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Motivated by the observation of the storage of excess elastic free energy – prestress – in cross
linked semiflexible networks, we consider the problem of the conformational statistics of a single
semiflexible polymer in a quenched random potential. The random potential, which represents the
effect of cross linking to other filaments is assumed to have a finite correlation length ξ and mean
strength V0. We examine statistical distribution of curvature in filament with thermal persistence
length `P and length L0 in the limit that `P � L0. We compare our theoretical predictions to
finite element Brownian dynamics simulations. Lastly we comment on the validity of replica field
techniques in addressing these questions.

I. INTRODUCTION

Semiflexible polymer networks are well known to trap
prestress in their formation. Cross linking molecules typ-
ically lock-in curved and thus elastically stressed states
of the filaments. As a consequence of this being an out
of equilibrium process, the cross linkers may, however,
trap more thermal energy – kBT – per bending mode.
The result is that cross-linking during network forma-
tion typically traps excess free energy, which then slowly
bleeds out of the system. That relaxation process ap-
pears to lead to large, nonequilibrium stress fluctuations,
and is associated with the glassy power-law rheology of
the network at very low frequencies. Such low-frequency
power-law rheology has been observed in both simula-
tion [1] and experiment [2]. Living cells are similarly
observed to have soft, glassy, power-law rheology [3], al-
beit with a distinctly different power law exponent [4, 5].
The large nonequilibrium stress fluctuations have cur-
rently been observed solely in simulation and we suggest
that they should make an intriguing target for future ex-
periments.

The underlying dynamics of transiently cross linked
semiflexible networks is likely to be fundamental to the
mechanics of both the active biological and passive in
vitro systems. Simulations suggest that both the stress
fluctuations and this characteristic power-law rheology of
transiently cross linked networks are associated with the
reorganization of progressively larger sections of the net-
work occurring on progressively longer time scales. Un-
derstanding these dynamics presents a theoretical chal-
lenge.

In an effort to better understand the excess free energy
trapped in such networks, we consider the problem of a
single semiflexible filament at temperature T interacting
with a quenched random potential. We hope that, in
this single filament model, the quenched pinning poten-
tial mimics the effect of random cross linking sites that
mechanically couple the filament in question to the sur-

rounding network. In particular, we will examine the role
of spatial correlations in the pinning potential, which, at
least loosely speaking, introduces an effective mesh size
of the surrounding network. We analyze the disordered-
averaged conformational fluctuations of the filament and
the elastic energy stored in the system as a function of
persistence length of the filament and the correlation
length of the potential. We compare these predictions
to the results of large-scale finite element Brownian dy-
namics simulations of such a semiflexible filament in a
random potential.

The study of the statistical mechanics of a single stiff
filament in a random potential recalls a number of re-
lated systems in which a low-dimensional elastic object
interacts with a quenched pinning potential. Examples
include disorder-pinned domain walls between symmetry-
equivalent ground states [6], vortex lines in superconduc-
tors [7–9], and the three-phase contact line associated
with the spreading of fluids as they wet a disordered
substrate [10, 11]. The key distinction between these
systems and the one of current interest is the presence
of a bending term in the elastic Hamiltonian of the fil-
ament. In cases where this term dominates the statisti-
cal weights of various filament conformations, i.e., when
filament tension is sufficiently small or when examining
bends on short enough lengths, we expect to obtain re-
sults distinct from those obtained for these previously
studied systems.

A filament interacting with a quenched random poten-
tial can be characterized by three lengths: the filament
length L0, the thermal persistence length `P, and the
correlation length ξ of the potential. We will focus on
the case of stiff filaments (although we introduce alter-
natives) in which the persistence length is typically longer
than that of the filament itself: L0 < `P. In this case,
there are still two distinct limits. One might imagine
that either `P � ξ, in which case the filament should be
flexible enough to follow the twists and turns of the local
minima of the random potential. Alternatively one may
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consider the case where `P � ξ and the filament is so
stiff that the elastic energy cost for following the valleys
of the potential becomes prohibitive.

Similarly, the problem is endowed with two energy
scales: the thermal energy T (we work in units where
Boltzmann’s constant is set equal to unity) and the typ-
ical energy scale of the pinning potential V0. The po-
tential has dimensions of energy per length. The inverse
length scale ν = V0/T must control the states of the fila-
ment, allowing one to examine both “strongly pinned” on
scales where L0ν � 1 versus “weakly pinned” L0ν � 1
cases. The former is more interesting for the system un-
der consideration.

