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Using numerical simulations, we examine the dynamics of driven two-dimensional bidisperse disks
flowing over quenched disorder. The system exhibits a series of distinct dynamical phases as a
function of applied driving force and packing fraction including a phase separated state as well as
a smectic state with liquid like or polycrystalline features. At low driving forces, we find a clogged
phase with an isotropic density distribution, while at intermediate driving forces the disks separate
into bands of high and low density with either liquid like or polycrystalline structure in the high
density bands. In addition to the density phase separation, we find that in some cases there is a
fractionation of the disk species, particularly when the disk size ratio is large. The species phase
separated regimes form a variety of patterns such as large disks separated by chains of smaller
disks. Our results show that the formation of laning states can be enhanced by tuning the ratio
of disk radius of the two species, due to the clumping of small disks in the interstitial regions
between the large disks. This system could be experimentally realized using sterically interacting
colloidal particles suspended in a viscous fluid driven over random pinning arrays or granular matter
suspended in fluid moving over a random landscape.

I. INTRODUCTION

A large class of systems can be effectively described as
a collection of interacting particles moving over a random
pinning landscape, where a variety of distinct dynamical
phases appear as a function of driving force1. Well stud-
ied examples of such systems include vortices in type-II
superconductors2–6, driven Wigner crystals7,8, skyrmions
undergoing current-induced motion9–11, sliding pattern
forming assemblies coupled to random landscapes12,13,
colloids on disordered substrates14–19, and active matter
moving in complex environments20–22. These systems
often exhibit multiple nonequilibrium phase transitions,
such as a transition from a pinned to a sliding phase fol-
lowed by transitions to different types of sliding phases.
Such transitions are associated with clearly observable
changes in the velocity-force curves, fluctuation spectra,
and spatial reordering of the particles.

Previous work on dynamical phase transitions in
driven systems has primarily focused on long or inter-
mediate range particle-particle interactions that tend to
favor a uniform particle density, such as that found in
magnetic or charged systems. When particles of this type
are placed on quenched disorder composed of randomly
placed strong pinning sites, three nonequilibrium phases
emerge: a pinned disordered state, a plastic flow state
in which the particle positions are disordered and the
particles exchange neighbors as they move, and a dy-
namically reordered anisotropic crystal or moving smec-
tic state that appears at high drives when the effective-

ness of the pinning is reduced1.
There are numerous examples of systems in which the

particle-particle interactions are short ranged or steric,
including many types of colloidal suspensions, emulsions,
bubbles, and granular matter. Although it might be nat-
ural to assume that the short-range interactions would
produce simpler behavior than the longer-range interac-
tions when the particles are driven over quenched dis-
order, it was recently shown that monodisperse hard
disks moving over a random pinning landscape exhibit
a remarkably rich variety of dynamical phases, including
clogging, disordered plastic flow, segregated flow, laning
flow, and moving crystals23. The disk system can form
moving density segregated states containing high den-
sity bands coexisting with low density regions. In some
cases, the dense bands form close packed hexagonal lat-
tices even when the overall density of the system is well
below the crystallization density. At higher drives, the
crystalline bands break up to form dense one-dimensional
chains, while at higher densities the disks form a mov-
ing crystalline solid23. Density separated phases cost no
energy in systems with contact interactions, since the en-
ergy remains small even when the particles accumulate in
one region and are depleted from another region. In con-
trast, when the interactions are longer range, the system
can minimize its energy by destabilizing and dispersing
any locally dense regions.

In this work, we consider bidisperse disks driven over
quenched disorder consisting of randomly placed pinning
sites. In the absence of driving or pinning, the disks form
a jammed solid at densities well below the crystalliza-
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tion density φ = 0.9 of pin-free undriven monodisperse
disks24,25. Both monodisperse and bidisperse disks can
exhibit a density segregation into dense and depleted re-
gions, but the bidisperse disks can also undergo species
segregation of the two disk sizes. Numerous studies have
demonstrated species segregation under nonequilibrium
conditions for short range repulsive bidisperse systems in-
cluding granular matter26–29 and colloids30–32, where the
degree of segregation depends on the ratio of particle sizes
and the type of driving force applied. There are, however,
few studies examining the impact of quenched disorder
on size segregation. An understanding of segregation ef-
fects in flowing bidisperse disks coupled to quenched dis-
order not only offers new insights on depinning and slid-
ing phenomena, but also could be used to develop new
methods for separating or mixing bidisperse or polydis-
perse systems of particles. For example, some geological
systems can be described in terms of polydisperse disks
moving through random pinning, and such systems could
undergo dynamic segregation. Furthermore, these results
could be relevant to experiments in multi-species flows of
soft matter confined to quasi-two dimensional environ-
ments, such as sterically interacting colloids moving over
random substrates or the flow of granular matter over a
disordered background.

This paper is organized as follows. We describe our
simulation technique for the bidisperse disks driven over
random pinning in Section II. In Section III, we show the
dynamic patterns that form for a system in which 50%
of the disks are large and the radius ratio of the large to
small disks is 1.4. In Section IV, we consider large disks
that are twice as big as the smaller disks while maintain-
ing the fraction of large disks at 50%. In Section V, we
show that by reducing the fraction of large disks to 10%,
we can enhance the segregation and stratification effects.
We examine the scaling of the velocity-force curves near
depinning in Section VI. We test for hysteresis in Sec-
tion VII, and we discuss possible extensions to the sim-
ulations in Section VIII. We summarize our results in
Section IX.

II. SIMULATION

We consider a two dimensional (2D) system of size
L × L with periodic boundary conditions in the x and
y directions. The sample contains Nd = Ns + Nl disks,
where Ns disks have a small radius of rs and Nl disks
have a large radius of rl. The disk dynamics are gov-
erned by the following overdamped equation of motion:

η
dRi

dt
= Fdd + Fp + FD. (1)

Here η is the damping constant and Ri is the loca-
tion of disk i. The disk-disk interaction force is Fdd =∑
i 6=j k(rijdd − Rij)Θ(rijdd − Rij)R̂ij , where rijdd = ri + rj ,

ri(j) is the radius of disk i(j), Rij = |Ri − Rj |, R̂ij =
(Ri−Rj)/Rij , Θ is the Heaviside step function, and the

spring constant k = 50 is large enough to prevent the
disks from overlapping by more than 1% of their radii.
The pinning force Fp is produced by Np pinning sites
modeled as randomly placed non-overlapping parabolic
wells cut off at a radius of rp = rs that can each cap-
ture at most one disk with a maximum pinning force of
Fp = 1.0. The density φ of the system is given by the
area covered by the disks, φ = π(Nsr

2
s +Nlr

2
l )/L

2, where
L = 60 and rs = 0.5. We vary rl and set the radius ratio
Ψ = rl/rs to Ψ = 1.4 in Sec. III and Ψ = 2.0 in Sec. IV.
In a previous study of the jamming of bidisperse disks
using this model with Ψ = 1.4, the jamming density in a
pin free sample is φj ≈ 0.84533. We set Np = 1440, giv-
ing a fixed pinning site density of φp = Npπr

2
p/L

2 = 0.31.
Previous studies have shown that increasing φp does not
alter the behavior, but only shifts the driving forces at
which the dynamical transitions occur23. The driving
force FD = FDx̂ is applied uniformly to all disks. We
perform a series of separate runs for each value of FD at
intervals of ∆FD = 0.05. In Sec. VII, we perform a con-
tinuous sweep of FD over the range 0 to 2.0 and find that
the results are essentially identical with those obtained
for the series of individual runs at each FD value. On
each drive increment, we measure the species-dependent

disk velocities, 〈V sx 〉 = N−1d
∑Nd

i=1(vi · x̂)δ(ri − rs) and

〈V lx〉 = N−1d
∑Nd

i=1(vi · x̂)δ(ri−rl), where vi is the instan-
taneous velocity of disk i. We generate species-dependent
histograms of P (vx), the distribution of velocities vx of
the individual disks in the direction of applied drive, by
first allowing the system to reach a steady state and then
sampling the velocities every ∆t = 5 × 105 simulation
time steps. The corresponding P (vy) is Gaussian dis-
tributed about vy = 0 since the motion of the disks per-
pendicular to the driving force is unbiased. We also char-
acterize the dynamic phases and phase transitions using
velocity-force curves, the transverse root mean square
displacements, and other measures of the particle spacing
and density. The measurements are time-averaged over a
single realization of disorder. We have checked that per-
forming disorder averaging does not change the results
except very close to the critical point, as described in
Section VII.

