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Pneumatic structures and actuators are found in a variety of natural and engineered systems such
as dielectric actuators, soft robots, plants and fungi cells, or even the vocal sac of frogs. These
structures are often subjected to mechanical instabilities arising from the thinning of their cross-
section and that may be harvested to perform mechanical work at a low energetic cost. While most of
our understanding of this unstable behavior is for purely elastic membranes, real materials including
lipid bilayers, elastomers, and connective tissues typically display a time-dependent viscoelastic
response. This paper thus explores the role of viscous effects on the nature of this elastic instability
when such membranes are dynamically inflated. For this, we first introduce an extension of the
transient network theory (TNT) to describe the finite strain viscoelastic response of membranes;
enabling an elegant formulation while keeping a close connection with the dynamics of the underlying
polymer network. We then combine experiments and simulations to analyze the viscoelastic behavior
of an inflated blister made of a commercial adhesive tape (VHB 4905). Our results show that the
viscous component induces a rich spectrum of behaviors bounded by two well-known elastic solutions
corresponding to very high and very low inflation rates. We also show that membrane relaxation
may induce unwanted buckling when it is subjected to cyclic inflations at certain frequencies. These
results have clear implications for the inflation and mechanical work performed by time-dependent
pneumatic structures and instability-based actuators.
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I. INTRODUCTION

Pneumatic structures and actuators based on the in-
flation of thin membranes are an important component
of many industrial and natural systems such as the vocal
sac of frogs [1], soft robots [2], or baromorphs [3]. Despite
the variety in their nature and composition, these mem-
branes are characterized by their capability of undergoing
extremely large strains (> 100%), and the fact that they
often exhibit a strong viscoelastic response [4]. Owing to
their large distortions, membranes often display mechan-
ical instabilities. For example, the thinning of a stretched
rubber membrane affects its internal pressure [5] and the
electric field across it [6]. Surface wrinkles appear due to
a competition between curvature and compressive strains
[7], and cellular blebbing [8] is caused due to a competi-
tion between adhesion and internal pressure. These and
other instabilities are the keys to understand the me-
chanics of greater problems such as the vesicle transport
in porous media [9, 10], or the electroporation in animal
cells [11]. In addition, many technological applications
are designed to harvest those instabilities and use them
in actuators [12], energy harvesting [13], or even medical
applications [14] at low energetic cost. However, while
there is extensive literature devoted to understanding the
physics behind these instabilities in the elastic regime,
the role of viscosity is still poorly understood. To the
best of our knowledge, the interplay between elastic in-
stability and viscous relaxation has only been reported
in the context of dielectric elastomers, where several au-
thors stressed the importance of how viscous effects delay,
stabilize, or even eliminate these instabilities [15–17].

Viscoelasticity in highly deformable shells is often ap-

proached from the perspective of fluid-like thin films in
which the shell or membrane is modeled using a creep-
ing flow [18]. This is the case of thin viscous sheets such
as syrup [19], but the same approach is also used in the
broader context of biomembranes [20–23] due to their
faster relaxation times with respect to other simultane-
ous processes [24–26]. Regarding solid-like materials such
as polymers [27], researchers have relied on coupling shell
theory with known constitutive equations for viscoelas-
ticity such as the standard linear solid [28], K-BKZ [29],
Christensen [30, 31], or CBT [32] models. These ap-
proaches are phenomenological and thus provide little in-
formation on the molecular mechanisms driving these be-
haviors [33, 34]. In this sense, the transient network the-
ory (TNT) [35, 36] enables to obtain a statistical knowl-
edge of the molecular processes leading to viscoelasticity
in active networks [37, 38] and is often used to investi-
gate the physics behind non-newtonian fluids [39] and the
solid-fluid transition. Taken in the context of shells and
membranes, it might, therefore, impact our understand-
ing of lipids mono- and bi-layers [40], viscous sheets [41],
or polymeric membranes.

In this paper, we concentrate on using this statistical
approach to study how the interactions between large
elastic deformation and viscous relaxation during the
common snap-through [42] instability of rubber mem-
branes. We first present a series of experimental results
on a commercial viscoelastic adhesive tape (VHB 4905)
that illustrate the role of relaxation on the onset and ex-
tent of mechanical instabilities (due to membrane thin-
ning and buckling). After deriving the TNT for mem-
branes, we then explore the observed blister response in
case of constant inflation rates and cyclic loading. Model
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FIG. 1. (a) Scheme of the blister inflation experimental setup. (b) Experimental results on the internal blister pressure versus

the internal fluid volume obtained at four different inflation speeds V̇ = 0.1, 1, 5, and 10 ml/min. The insets A to E are actual
snapshots of the experiment at five differnt stages ranging from V = 0ml to V = 400ml. The reference cube has a 3.5 mm edge.

results do not only provide a good interpretation of ex-
perimental results, but they also predict how the com-
petition between loading rate and relaxation time drives
the nature of instabilities.