There are two quantities that will provide insight into
the ensemble of filament configurations. These are the ef-
fective persistence length of a filament in the pinning po-
tential. This length differs from the usual tangent vector
correlation length of the filament due to its interaction
with the pinning potential. It also provides a clear target
for experimental studies of labeled filaments in networks.
The effect of this extra filament bending imposed by the
pinning potential (or the network in experiment) is that
the filaments store excess elastic energy. We propose that
this excess free energy is a prediction for the prestress in
networks. The single filament model thus makes two pre-
dictions for nonequilibrium networks.

The remainder of this article is organized as follows.
In section II we describe the filament Hamiltonian. We
then provide in section III an analytical calculation of
the averaged free energy of the filament in the strong-
pinning limit of a random potential, described above.
We start with the case of the completely flexible fila-
ment, i.e., the filament without bending energy, and then
move forward to the more general case of the semiflex-
ible filament. We then turn in section V to numerical
simulations of the system using finite element Brownian
dynamics of a geometrically exact Simo-Reissner beam
model. We then summarize our results and their impli-
cations for pre-stress in networks in section VI, where
we conclude with a proposal for new experiments. Fi-
nally, we provide an appendix addressing the applicabil-
ity of the replica method to the problem explaining that
it provides unphysical results for many of the measurable
quantities.

II. THE MODEL

We consider a filament in two dimensions that is an-
chored at both ends. We introduce a coordinate system
in which these anchoring sites are at positions (0, 0) and
(L0, 0) respectively. The anchoring sites are assumed to
be able to generate arbitrary constraint forces necessary
to hold the filament at these points, but to provide no
constraint torques. The directed filament is further as-
sumed to be free of overhangs, allowing its configuration
to be described by a function y(x). A representation for
a numerical simulation (to be described in section V) of

FIG. 1. (color online) Three tensed filaments interacting with
the pinning potential, shown as a heat map with brighter col-
ors representing higher potential energies. The lowest fila-
ment traverses a saddle between local potential maxima. On
the right of that saddle point it curves into a deep potential
minimum (dark). Similar features may be seen in the other
filaments. This is a snapshot from our Brownian dynamics
simulations, discussed in section V.

a few filaments (green lines) interacting with the poten-
tial (heat map) is shown in Fig. 1. We will allow the
arclength of the filament between these two anchoring
points to vary. In short, the anchoring points are reser-
voirs of extra length. A simple mechanical model of this
situation can be thought of as follows. The filament fluc-
tuates on a table whose height topography in a uniform
gravitation field gives the pinning potential. The an-
choring points may be thought of as holes in this table
through which more filament may enter or exit the table’s
surface. Weights may also be added below the table to
enforce a fixed tension on the filament. We should notice
that for the simulation we use a slightly different model,
with one end fixed and the other free to move in one di-
rection (see section V). We assume that for the small
conformation the difference between these two models is
negligible.

In the small bending limit ( dydx � 1), which should be
valid for filaments much shorter than their persistence
length, we can write the filament’s energy functional as

E[y(x)] =

∫ L0

0

dx

{
1

2
κÿ2 +

1

2
τ ẏ2 + V (x, y (x))

}
, (1)

where κ is the filament’s bending modulus defining a
thermal persistence length `P = κ/T . τ is the tension
imposed on the filament. V (x, y) is the quenched ran-
dom potential (with dimensions of energy per length),
described in more detail below. We have introduced the
notation ẏ = dy

dx . Then the classical partition function for
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such a filament at temperature T = 1/β is given by the
path integral over all trajectories of the filament weighted
by a Boltzmann factor obtained from Eq. 1:

Z =

∫
Dy(x) e−βE[y(x)]. (2)

We will later consider averages of the free energy, ob-
tained from Eq. 2 in the usual way: F = −T lnZ, over
an ensemble of random potentials.

Turning to the pinning potential, we can consider two
rather simple forms for its probability distribution that
allow for a finite spatial correlation length, but do not
break rotational invariance. The first is inspired by the
massive scalar field Lagrangian

PV(V ) =
1

P0
exp

{
− 1

2V 2
0

∫
d2x

[
(∇V )2 + ξ−2V 2

]}
.