III. MINIMALLY PHASE SEPARATING
SYSTEM WITH Nl = Nd/2

We first consider samples with Ns = Nl and a disk di-
ameter ratio of Ψ = 1.4. By varying the disk density from
φ = 0.23 to φ = 0.81, we obtain a ratio of pinning sites
to disks in the range Np/Nd = 2.0 to 0.53. At φ = 0.46
there is one disk for every pin, Np/Nd = 1.0. In Fig. 1(a)
we plot 〈V sx 〉 and 〈V lx〉 versus FD/Fp for φ = 0.23 to
0.87, and we show the corresponding d〈V sx 〉/dFD and
d〈V lx〉/dFD versus FD/Fp curves in Fig. 1(b). At small
FD/Fp, the system is in the pinned or clogged state that
we term phase I, while for FD/Fp ≥ 1.5, the velocities
increase linearly with drive for all values of φ. In the
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FIG. 1: (a) The species-dependent average disk velocities
〈V sx 〉 (solid lines) and 〈V lx〉 (dashed lines) versus driving force
FD/Fp in a sample with Ψ = 1.4 with equal numbers of
small and large disks, Ns = Nl. The total disk density is
φ = 0.87 (down triangles), 0.81 (pentagons), 0.70 (right tri-
angles), 0.58 (stars), 0.46 (squares), 0.35 (up triangles), and
0.23 (circles). (b) The corresponding d〈V sx 〉/dFD (solid lines)
and d〈V lx〉/dFD (dashed lines) vs FD/Fp curves for the same
values of φ showing a peak near FD/Fp = 1.0. Inset: criti-
cal depinning force Fc vs disk density φ. (c) The difference
∆〈Vx〉 = 〈V sx 〉−〈V lx〉 vs FD/Fp for the same values of φ shown
in panels (a) and (b).

inset of Fig. 1(b) we plot the critical depinning force Fc
marking the end of phase I versus φ. When φ is low,
Fc ≈ Fp since each disk can be captured independently
by a pinning site. As the disk density increases, Fc drops
when the disks begin to interact with each other. Since
each pin can capture at most one disk, if an unpinned
disk comes into contact with a pinned disk, the driving
force on both disks is offset by the pinning force on only
one disk, lowering the depinning threshold. The number

of disks in contact with each other increases with increas-
ing φ, causing Fc to decrease monotonically. We find no
species dependence of Fc at any value of φ. Figure 1(c)
shows ∆〈Vx〉 = 〈V sx 〉−〈V lx〉, the difference in net velocity
between the two disk species. This difference is largest
in magnitude near the depinning transition.

At a small disk density of φ = 0.23 in Fig. 1, both
〈V sx 〉 and 〈V lx〉 show relatively sharp depinning transi-
tions, as also indicated by the large single peak at de-
pinning in the d〈V sx 〉/dFD and d〈V lx〉/dFD versus FD/Fp
curves. For drives close to but above Fc, the smaller
disks move slightly faster than the larger disks so that
∆〈Vx〉 > 1.

A. Intermediate Disk Densities

Disk-disk interactions become important at φ = 0.35,
where Fig. 1(b) shows that a two peak structure emerges
in d〈V sx 〉/dFD, with one peak at FD/Fp = 0.9 and a
smaller second peak at FD/Fp = 1.05. We also find that
d〈V lx〉/dFD has a small peak at FD/Fp = 0.7 and a larger
peak at FD/Fp = 1.05. A positive peak in ∆〈Vx〉 extends
over the range 0.8 < FD/Fp < 1.05 and is larger in mag-
nitude than what we observe at other values of φ.

In the left panel of Fig. 2(a) we illustrate the disk po-
sitions in the pinned phase I for φ = 0.35 at FD/Fp =
0.3. Here, small numbers of unpinned disks have ac-
cumulated behind pinned disks, giving a heterogeneous
disk density and reducing the depinning threshold to
Fc/Fp = 0.7. In some regions, short chains of disks
composed preferentially of large disks are stabilized at
an angle to the driving direction. In the center panel
of Fig. 2(a) we plot the local number density nlocl and
nlocs of large and small disks, respectively, obtained by
taking slices of width w = 4rs through the sample at
a fixed value of y and dividing the number of disks
of each type in that slice by the slice area. Thus,

nlocs (y) = (4rsL)−1
∑Ns

i Θ(|Riy − y| − 2rs)δ(ri − rs) and

nlocl (y) = (4rsL)−1
∑Nl

i Θ(|Riy − y| − 2rs)δ(ri − rl). The

difference in local number density, ∆nloc = nlocl − nlocs ,
is shown as a function of y in the rightmost panel of
Fig. 2(a). Below the depinning transition, both disk
species are distributed uniformly throughout the sample.

Figure 1(c) shows that for φ = 0.35 at FD/Fp = 0.9,
the velocity of the small disks is larger than that of the
large disks, giving ∆〈Vx〉 ≈ 0.24. At this drive the sample
develops a horizontal band containing a high local density
of small disks moving through a homogeneous distribu-
tion of large disks, forming a phase separated liquid-gas
state illustrated in Fig. 2(b) that we term phase III. The
peak in d〈V sx 〉/dFD at FD/Fp = 0.9 coincides with the
emergence of the dense band of small disks in the region
10 < y < 45. At y = 30 the value of nlocl is nearly zero,
but in the rest of the sample nlocl is roughly constant.
The small disks flow continuously while the large disks
undergo stick-slip motion that is enhanced in the vicinity
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FIG. 2: (a, b, c, d) Left panels: Large disk (blue circles) and small disk (red circles) positions for the system in Fig. 1 with
Ψ = 1.4 and Ns = Nl at φ = 0.35. Center panels: nloc

l (blue) and nloc
s (red), the local number density of large and small disks,

respectively, averaged over the x direction for each y position. Right panels: ∆nloc = nloc
s − nloc

l plotted at each y position.
(a) The pinned phase I at FD/Fp = 0.3, where unpinned disks pile up behind pinned disks. (b) Just above depinning at
FD/Fp = 0.9 in phase III, where the sample contains a dense liquid-like region in the center surrounded by a gas-like region.
(c) FD/Fp = 1.1 in phase IV flow, where the small and large disks become further segregated and the disks from the gas-like
region collapse into chains with smectic ordering. (d) FD/Fp = 2.0 in phase V, where the entire sample develops a smectic
structure. (e) Detail showing large disk (blue circles), small disk (red circles), and pinning site (gray circles) locations in a
portion of the sample from panel (c) at FD/Fp = 1.1 in phase IV. (f) Detail as in (e) for a portion of the sample from panel
(d) at FD/Fp = 2.0 in phase V.

of the band of small disks, as shown in the supplemen-
tary video34. The species-dependent velocity distribu-
tions P (vx) in Fig. 3(a) show that vx is bimodal for each
species, with peaks at vx = 0 and vx = 0.9 arising from
the alternating pinned and freely flowing motion of each
disk. The vx = 0.9 peak is higher for the small disks than
for the large disks since the small disks are more likely
to move freely due to their separation into a dense band,
and similarly the peak at vx = 0 is highest for the large
disks, which are more likely to fall into a pinning site
due to their greater radius. Strong interactions with the
pinning sites are required to produce the vx = 0 peak.
Although P (vx) falls off rapidly above vx = FD = 0.9,
there is still a tail with finite weight at vx > FD pro-
duced by disks that undergo brief rapid motion just after
escaping from a pinning site.

In Fig. 2(c) at FD/Fp = 1.1, the band of small disks
in the φ = 0.35 system becomes more diffuse. Simulta-
neously, the large disks segregate into dense bands sur-
rounding the original band of small disks, while the lower
density portion of the sample develops smectic ordering
consisting of chains of mixed disk sizes that are oriented
with the driving direction. We call this phase separated
liquid-smectic state phase IV. Figure 1(c) shows that
〈V sx 〉 is slightly larger than 〈V lx〉 at this drive since the

higher density band of small disks is able to move more
efficiently over the pinning sites, as illustrated in the sup-
plemental video35. Figure 2(e) shows a more detailed
plot of the disk positions along with the pinning site lo-
cations in a portion of the sample from Fig. 2(c) contain-
ing both the dense band of large disks and the smectic
chains. The disk species are not segregated within the
chains, and since the pinning force and driving force are
nearly equal, the disks do not experience much trans-
verse displacement as they traverse the pinning sites. In
the liquid-smectic phase IV, P (vx) has a single peak at
vx = 1.1 with equal weight for both species, as shown
in Fig. 3(b). Interactions of the disks with the pins in
the lower density portions of the sample produce a broad
plateau in P (vx) over the range 0.1 < vx < 1.1. Since
FD > Fp, the pinning sites can only slow the disks but
cannot trap them, so there is no longer a peak at vx = 0.