II. EXPERIMENTAL GROWTH OF
VISCOELASTIC BLISTERS

Our experiment consists of inflating a blister under a
viscoelastic adhesive tape (VHB 4905) firmly attached to
an aluminum substrate through a central hole of radius
R (Fig. 1a). The inflation process is driven by an NE-
1000 syringe pump (NEWERA Pump Systems Inc.) that

injects dyed water at a controllable volume rate V̇ using
a network of polyethylene tubing. In parallel, a pressure
transducer (Omega PX26-005GV) connected to a DAQ
system (NI-9211 and NI USB-9162) and powered with a
DC power source allows constant monitoring of the pres-
sure with precision between 0 − 5psi. To prevent the
delamination of the material during inflation, the neck of
the blister is firmly constrained at all times such that we
obtain the blister growth depicted in the insets A-E in
Fig. 1. Three parameters, therefore, control the system:
the volume inflation rate V̇ , the initial tape thickness h0,
and the initial blister neck radius R (Fig. 1a). Due to the
known viscous response of the material [43], the initial re-
sults are presented in the form of pressure-volume curves
for a blister with parameters R = 3.5mm, h0 = 0.5mm

and various inflation rates (V̇ = 0.001− 10ml/min) (Fig.
1b). In addition, these results are compared to an elas-
tic solution which we obtained via quasistatic inflation.
For this, we inflated multiple blisters to different volumes
and allowed them to relax for large periods of time (> 10
hours) until the pressure reached a steady state. The dif-

ferent pressure-volume points obtained with this method
where the combined to obtain the bottom curve of Fig.
1b, which we labeled as elastic solution. Each of these
curves shows a nonlinear relationship between pressure
and volume, that we characterize by two measures: (i)
the magnitude of the maximum or critical pressure, and
(ii) the critical volume at which this instability occurs. In

the case of an elastic membrane (V̇ → 0), this instability
is known to result from the thinning of the rubber mem-
brane at large strains and a subsequent drop in internal
pressure [5]. We show here that a similar phenomenon
also occurs for larger inflation rates where viscous effects
become dominant. In particular, it can be seen that while
the critical pressure increases monotonically with the in-
flation rate, the critical volume first shows a drop and
then a rise with the inflation rate. In theory, this critical
volume should be the same at very slow and very fast
inflations as they both correspond to different scalings of
the elastic solution.

It is clear that this time-dependent behavior can drasti-
cally affect the behavior of blisters subjected to dynamic,
and cyclic loading. To illustrate this point, we subjected
the blister to a single inflation-deflation cycle (up to a
volume of 0.7 ml) at two different speeds: a fast pro-

cess driven at V̇ = 0.1ml/s, and a slower one driven at

V̇ = 0.004ml/s. The blister was then deflated at the same
speed until it buckled and finally left to relax until it
recovered a smooth shape. As shown in Fig. 2, the blis-
ters display a very different buckling-recovery pattern de-
pending on the inflation rate. For slow inflation (Fig. 2b),
buckling appears at a high volume, and the blister takes
a long time to recover a quasi-spherical shape. For fast
inflation, however, (Fig. 2a) the blister buckles at a small
volume and relaxation occurs almost instantaneously. To
understand these puzzling behaviors, we first introduce a
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FIG. 2. (a) Deflation cycle performed of a slowly inflated blis-
ter made of VHB 4905 with initial radius R = 3.5mm. The
images show the maximum inflation at 700 ml (A), the shape
prior to buckling (B), buckling (C), and final relaxed state
(D). (b) Same as (b) using an extremely fast inflation-defla-
tion speed.

model to capture the viscoelasticity of membrane at large
strains based on the transient network theory (TNT) and
then explore the problem of rate-dependent blister infla-
tion.

III. TRANSIENT NETWORK THEORY FOR
THIN MEMBRANES

The theory of thin membranes [44] idealizes a thin
layer as a two-dimensional surface embedded in a three-
dimensional space. Due to the membrane’s small thick-
ness, two main assumptions can usually be taken: (a)
bending moments are negligible compared to in-plane
stresses and (b) the normal vector n at any point remains
normal during deformation. The latter implies that we
can parameterize the membrane by two in-plane coordi-
nates ξα, (α = 1, 2) and one out-of-plane coordinate ξ
such that the position x of a point in the membrane is:

x = ϕ(ξα) + ξνn ξ ∈
[
−h0

2
,
h0

2

]
, (1)

where ϕ(ξ1, ξ2) is the coordinate on the midplane while
ν is the ratio between the current h and reference thick-
ness h0. In the remainder of the paper, we use α to in-
dicate the two tangent coordinates, and the index 3 to
indicate the normal direction. Furthermore, instead of
precise but more complex index notation, we prefer here

to use a more generic tensor notation for clarity. Details
regarding the component form of the presented equations
are however provided in Appendix A for the interested
reader. Following [44], the stress state of a membrane
is characterized by the in-plane Cauchy stress tensor σ,
which is obtained by integrating the Cauchy stresses over
the thickness of the shell. This tensor has non-zero com-

ponents σαβ which are proportional to the membrane
thickness h (Fig. 3), and whose dimensions are of line
tension (force per length). Considering then a membrane
with external pressures applied tangential fα and nor-
mal f3 to the midplane, the balance of linear momentum
takes the form [45]:

σαβ
∣∣
β

+ fα = 0 σαβκαβ + f3 = 0 (2)

where the vertical bar in the first equation indicates a
covariant derivative and καβ is the curvature tensor (or
second fundamental form) of the surface (see Appendix
A for details). Despite their apparent complexity, one can
easily interpret the physical meaning of these equations
by drawing an analogy with the Laplace law in fluid in-
terfaces. Indeed, Eq. (2)b establishes that the pressure
applied normally to the membrane is balanced by the

surface tension σαβ times the curvature kαβ at that par-
ticular point.