(3)
Here ξ sets the correlation length and V0 the energy
scale of the potential. It is straightforward to see that
this model generates an ensemble of random potentials
in which the amplitude of each Fourier mode is selected
as an independent Gaussian random variable from a dis-
tribution with zero mean and a width that depends on
the magnitude of the wavenumber k = |k|.

We may also consider a related problem in which the
correlation length is assigned to the force rather than to
the potential. Since the force is the (negative) derivative
of the potential, one can obtain the necessary Gaussian
probability distribution for force by introducing another
derivative in Eq. 3. We obtain

PF(V ) ∼ exp

[
− 1

2V 2
0

∫
d2x ξ2(∇2V )2 + (∇V )2

]
. (4)

The first version of the potential in which the Fourier
amplitudes of the scalar potential are Gaussian dis-
tributed generates quite large pinning forces at short cor-
relation lengths since the slope of the potential is V0/ξ.
We speculate that the second version of the potential
in which the spectrum of pinning forces on the filament
is Gaussian distributed is a better approximation of the
physical problem since one may then manipulate the cor-
relation length of the potential (which is our approxi-
mation to the mesh size of a filament network) without
changing the scale of forces to which the filament is sub-
jected. We return to this point in our discussion. Here-
after we refer to the first type of random potential as
the energy controlled distribution while the second will
be called the force controlled distribution.

These distributions can also be expressed in terms of
a probability distribution for the Fourier components of
the potentials. Working in terms of those Fourier modes,
we can also introduce another distribution with an expo-
nential suppression of the higher Fourier modes:

P (Vkx,ky ) ∝ exp

{
−LxLy

ξ2

V 2
kx,ky

8V 2
0

exp
(
ξ2(k2

x + k2
y)
)}

,

(5)

where the rectangular system has an area A = LxLy.
This particular form of the random potential is not con-
venient for analytic calculations, but generates more nu-
merically stable simulations. See Fig. 2 for examples of
random potentials selected from these distributions. The
pinning forces generated from these potentials are shown
in Fig. 3. The energy controlled potential produces a
complex force landscape with very short ranged correla-
tions. We do not reproduce that vector field here.

FIG. 2. (color online) Examples of the random poten-
tials V (x, y) (shown as a heat map with contour lines) se-
lected from different distributions: (A) Energy controlled dis-
tribution. (B) Force controlled distribution. (C) Exponential
suppression of high modes. The correlation length is fixed in
all three so that Lx/ξ = 20.
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FIG. 3. (color online) Detail views of the force fields resulting
due to the random pinning potentials shown in Fig. 2. (A)
Force controlled distribution. (B) Exponential suppression of
high modes.

III. THE VALLEY APPROXIMATION

There is a considerable simplification to be found if
we assume that Lν � 1. In this strong pinning limit,
the ensemble of filament configurations is dominated by
states where the filament is confined to the valleys of the
pinning potential. We indeed observe this in simulations.
There we also see instances in which filament crosses from
one valley to another over a saddle point of the potential.
We will address escapes from one valley to the next over
saddle points later. Excluding such saddle points for now,
we assume that the potential is roughly constant along
the bottom of the valley and that the curvature of the
potential in the direction orthogonal to the path along
the valley floor is also constant. Thus, the local form of
the pinning potential is given by

V (x, y) =
k̃

2
[y − y0(x)]

2
. (6)

We have introduced a curvature (spring constant) scale

k̃ = V0

ξ2 . The path of the valley minimum y0(x) remains

a random curve. To analyze the effect of the quenched
distribution of such paths, we may either calculate physi-
cal quantities of interest for an arbitrary curve y0(x) and
then average, or use the replica trick to handle the av-

erage over the potential simultaneously with the thermal
averaging. The replica trick, however, provides unphysi-
cal results as we explain in appendix C.

A. Flexible filaments with the energy controlled
distribution

We now explore the valley approximation first for a
flexible polymer by setting κ = 0. We require a finite
tension so the polymer’s path can be considered to be
nearly straight. In this limit the energy of the polymer
in the random potential may be written as

Eflexible

T
=

∫ L0

0

dx

{
y(x)Oy(x) + ky(x)y0(x) +

ky2
0(x)

2

}
,

(7)
where we have scaled the parameters by temperature T :
m = βτ and k = βk̃. We have also introduced the differ-
ential operator

O =
m

2
∂2 +

k

2
. (8)

The partition function is given by the integral

Zflexible =

∫
Dye−Eflexible[y(x)]. (9)

Calculating this partition sum is equivalent to perform-
ing the Euclidean path integral (with x being the time-
like coordinate) for a quantum particle with a mass m
in a harmonic potential with spring constant k. In the
analogous quantum problem the effect of the pinning po-
tential is to introduce a time-dependent force −ky0(x).
Since the integral is Gaussian, we can obtain a closed
form solution for the partition function for a particular
path of the valley floor:

Z =
1√

detO
exp

[
−
∫ L0

0

dx

(
−k

2

4
y0(x)O−1y0(x) +

ky2
0

2

)]
.