At higher drives for φ = 0.35, the system enters phase
V in which the smectic ordering spreads throughout the
entire sample, as shown in Fig. 2(d) at FD/Fp = 2.0.
The tendency of the disks to form chains in this state is
illustrated in a detailed view in Fig. 2(f). Chainlike or-
dering emerges continuously in the smectic state as the
drive increases. The long chains of disks have greater
species separation and reduced fluctuations in the y di-
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FIG. 3: Histograms of P (vx) for the velocity vx parallel to
the driving direction for the small disks (red) and large disks
(blue) for the system in Fig. 1 at φ = 0.35 with (a) FD/Fp =
0.9 in phase III and (b) FD/Fp = 1.1 in phase IV.

rection compared to the chains which form at lower FD.
The dynamics of this state are illustrated in the supple-
mental movie36. Similar lane formation was observed for
a low density of monodisperse disks driven over quenched
disorder23, and is due in part to the fact that strong den-
sity modulations incur no energy penalty in systems with
short range interactions. Although on average ∆nloc ≈ 0,
indicating that the large scale species segregation found
at lower drives is lost, we find that individual chains can
be preferentially composed of a single species of disk. The
velocity distributions P (vx) are similar to those shown in
Fig. 3(b) but have a sharper peak at vx = FD.

The moving smectic state we observe differs
from that predicted by theory38,39 and observed in
simulations6,40,41 and experiments5 to occur in driven
systems with quenched disorder such as vortices in
type-II superconductors confined to two dimensions.
The short-range nature of the disk-disk interactions
permits the emergence of extreme chaining behavior in
which the disks are nearly in contact along the driving
direction but are well-spaced in the transverse direction.
In contrast, superconducting vortices strongly repel one
another at short distances, and thus have a more even
spacing in the directions parallel and transverse to the
drive. Adjacent vortex rows in the smectic state contain
dislocations that can glide along the driving direction
and permit the rows to slide past one another. For the
disk system, adjacent rows are noninteracting and can
move completely independently of each other.

In Fig. 4 we illustrate the time-dependent behavior of
the φ = 0.35 system. We find similar behavior when
0.2 < φ < 0.5. Figure 4(a) shows the instantaneous val-
ues of V sx and V lx versus time at driving forces ranging
from FD/Fp = 0.70 to 1.15. In Fig. 4(b), we show the cor-
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FIG. 4: (a) The instantaneous disk velocity V sx (solid lines)
and V lx (dashed lines) versus time for the small and large
disks, respectively, in the sample from Fig. 1 at φ = 0.35
for FD = 0.7 (phase I), 0.8 (phase II), 0.9, 0.95, 1.0, 1.05
(phase III), 1.1, and 1.15 (phase IV), from bottom to top. (b)
The corresponding ratio R = V sx /V

l
x vs time for samples with

FD/Fp > 0.7. (c) V sx (solid blue line) vs time for the system
in panels (a) and (b) at FD = 0.9 in phase III. Black dashed

line: A fit to V sx ∝ e−t/τ with τ = 1.22×107. Red dot-dashed
line: A fit to V sx ∝ tα with α = 0.26± 0.01.

responding ratio R = V sx /V
l
x versus time. At FD ≤ 0.70,

the disks are pinned, and V sx = V lx = 0 except for a brief
sharp decay at very early times from a nonzero value. At
intermediate FD values of 0.75, 0.8, and 0.85, the system
is in phase II, where the density of the flowing disks re-
mains homogeneous but some phase segregation occurs.
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Here we find large fluctuations in both V sx and V lx and,
although the velocities of the two disk species are initially
identical, as the system evolves the velocities separate so
that at long times V sx > V lx. At FD/Fp = 0.9, where
phase III emerges and the small disks first segregate into
a band, we can fit the velocity of the small disks to a
stretched exponential form, as shown in Fig. 4(c) where
we find V sx ∝ e−t/τ with τ = 1.22×107. For comparison,
we show a fit to V sx ∝ tα with α = 0.26 ± 0.01, which
gives a poorer fit. We find a similar stretched exponen-
tial behavior at FD/Fp = 0.95, and we show in Sec. III.C
that this behavior is associated with enhanced transverse
diffusion. The stretched exponential time response sug-
gests that the formation of the segregated band of small
disks is similar to an absorbing phase transition of the
type found in clogging systems37. For FD/Fp = 1.0,
1.05, and 1.10, a stretched exponential fit gives a large
time constant τ , and we show in Sec. III.C that these
drives produce superdiffusion in the transverse direction.
At higher driving forces FD > 1.10, the sample quickly
reaches a steady flow phase IV state with constant V sx
and V lx.

B. High Disk Density

When φ = 0.46, the effect of interstitial or unpinned
disks on the depinning process becomes more important,
and the depinning threshold drops to Fc/Fp = 0.5, as
shown in Fig. 1. The peak in 〈V sx 〉 and 〈V lx〉 at depinning
is diminished in size, and we find that ∆〈Vx〉 ≈ 0.04 over
the range 0.5 < FD/Fp < 1.0. At FD/Fp = 0.5, illus-
trated in Fig. 5(a), ∆〈Vx〉 ≈ 0 and both types of disks
are in a uniform phase II state containing small regions
of higher disk density in the form of clumps and chains.
For this drive, the plots of nlocl and nlocs in Fig. 5(a) indi-
cate that each disk species is uniformly distributed across
the sample. The corresponding velocity histogram P (vx)
in Fig. 6(a) shows a bimodal distribution produced by
the stick-slip motion of the disks, which are interact-
ing strongly with the pinning sites. The vx = 0 peak
is higher than the vx = FD peak, indicating that the
disks spend more time sticking and less time slipping,
giving a low value of 〈Vx〉 in Fig. 1(a). At FD/Fp = 1.3
in Fig. 5(d), where we again have ∆〈Vx〉 ≈ 0, the disks
phase segregate into phase VI flow consisting of a liq-
uid region surrounding a smectic region, which extends
from 40 < y < 55. The smectic state is characterized by
strongly asymmetric spacing of the disks, which are much
closer together parallel to the drive than perpendicular
to the drive. In this case, the smectic region contains
mostly small disks and is of relatively low density. The
density of the liquid region varies as a function of y, and
the liquid is composed mainly of large disks separated by
horizontal gaps for 10 < y < 30, while a densely packed
liquid containing nearly equal numbers of small and large
disks appears for y < 10. The large disks are almost com-
pletely depleted in the regions y ≈ 30 and 40 < y < 50

but have a nearly uniform density in the rest of the sam-
ple, as shown by the plot of nlocl in Fig. 5(d). In Fig. 6(d),
P (vx) has a single peak at vx = FD = 1.3 and a broad
distribution of velocities in the range 0.3 ≤ vx ≤ 2.3,
including a low velocity plateau.

For higher disk densities of φ = 0.58 to 0.87, Fc contin-
ues to decrease with increasing φ while ∆〈Vx〉 becomes
small. The increased disk-disk interactions that occur
at the higher densities not only diminish the depinning
force, but also equalize the velocities of each disk species
due to the higher frequency of disk-disk collisions. In
Fig. 5(b), we show a φ = 0.70 sample at FD/Fp = 0.5
in phase VI, where the disks are in a liquid state con-
taining some small localized clumps and chains. There is
some species segregation, with the small disks preferen-
tially located at the top of the sample and the large disks
preferentially residing in the bottom of the sample, as in-
dicated by the plots of nlocl and nlocs in Fig. 5(b). We find
a bimodal distribution of P (vx) as shown in Fig. 6(b),
but the two peaks are barely higher than the background
plateau since the increased disk-disk interactions reduce
the effectiveness of the pinning sites. The same sam-
ple at FD/Fp = 1.3 remains in phase VI but develops
polycrystalline structure in which the disks form wide
species separated bands, as illustrated in Fig. 5(e). The
polycrystalline clusters tend to be aligned in the driving
direction. Figure 6(e) shows a single peak in P (vx) at
vx = FD along with a broad distribution of velocities
over the range 0.4 ≤ vx ≤ 2.4. The plateau at low vx
has vanished since all of the disks are always moving at
this drive, and it is replaced by a rapid decrease in P (vx)
with decreasing vx.