The viscoelastic response of polymers arises from a va-
riety of molecular dynamics including molecular entan-
glements [46], dynamic bonds [47], or diffusion of molec-
ular chains [48] among others. When these dissipative
mechanisms are coupled with large elastic deformations,
we have previously shown that the transient network the-
ory (TNT) [49] provides a convenient mathematical de-
scription. With this approach, a polymer is conceptual-
ized as N + 1 interpenetrated and independent networks
of cross-linked molecular chains (Fig. 3). These networks
can belong to two categories: (a) dynamic networks are
those where cross-links constantly attach and detach at
rates ka and kd, respectively, and thus provide a vis-
cous component to the material, (b) permanent networks
have permanent (or covalent) cross-links (ka = kd = 0)
and thus provide an elastic response. In this study, the
elastic network is denoted by the index 0, while the dy-
namic networks are denoted by indices n = 1 to N . To
derive a constitutive relation based on these assumptions,
a molecular chain is idealized as the collection of N Kuhn
segments of length b, and characterized by its end-to-end
vector r (Fig. 3). The mechanics of the nth network may
then be understood through the distribution φn (Fig. 3)
of this end-to-end vector r within a continuum point.
Following [36], a domain Ω made of a population of poly-
mer chains with total concentration Cn can then be char-
acterized by two key quantities: the concentration cn of
attached chains (i.e., those that are connected to the net-
work and contribute to the mechanical response) and the
chain distribution tensor µn:

cn =

∫
Ω

φn(r)dΩ, µn =
3

cN b2

∫
Ω

φn(r)r⊗rdΩ (3)
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FIG. 3. Scheme of the parameterization x of an axisymmetric blister with neck radius 2R, local basis a1,n, and principal
stresses σ11, σ22. The inset on top represents a scheme of a polymer made of a combination of permanent and dynamic bonds
with attachment and detachment rates ka and kd respectively.

From its definition, it can be inferred that µn represents
mean squared stretch experienced by attached chains in
the nth network; it is directly related to the stored elastic
energy and internal stress in the corresponding network.
Following [36], the Cauchy stress tensor in the polymer
follows an additive decomposition which in the case of a
membrane we can write as:

σ = h

(
N∑
n=0

cnkBT (µn − I) + pI

)
(4)

where kBT is the thermal energy of a single polymer
chain, I is the identity tensor, and p is the internal
pressure which acts as a Lagrange multiplier enforcing
the material’s incompressibility. We note that the term
cnkBT has units of force per unit length and it corre-
sponds to the shear modulus Gn of each individual net-
work [36]. For a thin membrane, this expression can be
simplified by noting that (σ33 = 0). Indeed, if we con-
sider the normal component of the distribution tensor as
µtn = n · µn · n, the internal pressure is then determined
as p =

∑
Gn(1− µtn). By substituting this result into σ

and integrating over the thickness, we obtain a universal
constitutive equation for the viscoelastic stress in mem-
branes as:

σ =

N∑
n=0

hGn(µn − µtnI), (5)

It can easily be shown that the pure elastic case (n =
0) converges to a neo-Hookean elastic model with shear
modulus G0 = c0kBT [36]. The stress can therefore be
additively decomposed into a purely elastic component
hG0(µ0 − µt0I) and N viscoelastic contributions.

The problem is then reduced to determining the evolu-
tion of the concentrations cn of attached chains and their
distribution µn over time. We have previously shown [36]
that general evolution equations for these quantities fol-

low first-order kinetics as follows:

ċn = ka(Cn − cn)− kdcn (6a)

µ̇n = ka
(Cn − cn)

cn
I − kdµn +Lµn + µnL

T (6b)

where L is the velocity gradient. We see here that the
evolution of chain stretch in networks is driven by their
attachment in their natural state at rate ka, their de-
tachment in their current state at rate kd and finally,
their elastic distortion due to an imposed rate of deforma-
tion, represented by the velocity gradient L. We finally
note that this model simplifies if the rates ka and kd are
independent of chain deformation. In these case, (6a)
and (6b) are decoupled, and the concentration cn quickly
reaches a steady state given by cn = Cnka/(ka + kd).
Substituting this result in (6b) leads to:

µ̇n = −kd (µn − I) +Lµn + µnL
T , (7)

Furthermore, if one expresses this equation in the curvi-
linear coordinate system (a1,a2,a3) where ai = ∂x

∂ξα

(see Appendix A for details), the evolution of the ten-
sor µ = µija1 ⊗ a2 becomes:

µ̇n = µ̇ijn ai ⊗ aj + µijn ȧi ⊗ aj + µijn ai ⊗ ȧj (8)

All three terms on the right-hand side can be readily iden-
tified with those appearing in Eq. (7). In other words, in
this appropriate curvilinear system, the evolution of the
distribution tensor degenerates to the simple component
equation:

µ̇ijn = −kd
(
µijn − aij

)
(9)

The variations of the components of the distribution ten-
sor are therefore related to the viscoelastic component of
the stress and one obviously has µ̇ij0 = 0. In summary,
the deformation of the membrane is defined by the com-
bination of Eq. (2), (5), (6a), and (6b).
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FIG. 4. (a) Normalized pressure P ∗ versus the radial strain λ = R/R0 during the inflation of a spherical membrane made of a
single dynamic network c1 = 0. (b) Evolution of the critical strain εc/ε

el
c , where the P ∗ − λ diagram takes the maximum value.

The insets represent a comparison between the minimum and the maximum relative size at which this maximum takes place.
(c) Normalized pressure P ∗ versus the radial strain λ = R/R0 during the inflation of a spherical membrane with β = 1. (d)
Variation of the maximum pressure in the (a)-(b) diagrams with the strain rate, and its comparison with the purely elastic case
c2 = 0. (e) Variation of the strain λc that gives the maximum pressure with the strain rate and its comparison with the elastic
case c2 = 0.