(10)
If we choose y0(x) = 0 everywhere, Eq. 10 reduces to the
partition function of an unforced oscillator. From this we
obtain the prefactor, leading us to write

Z

ZSHO
= exp

[
−
∫ L0

0

dx

(
−k

2

4
y0(x)O−1y0(x) +

ky0(x)2

2

)]
,

(11)
where ZSHO is the well-known result for the simple har-
monic oscillator [12]. It is then straightforward to com-
pute the free energy F of the flexible chain in a particular
realization of the random potential, the one whose valley
follows the path y0(x). This free energy is given by

F = FSHO+T

∫ L0

0

dx

(
−k

2

4
y0(x)O−1y0(x) +

ky0(x)2

2

)
.

(12)



5

We now average the free energy in Eq. 12 over a distri-
bution of the paths of the valley floor that is consistent
with our previous random potential distribution given by
Eq. 3. To obtain this we weight the paths of the valley
floor y0(x) by

P [y0(x)] ∼ exp

[
− 1

2ξ

∫ L0

0

dxẏ2
b

]
= e−

∫ L0
0 y0Gy0dx,

(13)
where differential operator

G = − 1

2ξ
∂2 (14)

incorporates the correlation length of the pinning poten-
tial ξ. This weight is analogous to the Euclidean path
integral of a free particle. The distribution of quenched
potentials determined by Eqs. 6 and 13 is not identical
to that given by Eq. 3. But the statistical weight asso-
ciated with valley floors of these potentials has the same
spatial correlations as those valley floors determined by
the original potential distribution in Eq. 3.

The averaging over the distribution of these valley
floors we obtain a correction to the simple harmonic os-
cillator (SHO) free energy

[F ] = FSHO + ∆F, (15)

where

∆F = −Tk
2

8
Tr(O−1G−1) +

Tk

4
TrG−1. (16)

Here and throughout this article, we use the squared
brackets [·] to indicate averages with respect to the
quenched random potential. The angled brackets 〈·〉 rep-
resent thermal averages. We compute these traces by di-
agonalizing the two relevant operators – see appendix A.
We find that for long filaments (see appendix A) the
disorder-averaged free energy is

[F ] =
L0

√
V0τ

4

[
1 +

2T

ξτ

]
. (17)

The correlation length of the quenched potential and
the tension set a natural energy scale that controls the
free energy correction. When that potential is sufficiently
heterogeneous so that its valleys are quite tortuous on the
scale of a Pincus blob [13] ξ < T/τ , the pinning potential
has a significant effect on the free energy. The result
above – Eq. 17 – cannot be extended to arbitrarily small
tensions τ → 0 since our assumption that x(y) is a well-
defined function breaks down. In effect our use of the
Monge gauge fails to adequately represent the polymer’s
shape.

Finally, we compute the contribution to the length, as
compared with the length of the filament in the absence of
the pinning potential. We recall that the contour length
of the filament

L =

∫ L0

0

dx
√

1 + ẏ2 ≈ L0 +
1

2

∫ L0

0

dx ẏ2. (18)

where the Taylor expansion of the integrand is justified
by the fact that the filament is nearly straight when under
sufficient tension. The quantity of interest is thermal av-
erage 〈L〉. As the integrand is nonnegative, this average
〈L〉 is necessarily longer than the separation of the end
points L0. In fact, in the absence of a bending modulus
(as assumed here), 〈L〉 is divergent; there is an infinite
amount of contour length trapped in the high wavenum-
ber modes of deformation. It is thus useful to define the
change in the contour length of the polymer due to the
quenched pinning potential. We introduce

∆L = [〈L〉]− 〈L〉|V0=0 (19)

as the difference between the thermal average of the fila-
ment’s contour length when averaged again over ensem-
ble of pinning potentials at fixed V0 and ξ and the same
quantity with no pinning potential, i.e., the problem ob-
tained by setting V0 = 0. This difference remains finite.
We find that