At φ = 0.81, Fig. 5(c) shows that when FD/Fp = 0.5,
the disks have a combination of liquid like and polycrys-
talline structure in the isotropic polycrystalline phase
VII. Although the plot of nlocs indicates that there is
a local increase of small disk density near y ≈ 55, the
disks are nearly jammed, and as a result further species
segregation is suppressed. In Fig. 6(c), P (vx) has lost
its distinct peaks and has a much more Gaussian shape,
since the strong interactions between the disks prevent
individual disks from being trapped by the pins. At
FD/Fp = 1.3 for the same sample in Fig. 5(f), phase
VII flow is still present and the disk structure is nearly
the same except that any slight tendency for segregation
into a band has been destroyed. The plot of P (vx) in
Fig. 6(f) shows a spread of velocities about vx = FD due
to the tightly packed motion of the disks.

For densities of φ = 0.81 and above, the disks have
a glassy arrangement at both low and high drives, and
the high packing fraction inhibits rearrangements of the
disks, preventing both species segregation and the re-
alignment of the polycrystalline regions with the driving
direction. We have tested the system for finite size effects
using a larger sample with L = 200, where we found
structures similar to those illustrated in Figs. 2 and 5.
The only difference is that the large system can accom-
modate multiple layers of segregated bands along the y
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FIG. 5: Left panels: Large disk (blue circles) and small disk (red circles) positions for the system in Fig. 1 with Ψ = 1.4
and Ns = Nl. Center panels: nloc

l (blue) and nloc
s (red) as a function of y position. Right panels: ∆nloc as a function of y

position. (a) φ = 0.58 and FD/Fp = 0.5 in the driven homogeneous phase II. (b) φ = 0.70 and FD/Fp = 0.5, showing the
segregated liquid phase VI. (c) φ = 0.81 and FD/Fp = 0.5, where we find an isotropic polycrystalline phase VII. (d) φ = 0.58
and FD/Fp = 1.3, where the system fractionates into a liquid and smectic phase IV. (e) φ = 0.70 and FD/Fp = 1.3, where the
system is liquid throughout but forms distinct horizontal bands, giving a segregated phase VI. (f) φ = 0.81 and FD/Fp = 1.3,
which shows an isotropic polycrystalline phase VII similar to that found at lower drives.

direction.

C. Transverse Diffusion and Topological Order

To further distinguish the phase behavior of each disk
species, we measure the disk displacements in the direc-
tion transverse to the applied drive,

〈δy2s(l)〉 =
1

Ns(l)

Ns(l)∑
i=1

[yi(t)− yi(t0)]2, (2)

for the small and large disks, respectively. We perform
the measurement at intermediate times, after the sys-
tem has had enough time to phase segregate. In Fig. 7
we plot 〈δy2s〉 and 〈δy2l 〉 obtained over the time interval
1 × 107 to 5 × 107 simulation time steps versus FD/Fp
for samples with φ = 0.35, 0.58, and 0.7. We also show
the corresponding diffusive exponents αs and αl obtained
from long-time fits to 〈δy2s(l)〉 ∝ tαs(l) . At all densi-

ties, 〈δy2s(l)〉 = 0 and αs(l) = 0 for FD < Fc when the

disks are motionless. Previous studies of monodisperse
disks showed superdiffusive transverse flow with α > 1 in
regimes where density phase separation occurred, since
the increased frequency of disk-disk interactions in the
high density region produces a greater amount of disk
motion transverse to the driving direction23. The bidis-
perse disks have a more complex behavior since a wider
variety of phase separated states occur that extend down
to lower densities. In particular, the large and small disks

generally exhibit different transverse diffusive behavior
in the species separated regimes. We expect both the
superdiffusive and subdiffusive regimes to cross over to
regular diffusion at long time scales, where t� 107.

In Fig. 7(a) at φ = 0.35, both disk species undergo sub-
diffusive transverse motion with αs(l) < 1 when FD > Fc.
Transverse movement is suppressed at low disk den-
sity due to the infrequency of disk-disk collisions. Near
FD/Fp = 1.0 in phase III, we find large fluctuations of αs
and αl due to the gradual emergence of the dense species
separated bands illustrated in Fig. 2(b,c). Similar fluc-
tuations in αs(l) appear in phase III near FD/Fp = 1 for
0.35 < φ < 0.5, where some samples reach a steady phase
segregated, particle separated state within ∆t = 5× 107

time steps while others do not. At FD/Fp = 0.9 and
1.0 in the φ = 0.35 sample, the dense liquid band of
small disks is surrounded by a homogeneous low density
gas of large disks, and we find subdiffusive behavior with
αs(l) < 1.0. Superdiffusive behavior with αs(l) > 1 ap-
pears at FD/Fp = 0.95 where the small disks have more
fully segregated into a distinct horizontal band, and also
at FD/Fp = 1.05 and 1.1 where the small disks form a
phase IV liquid-smectic low density state containing hor-
izontal chains.

In Fig. 7(b) at φ = 0.58 we find diffusive transverse
motion with αs(l) ≈ 1 whenever the disk density is ho-
mogeneous, including near depinning in phase II and for
driving forces at which the phase VII densely packed
polycrystalline regions appear. For drives just above de-
pinning in phase II, both types of disk undergo superdif-
fusive transverse motion as the species separation illus-
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FIG. 6: P (vx) for the small disks (red) and large disks (blue) for the system in Fig. 1 at (a) φ = 0.58 and FD/Fp = 0.5 in
phase II; (b) φ = 0.7 and FD/Fp = 0.5 in phase VI; (c) φ = 0.81 and FD/Fp = 0.5 in phase VII; (d) φ = 0.58 and FD/Fp = 1.3
in phase IV; (e) φ = 0.7 and FD/Fp = 1.3 in phase VI; (f) φ = 0.81 and FD/Fp = 1.3 in phase VII.

trated in Fig. 5(a) occurs. The large disks transition to
diffusive behavior at FD/Fp = 0.75 when phase III ap-
pears, while the small disks remain superdiffusive until
FD/Fp = 1.3, where the system enters phase IV. Above
FD/Fp = 1.3, the driving force dominates the disk mo-
tion and the transverse displacements are subdiffusive for
both species. In Fig. 7(c) at φ = 0.70, the transverse mo-
tion is diffusive at depinning when FD = Fc. The large
disks are superdiffusive in the range 0.3 < FD/Fp < 1.0,
and become diffusive at higher drives. The small disks
are diffusive in phase II for 0.3 < FD < 0.5, superdiffu-
sive in phase VI for 0.5 < FD < 1.5, and diffusive above
FD = 1.5. A similar intermediate superdiffusive phase
was observed in Ref.42. When the disk density is high,
we find a transition from diffusive to subdiffusive behav-
ior coinciding with the emergence of the locked polycrys-
talline phase VIII. For example, at φ = 0.814, αs(l) ≈ 1
for all FD > Fc. At φ = 0.87, αs(l) ≈ 0 since the disks
are kinetically trapped.

To characterize lane formation, we measure 〈`nn〉, the
average perpendicular distance between disks that are in
contact, given by

〈`nn〉 =

√
〈Θ(rijdd −Rij)[Rij · ŷ]2〉, (3)

where Rij = Ri − Rj . In Fig. 8 we plot 〈`nn〉 versus
FD/Fp for φ = 0.06 to φ = 0.87. For small disk den-
sities in the range φ = 0.06 to 0.12, almost no disks
are in contact with each other and 〈`nn〉 is nearly zero.
For higher disk densities, in the pinned phase I the disks
tend to form blockages perpendicular to the drive that
become more extensive as φ increases, giving larger val-
ues of 〈`nn〉. As the depinning threshold is approached,
these blockages fall apart, so that 〈`nn〉 decreases mono-
tonically over the range 0 < FD < Fc. For φ = 0.29 and
φ = 0.35, 〈`nn〉 = 0 just below depinning where nearly

all disk-disk contacts are lost, followed by a peak in 〈`nn〉
near FD/Fp = 1 in phase III, where phase segregation
into low and high density regions occurs. When phase
IV chain structures form at higher FD, 〈`nn〉 plateaus to
a small but finite value. At φ = 0.58 and φ = 0.81, 〈`nn〉
decreases steadily for FD > Fc, where Fc = 0.4 and 0.2,
respectively. At φ = 0.87, which is near the jamming
limit, the system is always in phase VII above depinning
and 〈`nn〉 ≈ 0.6 over the entire range of FD/Fp shown in
Fig. 8.