IV. INFLATION OF VISCOELASTIC BLISTERS
AT CONSTANT RATES

We explore here the behavior of a viscoelastic blister
at constant inflation rates. We start by deriving an ex-
act solution for a spherical membrane, which provides a
good approximation of a blister undergoing large defor-
mation. We then confirm our findings by exploring the
more complex geometry of a real blister.

A. Solution for spherical viscoelastic membranes

To gain insight into our experimental results, we there-
fore consider first the inflation of a spherical membrane
with an initial radius R0 and thickness h0 (Fig. 4b).
The elastic solution for this problem is well-known in
the literature [50, 51] and is commonly used to illustrate
elastic instabilities. However, to the best of our knowl-
edge, although there are some viscoelastic versions of this
problem [29], the effect of viscosity on the mechanical in-
stability is still poorly understood. During spherical in-

flation, the membrane deformation is entirely defined by
the change in radius R = λR0. Hence, a solution to this
problem involves integrating the distribution tensor in
time and use Eq. (2) to determine the internal pressure
P (details are provided in Appendix B). Regarding the
constitutive equation, we choose here a simple approach
where the polymer is made of a permanent network with
a constant c0, and a single dynamic network with con-
stants c1 and kd. Altogether, these assumptions lead to
the following expression relating the radial strain λ to
the internal pressure P :

P ∗ = 2c∗0
(
µλ0 − µh0

)
+ 2c∗1

(
µλ1 − µh1

)
(10)

where µλ0 = 1/λ, µh0 = 1/λ7 and

µλ1 =
1

λ
e−kdt +

kd
λ

∫ t

0

ekd(ζ−t)

λ(ζ)2
dζ (11)

µh1 =
1

λ7
e−kdt +

kd
λ7

∫ t

0

λ(ζ)4ekd(ζ−t)dζ, (12)

This solution contains two contributions, weighted by c∗0
and c∗1, respectively. The former corresponds to the elas-
tic response of the permanent network, and it matches
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the classical result for the inflation of a spherical neo-
Hookean membranes [52]. The latter corresponds to
the viscous, or rate-dependent contribution. For con-
venience, we normalize the problem based on the total
number of attached bonds as c∗n = cn

c0+c1
(n = 0, 1) and

P ∗ = PR0/(
∑
cnkBTh0), implying that the reference

shear modulus is G = G0 +G1. Using this, let us explore
the behavior of a membrane made of a purely dynamic
network (c∗0 = 0) (that may be compared to a Maxwell
model in its linearized form). In this case, the pressure
takes the form:

P ∗ = 2
(
µλ − µh

)
(13)

We plot in Fig. 4a the variation of the normalized
pressure P ∗ with radial stretch λ for different inflation
rate λ̇∗ = λ̇/kd. We note that when inflated quickly(
λ̇∗ →∞

)
, the sphere converges to a purely elastic mem-

brane with shear modulus G = c1kBT (Fig. 4a) and an
elastic instability occurring at the classical critical stretch
λc = 1.38. As the inflation rate decreases, however, the
solution shifts the magnitude and position of this criti-
cal value until it eventually vanishes when the time-scale
of the inflation is smaller than the material relaxation.
Interestingly, we observe a non-trivial shift of the coor-
dinate [λc, Pc] of the critical point. On the one hand, we
observe the expected decrease in critical pressure due to
the stress relaxation on the membrane. This behavior,
similar to that observed in the blister tests, is a direct
result of the dynamic network, which acts as a viscous
damper. On the other hand, Fig. 4b shows that the
model predicts a nonlinear increase of the critical strain
εc = λc−1 with inflation rate λ̇∗. This may be explained
as follows; for very slow rates, the polymer behaves like
a fluid and thus shows immediate relaxation εc ≈ 0. In
contrast, as the inflation speed increases, the membrane
starts showing an elastic behavior and its associated in-
stabililty at 0 < εc < 0.38. Finally, at large inflation
rates, the membrane becomes quasi-elastic, and we re-
cover the elastic solution εc = 0.38.

Let us now consider the case in which both the per-
manent and dynamic networks are present (Eq. (10)).
For this, it is useful to separate the contribution from
each network with the parameter β = c∗1/c

∗
0. Now, due

to the presence of the permanent network, the P ∗−λ re-
lationship converges to the same solution in both quasi-
static and extremely fast inflations with a scale factor
of (1 + β). Indeed, the shear moduli corresponding to
a relaxed and instantaneous inflation are, respectively,
G0 = c0kBT and Gi = (1 + β)G0. Furthermore, in
the boundary β → 0, the system converges to the qua-
sistatic solution with modulus G0 regardless of the infla-
tion speed. In intermediate cases, however, the elastic
behavior of the permanent network coexists with the vis-
cous dissipation of the dynamic one. In this case, the
previous analysis on extremely slow and extremely fast
inflation indicates that the position of εc must remain un-
changed at the inflation boundaries λ̇ → 0, and λ̇ → ∞

(Fig. 4d). Regarding its magnitude, the critical pressure
scales with (1+β) between these two scenarios (Fig. 4c).
By plotting these two quantities (Fig. 4b-c), we observe
a nonlinear variation where the critical strain is reduced
on intermediate inflations, while the critical pressure al-
ways increases with the inflation rate. Indeed, as long
as the viscous contribution is present, we observe the
same shift to lower critical strains. However, this effect
disappears as the contribution of the dynamic network

vanishes
(
λ̇∗ → 0

)
and we are left with a purely elastic

membrane.