∆L

L0
=

1

8

√
V0

τ

[
1− 2T

τξ

]
. (20)

Once again we see that the corrections due to the pin-
ning potential enter through the dimensionless ratio of
the Pincus blob length to the correlation length of the
potential. The negative sign in Eq. 20 may appear to be
counterintuitive. One might imagine that a shorter cor-
relation length would, in fact, create more transverse un-
dulations in the filament as it tries to follow the more sin-
uous potential minimum. A shorter correlation length ξ
would then be expected to increase ∆L. It does not. The
tensed flexible polymer has large undulations on length
scales below that of the Pincus blob. The effect of a
decreasing potential correlation length at fixed V0 is to
increase the curvature of the potential, making the har-
monic constraint forces on the filament stronger. These
larger forces straighten out the filament on scales below
the Pincus blob length, decreasing ∆L by straightening
it out on these small scales.

The first term in Eq. 20 increases the ∆L of the fil-
ament with increasing potential (or decreasing τ). This
reflects the expected effect of the potential. In a stronger
potential the filament is forced to follow more precisely
the tortuous valley of the potential minimum and thereby
use more arclength. We return to this idea in the case
of semiflexible filaments. From this analysis, we see that
one may wish to consider an ensemble of random po-
tentials for which the typical scale of the pinning forces
remains fixed even as the correlation length is changed.

B. Semiflexible filaments: energy controlled
distribution

We now include the bending modulus in the filament
Hamiltonian. Using the same valley-based approxima-
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tion for the random potential, the energy of the semi-
flexible filament takes the form

E

T
=

∫ L0

0

dx

[
`Pÿ

2

2
+
mẏ2

2
+
k(y(x)− y0(x))2

2

]
. (21)

We introduce `P = βκ, the normal thermal persistence
length of the filament. The partition sum is then given
by

Z =

∫
Dy(x)e−E/T . (22)

In Eq. 22 we restrict the paths by imposing boundary
conditions such that the filament begins and ends at x =
0, L0 respectively. Moreover, it starts and ends at zero
tangent angle with respect to the mean direction (along
the x axis): ẏ(0) = ẏ(L0) = 0.

Following our previous procedure, we may formally in-
tegrate over all paths y(x) by introducing the inverse of
the differential operator

Oκ =
`P
2
∂4 − m

2
∂2 +

k

2
(23)

and write the partition function as

Z =
1√

detOκ
e−

∫ L0
0 dx(− k24 y0(x)O−1

κ y0(x)+
ky0(x)2

2 ). (24)

The prefactor in the above equation is the partition func-
tion of a modified harmonic oscillator (MHO), previously
discussed in Ref. [14]. Leaving the details of that aside

for the moment, we write free energy of the system as

F = FMHO+T

∫ L0

0

dx

(
−k

2

4
y0(x)O−1

κ y0(x) +
ky0(x)2

2

)
.

(25)
We must now average this free energy over the ensem-

ble of paths taken by the local potential minimum. We
average over y0(x) in an ensemble where we weight each
such path by Eq. 13. Doing so, we obtain

[F ] = FMHO −
Tk2

8
Tr(O−1

κ G−1) +
Tk

4
TrG−1, (26)

where G is defined by Eq. 14. Once again, we are required
to compute the traces of the relevant operators, defined
by Eqs. 14 and 23. The analogous exercise for the flexible
filament was relegated to appendix A. We expand on that
discussion for the case of semiflexible filaments here.

First we note that one can factor Oκ into two commut-
ing operators

Oκ =
`P
2

[
∂2 − ω2

1

] [
∂2 − ω2

2

]
, (27)

where we have introduced the (potentially complex) fre-
quencies:

ω2
1,2 =

m

2`P

[
1±

√
1− 4`Pk

m2

]
. (28)

Expanding in a complete eigenbasis of the two operators
those product make up Oκ, we obtain a form of the disor-
der averaged free energy in terms of an infinite sum over
the (discrete) eigenvalues of Oκ indexed by

zn = nπ/L0, (29)

where n = 0, 1, . . . . The resulting free energy is

[F ] = FMHO −
ξk2

2`P

∞∑
n=0

1

z2
n

1

(z2
n + ω2

1)

1

(z2
n + ω2

2)
+
ξk

2

∞∑
n=0

1

z2
n

. (30)

The MHO free energy is given in the appendix B. If we
take the limit of a vanishing bending modulus (`P → 0),

we find that ω1 → ∞ and ω2 →
√
k/m. This returns

us to the previous calculated free energy (up to a con-
stant) for the flexible filament in the disordered potential
– see appendix A. As the bending modulus increases
from zero, the two frequencies become complex when
`P ≥ m2/4k – see Eq. 28 . The free energy, however,
remains real since ω2

1,2 are complex conjugates.