In Fig. 9 we show a heightfield plot of the ∆〈Vx〉 data
from Fig. 1(c) as a function of disk density φ versus driv-
ing force FD/Fp for the Ψ = 1.4 system, while in Fig. 9(b)
we present a schematic dynamic phase diagram as a func-
tion of φ vs FD/Fp. Phase I is the clogged or pinned state
illustrated in Fig. 2(a). Phase II, consisting of homoge-
neous plastic flow with some species segregation, is shown
in Fig. 5(a). Phase III is the density phase separated liq-
uid/gas state from Fig. 2(b). Phase IV, a density phase
separated liquid/smectic state, is illustrated in Figs. 2(c)
and Fig. 5(d). Phase V is the moving smectic/chain state
from Fig. 2(d). Phase VI, the moving segregated liquid,
appears in Fig. 5(b,e), and phase VII is the moving poly-
crystalline state shown in Fig. 5(c) and (f). Except for
phase VI, we do not distinguish fractionation by species
within the phases. We note that the liquid-gas phase
separation observed for monodisperse disks in Ref.23 is
different in character from what we find here. It occurs
at higher disk densities of φ = 0.46 to 0.61 and is as-
sociated with the formation of close-packed clusters of
disks.

The boundary between the pinned phase I and the
moving phases II, V, or VII is determined by the critical
depinning force plotted in Fig. 1(b). At low φ, where the
pins outnumber the disks, the system depins directly into
the moving smectic phase V. As φ increases, disk-disk in-
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FIG. 7: The transverse displacements 〈δy2s〉 (red dashed line)
and 〈δy2l 〉 (blue dashed line) for the small and large disks
obtained after 1 × 107 simulation time steps vs FD/Fp and
the corresponding diffusive exponent αs (red squares) and αl
(blue squares) for the system in Fig. 1 at φ = (a) 0.35, (b)
0.58, and (c) 0.70.

teractions become important and the homogeneous phase
II flow appears above depinning. For intermediate φ, this
is followed at higher FD by density separation into the
liquid/gas phase III or the liquid/smectic phase IV, while
at higher drives the density becomes uniform again and
the smectic phase V emerges. At higher φ, the disks are
too dense to undergo phase separation and the system
transitions directly from the homogeneous phase II flow
to the banded solid phase VI. For very large disk densi-
ties, the disks can no longer exchange neighbors, and the
system depins into a moving polycrystalline phase VII.

0.5 1.0 1.5 2.0
FD/Fp

0.0
0.1
0.2
0.3
0.4
0.5
0.6

nn

= 0. 06
= 0. 12

= 0. 29
= 0. 35

= 0. 58
= 0. 81

= 0. 87

FIG. 8: The average transverse nearest neighbor distance `nn
vs FD/Fp for the system in Fig. 1 at φ = 0.06 (blue circles),
0.12 (blue triangles), 0.29 (blue squares), 0.35 (green stars),
0.58 (orange circles), 0.81 (red triangles), and 0.87 (brown
pentagons).

0.0 0.5 1.0 1.5
FD/Fp

0.2
0.4
0.6
0.8 (a)

0.0 0.5 1.0 1.5 2.0
FD/Fp

0.0

0.2

0.4

0.6

0.8

(b)

I

II

III IV

V

VI

VII

0.02

0.00

0.02

Vx

FIG. 9: (a) Heightfield plot of ∆〈Vx〉 as a function of to-
tal disk density φ vs driving force FD/Fp, based on the data
in Fig. 1(c). Red (blue) indicates that the velocity of the
small disks is higher (lower) than that of the large disks.
(b) A schematic dynamic phase diagram as a function of φ
vs FD/Fp. I: pinned or clogged; II: homogeneous density,
with some species segregation; III: phase separated liquid-gas
state; IV: phase separated liquid-smectic, or moving chain,
state; V: homogeneous smectic or moving chain state; VI:
segregated/banded liquid; VII: polycrystalline flowing state.
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FIG. 10: (a) 〈V sx 〉 (solid lines) and 〈V lx〉 (dashed lines) vs
FD/Fp in a sample with Ψ = 2.0 and Ns = Nl at φ = 0.82
(down triangles), φ = 0.79 (pentagons), φ = 0.59 (right tri-
angles), φ = 0.49 (stars), φ = 0.39 (squares), φ = 0.29
(up triangles), and φ = 0.20 (circles). (b) The correspond-
ing d〈V sx 〉/dFD (solid lines) and d〈V lx〉/dFD (dashed lines) vs
FD/Fp curves for the same values of φ showing a peak near
FD/Fp = 1.0. Inset: Fc vs φ. (c) The corresponding ∆〈Vx〉
vs FD/Fp. Inset: a detail from the main panel of the region
around FD/Fp = 0.5 where ∆〈Vx〉 < 0 for large φ.

IV. ENHANCED CRYSTALLIZATION AND
BANDING WITH LARGER RADIUS RATIO AT

Nl = Nd/2

We next increase the radius ratio to Ψ = 2.0, a value
that is known to produce phase separation for disks
driven out of equilibrium26,28. We fix Ns = Nl and con-
sider disk densities in the range φ = 0.19 to 0.88, corre-
sponding to ND/Np = 0.25 to 1.125. Here a disk density
of φ = 0.78 corresponds to a ratio Np/ND = 1.0.

The plot of 〈V sx 〉 and 〈V lx〉 versus FD/Fp in Fig. 10(a)
for the Ψ = 2.0 system at different values of φ has sim-
ilar behavior to that shown in Fig. 1(a), with a pinned

phase I at low drives, a non-linear velocity-force relation
above depinning, and a linear dependence of velocity on
drive for high FD. The corresponding d〈V sx 〉/dFD and
d〈V lx〉/dFD versus FD/Fp curves in Fig. 10(b), as well as
the plot of Fc versus FD/Fp in the inset of Fig. 10(b), are
also similar to what was shown in Fig. 1(b). In Fig. 10(c),
the plot of ∆〈Vx〉 versus FD/Fp indicates a higher veloc-
ity of the small disks at low φ similar to that found in
Fig. 1(c); however, at low driving forces and high φ, we
find that the large disks have a higher velocity than the
small disks, as highlighted in the inset of Fig. 10(c).

At the lowest density of φ = 0.20 in Fig. 10, the small
and large disks both have the same behavior, and the
depinning occurs sharply at FD/Fp = 1.0, with a distinct
transition from pinned to elastic flow of the homogeneous
smectic phase V type. Since this system contains fewer
disks than the Ψ = 1.4, φ = 0.23 system, the depinning
transition is sharper, and the peak in d〈V sx 〉/dFD and
d〈V lx〉/dFD at FD/Fp = 1.0 is larger.

At φ = 0.29, we find an enhancement in the veloc-
ity of the small disks near depinning since the large
disks can easily be pinned by traps and other large
disks, while the small disks slip through smaller aper-
tures to form a segregated dense band, as illustrated in
Fig. 11(a) at FD/Fp = Fc = 0.95. Here the large disks
are uniformly distributed through the sample, while the
small disks are concentrated in a band extending from
45 < y < 60. This is the same type of phase III seg-
regation found in Fig. 2(b). In Fig. 10(b), d〈V sx 〉/dFD
peaks at FD/Fp = 0.95, whereas d〈V lx〉/dFD peaks at
FD/Fp = 1.0, indicating that the smaller disks begin to
flow freely at lower drives than the larger disks. Above
FD/Fp = 1, there is a transition to phase IV flow con-
sisting of a liquid of small disks surrounded by a smec-
tic state of large disks, as illustrated in Fig. 11(d) for
FD/Fp = 1.1. This is accompanied by a large positive
peak in ∆〈Vx〉 over the range 1.05 < FD/Fp < 1.25,
as shown in Fig. 10(c). The smectic chain structure of
the large disks increases the number of disk-disk interac-
tions and diminishes the effectiveness of the pinning for
the large disks. The small disks tend to form chains at
higher drives.