B. Inflation of a viscoelastic blister.

Using the general formulation, let us now concentrate
on the problem of an axisymmetric blister with radius R
being inflated at a rate V̇ (Fig 3). The governing equa-
tions for this particular problem (see appendix C) now
consist of nonlinear partial differential equations that do
not lend a simple solution. For this reason, we con-
structed a numerical solution by discretizing the strong
form of Eq. (2) using the Extended Particle Difference
Method [53, 54], and solved the time increments with an
explicit forward Euler approach (see Appendix D for de-
tails). In a nutshell, given an external force f during a
small time increment δt, the displacement δx = u of a
particle on the midplane was found and updated using
the following incremental scheme. (a) Assuming a con-
stant distribution tensor µ, we used Eq. (5) to find the
stresses as a function of x. (b) we used this result in
Eq. (2) and solved to determine u = δx. (c) We then
updated the position of the midplane ϕ, its thickness h,
and all surface properties such as strains and curvatures.
(d) we subsequently updated the distribution tensor and
chain density following Eq. (6a)-(6b). (e) Finally, the
force f was updated, and we started a new time step.

Again, for simplicity, we modeled the VHB tape used in
our experiments as a combination of one permanent net-
work (with shear modulus G0), and one dynamic network
(with shear modulus G1 and detachment rate kd). These
material parameters were determined by matching model
and experimental results as discussed below. For this, we
first normalized the pressure, volume, and inflation rate
in the form:

P ∗ =
h0P

R (G1 +G2)
V ∗ =

V

h3
0

W =
V̇

h3
0k

0
d

(14)

The membrane equations were then subjected to fixed
volume inflation rates W for which we predicted the crit-
ical volume V ∗c and pressure P ∗c (Fig. 5b-c). As expected,
the critical pressure varies between two asymptotes corre-
sponding to the relaxed and instantaneous shear moduli
(Fig. 5b). As W → 0, the system behaves elastically
and the pressure is equivalent to that obtained with an
elastic solution of shear modulus G = G0. By contrast,
a fast inflation adds a total contribution of G1 to the
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FIG. 5. Normalized pressure P ∗ versus the normalized volume of the blister V ∗. The solid lines correspond to our model results
while the symbols are experimental data obtained at three different speeds; i.e., V = 0.01, 0.1, and 1 ml/min plus an additional
set of data obtained using a quasistatic inflation V → 0. (b)-(c) Model predictions of the evolution of the critical pressure
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shear modulus such that the system has an elastic be-
havior with instantaneous modulus G = G0 +G1. With
this approach, we found that G0 = 23± 3 MPa (Fig. 5a)
and G1 = 120± 5 MPa. We note that the elastic modu-
lus G0 is on the same order as the value previously found
(13.6 kPa) using uniaxial tests [55, 56]. At moderate
inflation speeds, an appropriate match between the two-
network model and experimental curves was difficult to
achieve since VHB is a known possess multiple relaxation
times [55]. More specifically, experimental curves imply
that the relaxation time is stress-dependent; i.e., it flows
and relaxes faster under stress. To improve our model,
we therefore assumed that the relaxation time kd of the
dynamic network was an increasing function of the first
invariant I1 = tr(σviscous) of the viscous stresses; i.e.,
the stresses arising from networks 1 to N. A satisfactory
fit for different inflation rates (V̇ = 0.001 − 10ml/min)
was found when the detachment followed a power law in
I1 of the form kd = 2.7(109) · I4

1 . We see in Fig. 5a that
this model leads to acceptable predictions of the load-
ing stage, the critical pressure and the initial relaxation
times. It, however, cannot capture the polymer relax-
ation at high strains. A more accurate model could be
constructed to include the presence of more networks and
relaxation times; this is however beyond the scope of the
present study. Nevertheless, this analysis shows that the
conclusions found for the spherical model are still valid
for the more complex blister geometry. Note, however,
that the relationship between W and critical volume and

pressure appear shifted to the right in Fig. 5b-c. This
results from the fact that there is a nonlinear relation-
ship between volume rate W and strain rate during the
inflation process; the former being generally faster than
the latter.

V. CYCLIC LOADING OF A VISCOELASTIC
SPHERE

While the study of blister inflation at a fixed rate
yielded insightful results regarding its viscous instabili-
ties, many applications seeking to harvest those instabili-
ties occur at loading conditions that are far from constant
[57]. Applications of these concepts in reversible actua-
tors [58], soft generators [59], or the control of biofouling
[60], are precisely based on the fact that the instability
can be cyclically recovered. We, therefore, propose to
explore the mechanisms driving blister relaxation during
cyclic inflation and their connection with the buckling
phenomenon observed in section II. Motivated by our
previous results and other studies [61], we further ideal-
ize the blister as a spherical caps, enabling the derivation
of exact and insightful analytical solutions.
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FIG. 6. (a) Weissenberg number variation during a step loading with alternate relaxation times of length t∗r . (b) Pressure-strain
curves on a spherical shell when the inflation profile of (a) is applied. (c) Variation of the maximum possible pressure on the
system with each subsequent, long-lasting pause i at a strain εir.