Finally, we note that the product of fractions in the
above summation can be broken up into a set of three
independently convergent sums. This allows one to write
the disorder-averaged free energy in terms of a sum of
cotangents of ω2

1,2L0. We consider that solution in the

limit of long and stiff filaments ω1,2L0 � 1, obtaining a
simple algebraic expression

[F ] = FMHO +
1

2

kL0

2q

(ω2
2 + ω1ω2 + ω2

1)

ω1ω2(ω1 + ω2)
. (31)

Using Eq. 28, we reintroduce the original model param-
eters. That result is most succinctly expressed in terms
of the dimensionless parameter

φ =
√
`P ν

T

ξτ
. (32)

In terms of φ we find the disorder-averaged free energy
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to be

[F ] = FMHO +

√
kmL0

4q

1 + φ√
1 + 2φ

. (33)

Physically, we see that this dimensionless quantity φ
is the ratio of the Pincus blob size to the correlation
length (as was observed in the flexible polymer case)
multiplied by a correction factor that incorporates the
strength of the random potential. Specifically, we see
that this correction factor is given by the square-root of
the ratio of two length scales in the problem: the persis-
tence length `P of the filament and the arclength of the
filament ν−1 = T/V0 required for the potential energy
of pinning to equal thermal energy. We may interpret
the effect of a finite persistence length as extending the
size of the underlying Pincus blobs. This result extends
the disorder-averaged free energy of a flexible polymer
to the semiflexible regime, and may be compared to the
previous result found in Eq. 17. The effect of the finite
bending modulus enters in both the difference between
FSHO and FMHO in the first term on the right hand side of
Eq. 33 and in second term on the right hand side of the
above equation, where the filament’s bending modulus
enters solely through the persistence length incorporated
into the dimensionless parameter φ defined in Eq. 32.

We can now calculate the effect of the pinning poten-
tial on the length of the chain between the two pinning
points. Following the same approach and using the same
definitions as used for the flexible filament, we now find

∆L = LMHO +
ξ
√

k
mL0

8

1 + 3φ

(1 + φ)
3/2

(34)

The pinning potential always increases the arclength, but
its contribution becomes smaller as the filament’s bend-
ing modulus is increased, i.e., for larger φ. Using the
result for the MHO and reintroducing the original model
parameters, we write

∆L

L0
=

T

4
√
τκ

(
1√

1 + 2φ
− 1

)
+

1

8

√
V0

τ

1 + 3φ

(1 + φ)
3/2

. (35)

The first term in the above expression is proportional to
the ratio of the Pincus blob size ζ = T/τ to the bend-

ing length `b =
√
κ/τ , which sets the cross over length

between a regime where tension dominates the statistical
ensemble of filament configurations at longer lengths and
the bending modulus at shorter lengths. The second term
in the above expression is proportional to the ratio of
the same Pincus blob size and the length scale set by the
pinning potential ν−1 = T/V0. In the limit of very stiff
filaments so that `P ν � 1 and φ� 1 we see that the first
term provides a negative change in length, as observed for
the flexible polymer, but the second term increases the
filament arclength with a contribution ∼

√
ζνφ−1/2. The

interpretation is similar to that given regarding the flex-
ible polymer. The first term produces filament straight-
ening as discussed there. The second term provides for

the increase of the arclength due to the tortuosity of of
the potential minima.