Near depinning at φ = 0.39, we find a density phase
segregated state containing distinct bands of high density
liquid smectic regions and low density regions, similar to
the phase III structure illustrated in Fig. 2(b). There
are two distinct peaks in d〈V sx 〉/dFD and d〈V lx〉/dFD in
Fig. 10(b) near FD ≈ Fc = 0.75 where the small disks
begin to move freely and FD ≈ Fp where the motion
of the large disks increases. In Fig. 10(c), ∆〈Vx〉 > 0
over the range 0.8 < FD/FP < 1.0 in phase IV flow,
indicating that the small disks can flow more easily in the
liquid smectic region, which they preferentially occupy.
At φ = 0.49, there is a pronounced crossover in ∆〈Vx〉 in
Fig. 10(c) from a negative value for 0.6 < FD/Fp < 0.7 to
a positive value for 0.8 < FD/Fp < 1.0, indicating that
the large disks are moving faster than the small disks at
lower drives but slower at higher drives.
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FIG. 11: Left panels: Large disk (blue circles) and small disk (red circles) positions for the system in Fig. 10 with Ψ = 2.0
and Ns = Nl. Center panels: nloc

l (blue) and nloc
s (red) as a function of y position. Right panels: ∆nloc as a function of y

position. (a) φ = 0.29 and FD/Fp = 0.95 in phase III segregated liquid/gas flow. (b) φ = 0.59 and FD/Fp = 0.9 in phase VI
segregated liquid flow. (c) φ = 0.79 and FD/Fp = 0.9 in polycrystalline phase VII flow. (d) φ = 0.29 and FD/Fp = 1.1 in
phase IV liquid/smectic flow. (e) φ = 0.59 and FD/Fp = 1.1 in phase VI segregated liquid flow. (f) φ = 0.79 and FD/Fp = 1.1
in polycrystalline phase VII flow.

For φ = 0.59, ∆〈Vx〉 is never positive but has an en-
hanced negative region at low drives above depinning in
the range 0.4 < FD/Fp < 0.9, as highlighted in the inset
of Fig. 10(c). Species segregation of the disks into phase
VI flow occurs in the window 0.8 < FD/Fp < 0.9. As
illustrated in Fig. 11(b) for FD/Fp = 0.9, the large disks
form a cluster that spans nearly the entire system, while
the small disks are concentrated in a band ranging from
20 < y < 40. The small disks form relatively few disk-
disk contacts, making them less likely to be depinned due
to disk-disk interactions, and thus reducing their veloc-
ity compared to the large disks. At higher drives, all of
the disks depin and the difference in velocity among the
two disk species drops to zero. At FD = 1.1, shown in
Fig. 11(e), we find phase VI flow where the small disks
remain in a single high density band while the large disks
form a low density smectic state at 0 < y < 10 coexisting
with a high density liquid state containing polycrystalline
regions at 35 < y < 60. A low density void region ap-
pears at 10 < y < 20. The motion of the particles in this
state is illustrated in the Supplementary Material43.

When φ ≥ 0.59, d〈V sx 〉/FD and d〈V lx〉/FD have a
smooth rather than sharp increase at FD = Fc. There
is an extended regime in which the velocity of the large
disks is higher than that of the small disks, with ∆〈Vx〉 <
0 over the range 0.2 < FD/Fp < 1.5 for the φ = 0.79 sys-
tem. As shown in Fig. 11(c) for φ = 0.79 at FD/Fp = 0.9,
a significant fraction of the large disks form tight poly-
crystalline packings while the small disks form trapped
clusters over specific horizontal windows. This phase VII
structure remains similar at higher drives, as shown in
Fig. 11(e) at FD/Fp = 1.1. For larger systems with
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FIG. 12: Transverse displacements 〈δy2s〉 (red dashed line)
and 〈δy2l 〉 (blue dashed line) for the small and large disks
obtained after 1 × 107 simulation time steps vs FD/Fp and
the corresponding diffusive exponent αs (red squares) and αl
(blue squares) for the system in Fig. 10 with Ψ = 2.0 for
densities φ = (a) 0.59 and (b) 0.79.

L = 200 at high φ, we find multiple large polycrystalline
regions rather than a single band spanning the system.
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A. Transverse Diffusion and Topological Order

In Fig. 12, we plot the transverse diffusion 〈δy2s〉 and
〈δy2l 〉 along with the exponents αs and αl versus FD/Fp
for the Ψ = 2.0 system from Fig. 10. At φ = 0.59
in Fig. 12(a), we find homogeneous phase II flow with
αs ≈ αl ≈ 1 at low driving forces of 0.4 < FD/Fp < 0.6,
indicating diffusive behavior. At intermediate driving
forces, 0.6 < FD/Fp < 1.2, phase VI flow appears and the
small disks are subdiffusive since they have become con-
fined in a horizontal band, as shown in Fig. 11(b) and (e).
The large disks are superdiffusive for 0.6 < FD/Fp < 1.0,
and become subdiffusive at higher drives once their struc-
ture changes from a homogeneous liquid with small voids
to a denser liquid containing a large horizontal gap. The
small voids permit a transverse flow of the large disks
that is suppressed once a large void opens at higher
drives. For 1.2 < FD/Fp < 2.0, the driving force domi-
nates the behavior of both disk species, which form chain
states that move subdiffusively in the transverse direc-
tion. At φ = 0.79 in Fig. 12(b), the system is in phase
VII flow and αs ≈ αl ≈ 1 at all driving forces above de-
pinning, indicating diffusive transverse flow for both disk
species. This is expected in a liquid phase containing
polycrystalline regions of homogeneous density.

In Fig. 13, we characterize the lane structure of the
disks based on the average angle between disks that are
in contact,

〈θnn〉 =
1

Nd

Nd∑
i

Θ(rijdd −Rij) tan−1
(∣∣∣∣Rij · ŷ

Rij · x̂

∣∣∣∣) , (4)

sampled every ∆t = 5 × 105 simulation time steps after
the system has reached a steady state. This measure is
closely related to 〈`nn〉 from Fig. 8. Figure 13 shows 〈θnn〉
versus FD/Fp for systems with φ = 0.2, 0.39, 0.59, and
0.79. For φ = 0.20, 〈θnn〉 is low for all drives due to the
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0.00
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FIG. 14: Heightfield plot of ∆〈Vx〉 as a function of total
disk density φ vs driving force FD/Fp, based on the data
in Fig. 10(c). Red (blue) indicates that the velocity of the
small disks is higher (lower) than that of the large disks. We
find a large region in which ∆〈Vx〉 < 0.

phase V smectic flow which favors disk-disk contacts that
are aligned with the x direction. We find 〈θnn〉 ≈ 30◦

near depinning for φ = 0.79, since the polycrystalline
disk arrangements in phase VII tend to contain crystal-
lites aligned with the x axis that contribute angles of
0◦ and 60◦ equally to the sum. As the driving force in-
creases, 〈θnn〉 decreases monotonically due to an increase
in the amount of smectic or chainlike ordering in the sys-
tem. For φ = 0.39 and φ = 0.59, a local maximum in
〈θnn〉 at FD/Fp = 1 is produced by the denser structures
that form in the phase VI flow when the phase sepa-
ration is maximized for nearly equal pinning and driv-
ing strengths. This is followed by a decrease in 〈θnn〉 at
higher drives as smectic ordering emerges.

In Fig. 14, we show a heightfield plot of ∆〈Vx〉 as a
function of φ versus FD/Fp for the Ψ = 2.0 system. Com-
pared to the Ψ = 1.4 system in Fig. 9, we find a much
larger region in which ∆〈Vx〉 < 0. This indicates that
increasing the relative size of the large disks can also in-
crease their velocity relative to the small disks when the
driving force is close to the depinning threshold and the
total disk density is sufficiently large.