A. Step loading

Here, we consider a situation in which the spheri-
cal membrane is periodically inflated at a constant rate
λ̇∗, with alternating relaxation periods for a duration
t∗r = trkd (Fig. 6a). This could correspond, for example,
to the evolution of a pathological blister where the in-
coming volume is periodically interrupted in time. From
the previous discussion, it can be inferred that the strain-
pressure curve for this situation is bounded by the two
elastic solutions corresponding to the relaxed and instan-
taneous inflation shown in Fig. 6b. Hence, if the infla-
tion rate is small, one recovers the elastic lower bound,
and the solution is independent of time. Similarly, for
extremely fast loading (λ̇∗ → ∞) and small relaxation
times t∗r , one recovers the elastic upper bound. As t∗r in-
creases, the stress in the dynamic network relaxes and the
pressure eventually shifts to the elastic lower bound (Fig.
6b). Fig. 6b, however, shows that once the membrane
has been allowed to relax multiple times, it converges to
the lower bound solution, regardless of the inflation rate.

This observation may be explained as follows: when
the dynamic network is allowed to reorganize, its stress-
free state corresponds to a larger membrane radius and
lower thickness. Since the normalized pressure is scaled
with the factor h0/R (Eq. (14)), this change in reference
reduces the maximum pressure that can be sustained by
the dynamic network and shifts the position of the in-
stability. In contrast, the permanent network does not
feel any of those changes and its pressure-strain curve is
maintained to the lower bounds. In this situation, for a
given membrane stretch λi = 1 + εi, the corresponding
pressure can be split into (a) a pressure P ∗elastic from the
permanent network and (b) a pressure P ∗viscous from the
dynamic network resists which progressively relaxes over
time. Hence, resuming a fast loading after a long-lasting
relaxation at εr, leads to a new maximum pressure-strain

relationship of the form:

P ∗ = 2c∗0

(
1

λ
− 1

λ7

)
︸ ︷︷ ︸

P∗
elastic

+
2c∗1

(1 + εi)
3

(
1

λ− εi
− 1

(λ− εi)7

)
︸ ︷︷ ︸

P∗
viscous

(15)
The onset of the instability, which we previously denoted
as (λc, Pc), is modified accordingly. As the dynamic net-
work reaches a new stress-free state at higher εr, the lo-
cation of the instability is consequently shifted to higher
stretch values, and its magnitude is progressively reduced
as shown in Fig. 6c. This decay is even more evident at
higher values of β, where the contribution of the vis-
cosity is more prominent. This result implies that the
rubber instability normally seen during inflation cannot
be recovered for long relaxation periods. To attenuate
this effect, one can minimize the total energy lost dur-
ing relaxation; i.e., having smaller relaxation periods and
inflating at higher speed.

B. Cyclic inflations.

Let us finally turn to a scenario during which the mem-
brane follows a periodic inflation-deflation cycle shown
in the inset of Fig. 7a and that would recapitulate the
conditions felt by a soft reversible actuator for example.
More specifically, the membrane is first inflated at a con-
stant rate λ̇, then kept at constant volume and finally
subjected to a deflation rate −λ̇, all steps occurring in
the same time interval t∗0. The predicted pressure re-
sponse of this system is depicted in Fig. 7a and d, de-
picting three inflation-deflation cycles with a maximum
strain εmax = 2 at two different rates. We observe that
the membrane initially follows a typical pressure-strain
curve during inflation, but the same path is not followed
during deflation as the system loses energy (hysteresis)
due to the viscous effects. The magnitude of this hys-
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on a spherical membrane with β = 1. The colors define the hysteresis produced on each cycle. The dotted line shows the constant

contribution of the elastic, or permanent network. (b) Same as (a) but using an inflation speed |λ̇∗| = 103.

teric region is affected by the system dynamics such that
it decreases as the inflation speed becomes larger and it
vanishes when W →∞. This observation has two impor-
tant outcomes. (a) Since the dynamic network progres-
sively relaxes, recovering the initial condition V ∗ = 0
induces compressive stresses. Although these stresses
would eventually relax, they can result in the temporary
buckling of the shell. The onset of buckling (P ∗ = 0)
occurs at a larger strain for a slowly inflated membrane
and is further increased with each inflation cycle (Fig.
7). This is consistent with the results observed in Fig.
2b, where the dynamic network in a slowly inflated blis-
ter has enough time to relax so that it reaches a larger
volume at buckling. By contrast, a quickly inflated blis-
ter has less time to relax, which induces the buckling
instability at smaller volumes (Fig. 2b). (b) After being
cyclically loaded, the rubber instability not only occurs
at smaller pressures but is also shifted to a larger critical
strain. Indeed, while the permanent network always fol-
lows the same (dotted) path, the dynamic network resets
its reference state at a higher strain which affects the lo-
cation of the instability. As we saw in previous cases, the
system is bounded by two elastic solutions correspond-
ing to the only two situations where the membrane would
not buckle: an extremely fast and an extremely slow cy-
cle. In more or less degree, all intermediate cases imply
a buckling phase whose recovery time depends on the
polymer dynamics. Eventually, since the contribution of
the dynamic network scales with h/R and it is therefore
reduced in time, the behavior of the membrane at large
strains converges to the elastic, or relaxed, solution. This
behavior is observed in our experiments (Fig. 1b) where
both buckled blisters eventually recovered their corre-
sponding elastic shape; i.e., a partial sphere and a flat
surface. Hence, a system based on this instability would
undoubtedly need to account for the viscous effects and
either load at a larger speed (reducing the hysteresis) or

find a way to quickly reset the dynamic network to its
original state.

