calculation for ∂Zε
∂ε

in Eq. A.1, the δ-function only absorbs the r1-integral for
the radial distance of ion 1 and not the Ω1-integral. The
integrations for ρ(r) are the same as those in Eq. A.2,
and we finally obtain

∂Zε
∂ε

= −4πε2Z(ε)ρ(ε),

which is needed to calculate the pressure

Πi =
−1

4π ε2
kBT

Z(ε)

(
∂Z(ε)

∂ε

)
T,N

= kBTρ(ε)
ε→0→ kBTρ(0).

In the last step, we take the limit ε→ 0, as the excluded
volume in the center of the particle has an arbitrarily
small radius ε.

This more detailed treatment of the osmotic pressure
inside the particle agrees with the result obtained with
the mean-field approach of the Poisson-Boltzmann the-
ory (Eq. 7), and it shows that Πi indeed only depends
on the ion density in the center of the particle and the
temperature when only the contribution due to the coun-
terions is taken into account for the free energy F .
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