V. LOWER FRACTION OF LARGE DISKS,
Nl = Nd/10

We next investigate the effect of changing the disk
species ratio from Ns = Nl = 0.5Nd to Ns = 0.9Nd
and Nl = 0.1Nd for a system with Ψ = 1.4. We find the
same general phases as described in Sec. III but with a
greater tendency for the large disks to move faster than
the small disks. In Fig. 15(a), we plot 〈V sx 〉 and 〈V lx〉
versus FD/Fp for the Nl = 0.1Nd system at a disk den-
sity of φ = 0.48. We find plastic depinning for both
disk species, as indicated by the concave shape of the
velocity-force curve, followed by a transition at higher
drives to a linear dependence. At FD/Fp = 0.9, illus-
trated in Fig. 16(a), the system can be divided into three
regions: a small disk liquid, a small disk gas, and a mixed
gas-like region containing both disk species at an inter-
mediate density. We label this state phase IIIa flow. At
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FIG. 15: (a) 〈V sx 〉 (solid lines) and 〈V lx〉 (dashed lines) vs
FD/Fp in a sample with Ψ = 1.4, Ns = 0.9Nd, and Nl =
0.1Nd at φ = 0.48. (b) The instantaneous disk velocity V sx
(solid lines) and V lx (dashed lines) versus time for the small
and large disks, respectively, in the sample from panel (a) at
FD = 0.2 (phase I), 0.4, 0.6, 0.8 (phase IIIa), 1.0, 1.2 (phase
IVa), 1.4, 1.6, 1.8, and 2.0 (phase V), from bottom to top. The
large disks reach a steady state quickly, while the small disks
continue to evolve at t > 107 timesteps. (c) A detail showing
only the FD = 0.8 curves in phase IIIa from panel (b). Dot-

dashed line: A fit to 〈V sx 〉 = et/τs with τs = 8.46×105. Dotted

line: A fit to 〈V lx〉 = et/τl with τl = 1.19× 106.
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FIG. 16: Left panels: Large disk (blue circles) and small disk
(red circles) positions for the system in Fig. 15 with Ψ = 1.4
and Nl = 0.1Nd at φ = 0.48. Right panels: nloc

l (blue) and
nloc
s (red) as a function of y position. (a) FD/Fp = 0.9 in

phase IIIa flow. (b) FD/Fp = 1.1 in phase IVa flow.
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FIG. 17: Transverse displacements 〈δy2s〉 (red dashed line)
and 〈δy2l 〉 (blue dashed line) for the small and large disks
obtained after 1 × 107 simulation time steps vs FD/Fp and
the corresponding diffusive exponent αs (red squares) and αl
(blue squares) for the system in Fig. 15 with Ψ = 1.4 and
Nl = 0.1Nd at φ = 0.48.
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a higher drive of FD/Fp = 1.1 in Fig. 16(b), the small
disk liquid has increased in density and contains a few
large disks. In this phase IVa flow, a window of large
disk liquid containing some small disks runs along one
side of the small disk liquid, while the low density region
of the sample contains roughly equal numbers of small
and large disks arranged in a smectic structure. Due to
the strong species segregation, these phases resemble the
states found for monodisperse disks in Ref.23. Over the
range 0.2 < FD/Fp < 1.6 where the species separation
occurs, 〈V lx〉 > 〈V sx 〉, giving ∆〈Vx〉 < 0 (not shown).

In Fig. 15(b), we plot the time evolution of 〈V sx 〉 and
〈V lx〉 for the same φ = 0.48 system at FD values ranging
from FD/Fp = 0.2 to FD/Fp = 2.0. For FD/Fp ≤ 0.2,
the system is in the pinned phase I and 〈V sx 〉 = 〈V lx〉 = 0.
When FD/Fp ≥ 0.4, phase IIIa flow appears and we find
〈V lx〉 > 〈V sx 〉, with 〈V lx〉 remaining nearly constant over
time while 〈V sx 〉 decays. For intermediate driving forces
of 0.6 < FD/Fp < 1.2, extending through the regime
of phase IV flow, the 〈V sx 〉 curves have an exponential
shape, 〈V sx 〉 ∝ e−t/τs + 〈Vo〉, as shown in Fig. 15(c) for
FD/Fp = 0.8, where τs = 8.46×105. A similar fit of 〈V lx〉
at the same drive gives a time constant τl = 1.19 × 106

that is somewhat larger. As FD/Fp increases above 1.2,
the system rapidly reaches a phase V steady state and
the difference between the velocity of the small and large
disks vanishes. Due to the lengthy transient dynamics
at intermediate FD/Fp, we wait a minimum of 2 × 107

simulation time steps before measuring the velocity-force
curves shown in Fig. 15(a).

In Fig. 17 we plot the transverse displacements 〈δy2s〉
and 〈δy2l 〉 versus FD/Fp for the φ = 0.48 sample along
with the corresponding exponents αs and αl. All four
quantities increase monotonically between FD = Fc and
FD/Fp = 0.4. At intermediate FD, in phase IIIa, we find
subdiffusive transverse motion of the small disks with
αs < 1 accompanied by superdiffusive transverse motion
of the large disks with αl > 1. Here the small disks
are confined within a dense liquid, while the large disks
are in a low density region in which interactions with
pinning sites can enhance the transverse diffusion. At
large FD where phase V smectic structures emerge, both
disk species have subdiffusive transverse motion.

VI. SCALING NEAR THE DEPINNING
TRANSITION

In systems of particles that have long range interac-
tions, the velocity-force relationship scales as V ∝ (FD−
Fc)
−β near depinning1. For elastic depinning in which

the structure of the particle lattice remains unchanged,
β = 2/3, while when the depinning transition is plastic,
β > 1.0. For Coulomb8 and screened Coulomb15,44 in-
teraction potentials, the plastic depinning exponents are
β ≈ 1.65 and 2.0, respectively, while simulations of depin-
ning of superconducting vortices with a Bessel function
vortex-vortex interaction give β = 1.344. It is interesting
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FIG. 18: 〈V sx 〉 (solid lines) and 〈V lx〉 (dashed lines) vs FD−Fc
on a log-log scale for the sample from Fig. 1 with Ψ = 1.4

and Ns = Nl. We fit the data to 〈V s(l)x 〉 ∝ (FD−Fc)−β (pink
lines). (a) φ = 0.46 with β = 1.0. (b) φ = 0.58 with β = 1.3.

to ask whether similar scaling of the velocity-force curves
occurs in the disk system. For monodisperse disks with
Np/Nd > 0.288, it was shown in Ref.23 that the velocity-
force curves can be fit to a power law with 1.4 < β < 1.7.

In Fig. 18(a,b) we plot 〈V sx 〉 and 〈V lx〉 versus FD − Fc
on a log-log scale at densities of φ = 0.46 and 0.58, re-
spectively. By fitting the portion of the curve closest to
depinning, we find 1.0 < β < 1.3. The scaling fit can
be performed only for φ > 0.35 and does not work at
low disk densities. We find similar scaling fits for suffi-
ciently large disk densities for the Ψ = 2.0 system and for
the Ψ = 1.4 and Nl = 0.1Nd system. The depinning is
clearly not elastic, but the lower values of β compared to
systems with longer range interactions suggest that the
type of plastic depinning that occurs may be different
for short range interacting systems than for longer range
interacting systems.

VII. CONTINUOUS DRIVING FORCE

In the results presented above, we performed individ-
ual simulations for each value of FD starting from a uni-
form initial disk configuration in each simulation. To
check whether cumulative disk rearrangements affect the
velocity response and ordering, and also to test for the
presence of hysteresis, we next consider a set of simula-
tions in which we continuously sweep FD up a series of
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FIG. 19: (a) 〈V sx 〉 and 〈V lx〉 vs FD/Fp for a continuous ramp
in a system with with φ = 0.35, Ψ = 1.4 and Ns = Nl. Solid
lines: upward sweep of FD; dashed lines: downward sweep of
FD. (b) 〈CL〉 vs FD/Fp. Solid lines: upward sweep of FD;
dashed lines: downward sweep of FD.

steps with increment size ∆FD = 0.05. We increase FD
from FD = 0 to FD = 2.0, and then continuously de-
crease FD with ∆FD = −0.05 from FD = 2.0 back down
to FD = 0, spending 5 × 107 simulation time steps at
each drive increment in order to let the system reach a
steady state. We apply this continuous sweep protocol
to systems with Ψ = 1.4 and φs = φ` at two densities,
φ = 0.35 and φ = 0.46, and compare it to the discrete
ramp protocol.

In Fig. 19(a) we plot 〈V sx 〉 and 〈V lx〉 for the upward
and downward sweeps in the φ = 0.35 system, and in
Fig. 20(a) we show the same quantities for the φ = 0.46
sample. In each case we find no velocity hysteresis. The
φ = 0.35 system undergoes phase segregation but does
not show the disk species separation found with the dis-
crete ramp protocol. In the φ = 0.46 system, both phase
segregation and disk species separation occur.