VI. CONCLUSION

In summary, this study aimed to shine a light on the in-
terplay between elastic instabilities in elastomeric mem-
branes and their viscous relaxation over time. For this,
we developed a membrane specific version of the tran-
sient network theory [62, 63] that makes a connection be-
tween the mechanisms of bond exchange between molec-
ular chains and the emerging viscoelastic response of the
resulting network [64]. Combining this approach with
experimental results on commercial adhesive tape (VHB
4905), we showed that for viscoelastic membrane, the
classical pressure instability may be switched and less-
ened by changing the inflation rate. We found that the
blister displays a rich spectrum of pressure-volume re-
sponses, that are always bounded by two elastic solu-
tions. In the case of cyclic inflation patterns, viscous
relaxation can also trigger membrane buckling, that can
potentially be avoided by appropriately tuning the in-
flation dynamics. On a final note, although blisters are
often regarded as a symptom of material pathologies [65],
they may be positively harvested during manufacturing
processes [66] and actuators. In this context, results from
this work may be used to control, fine-tune and eventu-
ally harvest the rubber and buckling instabilities in prac-
tical applications. Finally, a fundamental understanding
of the interplay between elastic instabilities and viscosity
may also be of relevance on a wide variety of synthetic
and biological materials, such as non-Newtonian fluids
[67], the cell walls of plants and fungi [68] as well as cell
sheets [69] and aggregations of insects [70].
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APPENDIX A: MEMBRANE MECHANICS

From Eq. (1), we can define a local basis on the
membrane by defining two tangent vectors to the mid-
plane aα = ϕ,α in addition to a unit normal n =
(a1 × a2) /‖a1×a2‖ that determines its orientation (Fig.
3). Hence, a vector and a tensor can be written in the
so-called covariant basis {a1,a2,a3} as v = viai and
σ = σijai ⊗ aj (i, j = 1, 2, 3) respectively. The defi-
nition of this basis is completed by defining its metric
aαβ = aα · aβ and curvature καβ = −aα · n,β tensors,
which are respectively related to the change in area and
curvature with respect to the parametric space. This ba-
sis is, however, not enough to describe all the necessary
features to describe a membrane, and we need to define
a second (or contravariant) basis {a1,a2,a3} defined by
the fact that aα · aβ = δαβ (where δαβ is the Dirac delta

function) and a3 = 1
νn. In the same way, this basis is

characterized by its own metric tensor (with components
aαβ = aα · aβ) and curvature tensor (with components
καβ = −aα · n,β) with similar physical meanings. Using
these definitions, a vector and a tensor are written respec-
tively as as v = viai and σ = σijai ⊗ aj . Note that this
basis is not necessarily orthonormal, which implies that
one must redefine the gradient of a vector and a tensor
by taking into account the variation of both the compo-
nents and the basis. Hence, we can write the divergence
and gradient as:

∇ · v =
(
vi|i
)

(16a)

∇ · σ =
(
σij
∣∣
j
)ai (16b)

∇v =
(
vi|j
) (
ai ⊗ aj

)
(16c)

∇σ =
(
σij
∣∣
k

) (
ai ⊗ aj ⊗ ak

)
(16d)

where the vertical bar indicates a covariant derivative:

vi|j = vi,j + Γijkv
k (17a)

σij
∣∣
k

= σij,k + Γilkσ
lj + Γjklσ

il (17b)

and Γiij = 1/2ail(ajl,k + akl,j − ajk,l) are the Christof-
fel symbols of the second kind. The comma is used here
and in further derivations to indicate derivative with re-
spect to the parametric coordinates; i.e. ∂(·)/∂ξk. As
discussed in the main text, a thin membrane is described
by the expression described in Eq. (1), and thus we can
write the velocity of a point located at a parametric po-
sition ξ at a given time t by:

v(ξ, t) =
δx

δt
= vαaα + vnn+ ξȧ3. (18)

Using this definition, we can obtain the time variation of
the local basis by differentiating the surface in both space
and time, and considering the fact that ∂(aα ·n)/∂t = 0
obtaining:

ȧβ =
(
vα|β − vnκαβ

)
aα +

(
vn,β + vακαβ

)
n (19)

ȧ3 =
ḣ

h0
n− h

h0

(
vακαβ + vn,β

)
aβ , (20)

and which we can use to derive the velocity gradient.
For this, we start by combining these results with Eq.
(16c)-(17a) such that we can write the velocity gradient
L = ∇v as:

L =
(
vα|β − vnκαβ

) (
aα ⊗ aβ

)
+(

vγκγβ + vn,β
) (
n⊗ aβ

)
+

ḣ

h0
n⊗ a3 − h

h0
(vακαβ + vn,β)aβ ⊗ a3 (21)

In parallel, we can also expand the time derivative of the
tensor µ as:

µ̇ =µ̇αβaα ⊗ aβ + µαβȧα ⊗ aβ + µαβaα ⊗ ȧβ+

µ̇33a3 ⊗ a3 + µ33ȧ3 ⊗ a3 + µ33a3 ⊗ ȧ3 (22)

and by introducing here Eq. (19) and (21) it is straight-
forward to see that:

µ̇ = µ̇αβaα ⊗ ab + µ̇33a3 ⊗ a3 +Lµ+ µLT (23)

Finally, using the relationship between the Truesdell rate
and the time derivative µ̇ = µ̊+Lµ+µLT and the fact
that µ̊ = ka(C − c)/cI − kdµ [36], we can identify terms
and obtain the expressions of (9).

APPENDIX B: PARTICULAR SOLUTIONS

To derive analytical solutions for the deformation of
a viscoelastic material, let us start by defining F as the
deformation gradient. Assuming a known expression for
this tensor in time, one can integrate the distribution
tensor by parts to obtain:

µ =e−kdtF (t)F (t)T+∫ t

0

kd
[
F (t)F−1(ζ)F−T (ζ)F T (t)

]
ekd(ζ−t)dζ (24)

which one can use to determine the value of the stress
in time. To find the stress on a spherical membrane,
we start by considering the deformation gradient for an
incompressible sphere of radius R = λR0 as:

F =

 λ 0 0
0 λ 0
0 0 1

λ2

 (25)
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Then, in order to generalize this problem into
the curvilinear coordinates framework of sec-
tion III, let us consider the parametrization
of a sphere in spherical coordinates such that
x = [R sin ξ1 cos ξ2, R sin ξ1 sin ξ2, R cos ξ1]. In this
context, it is straightforward to see that the metric and
curvature tensor read:

aαβ = (λR0)
2

[
1 0
0 cos2 θ

]
καβ = λR0

[
1 0
0 cos2 θ

]
(26)

Combining these two results with Eq. (24) and recalling
that µ = µijai ⊗ aj we can write the components of the
distribution tensor as:

µ11 =
1

R2
0

(
e−kdt + kd

∫ t

0

ekd(ζ−t)

λ(ζ)2
dζ

)
(27a)

µ22 =
1

R2
0 cos2 θ

(
e−kdt + kd

∫ t

0

ekd(ζ−t)

λ(ζ)2
dζ

)
(27b)

µt =
1

λ4
e−kdt +

kd
λ4

∫ t

0

λ(ζ)4ekd(ζ−t)dζ (27c)

and by assuming a system made of a permanent and a
viscous network, we can write the average stresses (1) in
a rubber balloon as:

σ11

kBT
=
c1h

R2
0

(
1− 1

λ6

)
+ c2h

(
µ11 − µta11

)
(28a)

σ22

kBT
=

c1h

R2
0 cos2 θ

(
1− 1

λ6

)
+ c2h

(
µ22 − µta22

)
(28b)

These stresses can be directly introduced into Eq. (2)b,
which can be understood as the Laplace law in mem-
branes. By setting fn = −P and introducing the curva-
tures from Eq. (26) we obtain:

c1

(
1

λ
− 1

λ7

)
+ c2

(
µλ − µh

)
=

PR0

2kBTh0
(29)

where

µλ =
1

λ
e−kdt +

kd
λ

∫ t

0

ekd(ζ−t)

λ(ζ)2
dζ (30a)

µh =
1

λ7
e−kdt +

kd
λ7

∫ t

0

λ(ζ)4ekd(ζ−t)dζ (30b)

APPENDIX C: AXISYMMETRIC DETAILS

In this appendix we carry out the mathematical condi-
tions to obtain the axisymmetric form of the equations to
finally obtain the equations in an implementation-ready
form. Let us start by introducing the following polar
parametrization on the mid-plane:

ϕ = [r(ξ1) cos ξ2, r(ξ1)ξ1 sin ξ2, z(ξ1)] (31)

By simply applying the defintions of section III, we can
derive the metric and curvature tensors as:

aαβ =

[
r′2 + z′2 0

0 r2

]
καβ =

[
1 0
0 cos2 ξ2

]
(32)

where we used ′ to indicate a derivative with respect to ξ1.
In a similar way, the Christoffel symbols can be written
as:

Γ1
11 =

r′r′′ + z′z′′

a11
Γ1

22 = − rr
′

a11
Γ2

21 =
r′

2
(33)

and thus we can write the membrane equations as:

σ11
,1 +

(
2Γ1

11 + Γ2
21

)
σ11 + Γ1

22σ
22 + ḟ1 = 0 (34a)

σ11κ11 + σ22κ22 + fn = 0 (34b)

which can easily be proven to be equivalent to the com-
mon membrane equations shown in p. 34 of Libay and
Simmonds with the difference that the real stress in the
shell corresponds to T ξ = σ11a11 and Tφ = σ22a22.

APPENDIX D: NUMERICAL
IMPLEMENTATION

In order to solve Eq. (2) on an axisymmetric shell,
we start by discretizing the parametric domain in J
nodes such that any field is stored in vector form as
uT = [u1 . . . uJ ]. Using the Extended Particle Differ-
ence Method, we may then interpolate any point of this
field and its derivatives as:

u(ξ) = Φ0u
T u′(ξ) = Φ1u

T u′′(ξ) = Φ2u
T

(35)
where Φ0,Φ1, and Φ2 are the interpolation matrices as
defined in [53, 54] and evaluated at the point of interest.
Having the problem discretized in this manner, we can
then solve the strong from of Eq. (2) to determine the
displacement of the membrane given an external pressure
f . However, since the problem is time dependent, solving
for the final displacement directly is not possible and we
used, instead, the following explicit scheme where the
problem is solved in small increments of f in time:

1. Assuming a constant distribution tensor µ, use Eq.
(5) to interpolate the stresses, strains, and other
magnitudes as a function of x.

2. In the context of a Newton-Raphson solver, lin-
earize Eq. (2) as a function of the differential dis-
placement δU such that we can rewrite the balance
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of linear momentum as the solution to the following
system:

RδU + F = 0

where F is the residual of Eq. (2), and R is the
tangent matrix computed as ∂F/∂δU

3. Solve to determine δU at every node using a stan-
dard N-R nonlinear solver.

4. Update the position of the midplane ϕ, its thick-
ness h, and all surface properties such as strains

and curvatures.

5. Update the distribution tensor, and chain density
by the means of Eq. (6)-(7).

6. Update the external pressure f , and go back to 1.
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