We also measure the average largest cluster size of the
system, 〈CL〉, versus FD/Fp, as shown in Fig. 19(b) for
φ = 0.35 and Fig. 20(b) for φ = 0.46. To determine
CL, we use the cluster counting algorithm of Luding
and Herrmann45 to identify clusters of disks that are all
touching each other, and we then record the size of the
largest cluster in the system. We then average this quan-
tity over time to obtain 〈CL〉. Hysteresis appears in 〈CL〉
within the pinned phase I. As the drive increases from
FD = 0, large clusters form as disks become trapped and
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FIG. 20: (a) 〈V sx 〉 and 〈V lx〉 vs FD/Fp for a continuous ramp
in a system with φ = 0.46, Ψ = 1.4 and Ns = Nl. Solid lines:
upward sweep of FD; dashed lines: downward sweep of FD.
(b) 〈CL〉 vs FD/Fp. Solid lines: upward sweep of FD; dashed
lines: downward sweep of FD.

prevent interstitial disks from flowing, and the value of
〈CL〉 is relatively high just below the depinning transi-
tion. In the φ = 0.35 sample, once the disks depin the
clusters break apart, giving a gradual decrease in 〈CL〉
with increasing FD, but once the system enters the phase
IV regime near FD/Fp = 1.1, the disks form chain struc-
tures that are nearly the same size as the clusters that
formed below depinning, so 〈CL〉 stabilizes and then in-
creases slightly with increasing FD as the chain length
gradually increases. In the φ = 0.46 sample, there is also
a drop in 〈CL〉 above depinning as the clusters dissolve,
but the chains that form in phase IV are relatively short,
so 〈CL〉 saturates at a steady low value. Upon reversing
the drive, the evolution of 〈CL〉 is not hysteretic until
the sample repins and the evolution of the disk struc-
tures is frozen. Since the disks have already rearranged
during the upward sweep of the drive, there are no disk
rearrangements below the repinning transition and 〈CL〉
remains fixed at a value lower than that which appears
on the upward ramp when pinned clusters of disks are
slowly evolving.

VIII. DISCUSSION

Our work suggests that dynamical phase separation,
particle species segregation, and laning effects are gen-
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eral features of driven systems with short range hard
disk particle-particle interactions moving over random
disorder. Observing these results experimentally re-
quires access to a sample in the overdamped limit where
thermal fluctuations are absent, such as colloidal par-
ticles suspended in a viscous fluid or colloidal parti-
cles of relatively large size for which thermal effects are
small46,47. Additionally, in certain superconducting vor-
tex systems, multiple vortex species could be stable and
the vortex-vortex interactions would be effectively short
range near phase boundaries48. Other systems include
magnetic bubbles with different bubble sizes49, multi-
species skyrmions50,51, and emulsions composed of binary
species52. Our results could have some relevance to gran-
ular matter; however, our model does not include inertial
terms or frictional interactions, both of which are often
important in granular systems. One possible similar sys-
tem would be granular matter suspended in fluid moving
over a random surface.

The unusual phase separated states observed in the
bidisperse hard disk system arise at certain disk densi-
ties and driving forces and result from a velocity collapse
mechanism that occurs whenever the mobility becomes
density dependent such that an isolated disk can move
more rapidly than disks within a cluster. The resulting
voids in the sample have no energy penalty due to the
short range of the disk-disk interaction potential. Similar
clustering appears in a system of monodisperse disks24.

We measure only the transverse diffusion of the disks
since the driving force induces ballistic motion in the lon-
gitudinal direction, similar to that which appears for ac-
tive matter. The net motion is therefore generally su-
perdiffusive over extended time scales, as described in
Section III C. Even though the behavior becomes diffu-
sive at the longest time scales, it is still superdiffusive on
the time scale of collective interactions.

Our simulations could be extended to include thermal
fluctuations, finite inertia, and/or different disk-disk
interaction potentials. We expect that the clustering of
the disks would break down under increasing tempera-
ture, which would tend to homogenize the disk density;
however, species phase segregation may still occur for
entropic reasons. Introduction of an inertial term to the
equations of motion would produce more Gaussian-like
fluctuations of the motion of the disks, unlike the
nonequilibrium fluctuations produced by the external
applied driving force, and should change the nature of
the dynamical states. It would be interesting to study
a system of soft interacting disks that can strongly
overlap, such as an experimental bubble array system14.
In this foam or bubble limit, it may be possible to obtain
states in which some particles are pinned while other
particles are able to squeeze past the pinned particles.
This system could be used to access densities above the
hard sphere jamming density, where stress fields and
other long range effects would become important.

IX. SUMMARY

We examine the dynamics of bidisperse disks driven
over random quenched disorder to explore the dynamical

phases of particles with short range interaction forces. At
low disk densities, we observe a pinned state that tran-
sitions into a strongly chained state where the disks can
undergo local demixing but where the overall disk distri-
bution is homogeneous. At intermediate disk densities,
the disks depin into a disordered flow state exhibiting
stick slip dynamics, followed by a species segregated state
in which the small disks form clusters and the large disks
remain evenly distributed throughout the sample. For
intermediate drives the disks form a partially laned state
exhibiting both species separation and density segrega-
tion, while at high drives a mixed laning state emerges.
At high disk densities of φ > 0.75, a rigid polycrystalline
state appears that moves as a solid and undergoes no
species or density segregation. Both the density and the
species segregation effects are the most prominent near
FD = Fp when the driving force and pinning force di-
rectly compete. The anisotropic fluctuations induced by
the pinning at high drives favor the formation of laned
states. It is also possible to induce mixing between the
two species just above the depinning transition. By in-
creasing the radius of the large disks compared to that of
the small disks, we find a larger amount of crystallization
and banding of the large disks, while the small disks tend
to form an interstitial liquid. Lowering the fraction of
large disks compared to the fraction of small disks tends
to increase the velocity of the large disks compared to
that of the small disks, which species separate into a dis-
ordered liquid that flows unevenly over the pinning sites.
When the disk density is sufficiently large, we find scal-
ing of the velocity-force curves near the plastic depinning
transition with an exponent that is slightly smaller than
what is observed in systems with longer range interpar-
ticle interactions, suggesting that the plastic depinning
transition may have distinct features when the interac-
tion range is very short.

Our results could be relevant to multi-species flows of
soft matter through random substrates or the flow of
granular matter over a disordered background. It would
be interesting to explore possible segregation effects for
bidisperse systems with long range particle-particle inter-
actions driven over random disorder. In the disk system,
the segregation of particles into clumps reduces the num-
ber of disk-disk collisions and enhances the disk flow.
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tion in colloidal mixtures driven by an external field, Phys.
Rev. E 65, 021402 (2002).

31 I.S. Santos de Oliveira, W.K. den Otter, and W. J. Briels,
Alignment and segregation of bidisperse colloids in a shear-
thinning viscoelastic fluid under shear flow, Eur. Phys.
Lett. 101, 2802 (2013).

32 C. Reichhardt, and C.J.O. Reichhardt, Velocity force
curves, laning, and jamming for oppositely driven disk sys-
tems, Soft Matter 14, 490 (2018).

33 C.J.O. Reichhardt, E. Groopman, Z. Nussinov, and C.
Reichhardt, Jamming in systems with quenched disorder,
Phys. Rev. E 86, 061301 (2012).

34 See Supplemental Material Fig3b.mp4 at [URL will be in-
serted by publisher] for the disk dynamics at φ = 0.35 and
FD/Fp = 0.9.

35 See Supplemental Material Fig3c.mp4 at [URL will be in-
serted by publisher] for the disk dynamics at φ = 0.35 and
FD/Fp = 1.1.

36 See Supplemental Material Fig3d.mp4 at [URL will be in-
serted by publisher] for the disk dynamics at φ = 0.35 and
FD/Fp = 2.0.

37 H. Peter, A. Libal, C. Reichhardt, and C.J.O. Reichhardt,
Crossover from jamming to clogging behaviors in hetero-
geneous environments, Sci. Rep. 8, 10252 (2018).

38 P. Le Doussal and T. Giamarchi, Moving glass theory
of driven lattices with disorder, Phys. Rev. B 57, 11356
(1998).

39 L. Balents, M.C. Marchetti, and L. Radzihovsky, Nonequi-
librium steady states of driven periodic media, Phys. Rev.
B 57, 7705 (1998).

40 K. Moon, R.T. Scalettar, and G.T. Zimányi, Dynamical
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