C. Semiflexible filaments: force controlled
distribution

We now consider the semiflexible filament to be inter-
acting with the smoother, force controlled distribution.
The calculation proceeds in a manner analogous to the
previous two sections. The key difference is that the dif-
ferential operator appearing in the statistical weight of
valley paths G is replaced by a new one accounting for the
fact that the typical curves along bottom of the valleys
of the potential now have their own persistence length.
Thus the differential operator G is replaced by

GF =
ξ

2
∂4 − 1

2ξ
∂2. (36)

Following the methods outlined above, we arrive at an
expression for the free energy of the filament in the
quenched potential, written in terms of a sum over the
eigenvalues of the differential operators Oκ and GF. We
find that the disorder-averaged free energy is given by

[F ] = FMHO + ∆F, (37)

where the first term is the free energy of the modified
harmonic oscillator, as discussed in appendix B. The sec-
ond term is the correction due to complex geometry of
the valleys of the potential. It is given by

∆F =
Tk

2ξ

∞∑
n=0

z2
n + ω2

2 + ω2
1

(z2
n + Ω2) (z2

n + ω2
1) (z2

n + ω2
2)
, (38)

where Ω = 1/ξ. The frequencies ω1,2 are defined in Eq. 28
and zn is defined in Eq. 29. This result simplifies consid-
erably when we examine the limit of very short or very
long filaments. If the former case, where ω1,2L0 � 1,
only zeroth term survives and we get

∆F =
Tk

2ξ

ω2
2 + ω2

1

Ω2ω2
1ω

2
2

. (39)

In the latter case, where ω1,2L0 � 1, we may change the
summation to an integration over z = πn

L0
, obtaining

∆F =
TkL0

2ξπ

∫ ∞
0

dz
z2 + ω2

2 + ω2
1

(z2 + Ω2) (z2 + ω2
1) (z2 + ω2

2)
.

(40)
The summation for the general case can also be per-
formed, producing a quite lengthy expression that we do
not reproduce here. Performing the integral in Eq. 40,
we find

∆F =
TkL0

4ξ

(ω2
1 + ω2

2)(ω1 + ω2) + Ω(ω2
1 + ω2

2 + ω1ω2)

Ωω1ω2(ω1 + ω2)(ω1 + Ω)(ω2 + Ω)
.

(41)
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FIG. 4. (color online) The excess arclength ∆L – see Eq. 19
of a semiflexible filament in the quenched pinning potential
(with persistence length `P ≈ 14µm) as a function of tension
τ . At high tension (orange, dashed) the filament cannot track
the bottom of potential valleys, while at low tension (green,
thick) or small bending modulus the filament does track the
potential valleys with higher fidelity. The (blue) dots with
errorbars represent simulation results and the errors show the
standard deviations of about five hundred filaments. The pin-
ning potential is defined by V0 = 0.175pN , ξ ≈ 1.6µm.

We now wish to compute the average arclength of the
filaments to observe the effect of the pinning potential
upon their ensemble of conformations. This calculation
involves taking the derivative of the free energy with re-
spect to the tension, which is conjugate to the length.
First, we write the free energy difference in terms of two
auxiliary functions f and g whose argument is r = m/`P:

∆F =
T
√
k`PL0

4

f(r)

g(r)
, (42)

where

f(r) = Ω(r + s) + r
√
r + 2s (43)

g(r) =
√
r + 2s(Ω2 + Ω

√
r + 2s+ s) (44)

and s =
√

k
`P

. Then taking the appropriate derivative,

we compute the difference in excess arclength between
the filament in the confining potential and the same fila-
ment without it

∆L = ∆LMHO +
L0

4

√
k

`P

f ′(r)g(r)− g′(r)f(r)

g2(r)
. (45)

The first term, which is the excess arclength of the semi-
flexible filament in a uniform harmonic potential, is cal-
culated in appendix B.

We plot the ∆L versus applied tension in Fig. 4. There
we see the decrease in excess arclength of the filament

with increasing tension τ . There are two regimes charac-
terized by a different power laws ∆L ∼ τa + const (there
is a finite constant in the low tension regime) in the low
and high tension regimes, referred to as weak and strong
in the figure caption. In the weak tension regime, the
filament is better able to track the valley of the poten-
tial minimum. As the applied tension is increased, the
ensemble of filament configurations becomes restricted to
straighter ones that cannot follow these valleys with high
fidelity.

In comparing the theoretical calculation to the nu-
merics, we freely adjusted the curvature and correlation
length of the valley to obtain the fit.

IV. PRESTRESS AND EXCESS FREE ENERGY
OF THE PINNED FILAMENT

From the results for the excess free energy, we have a
prediction for the increase of the energy density of a net-
work due to the effect of pinning. This enhancement of
the energy density should be interpreted as the observed
pre-stress found in biopolymer networks. Pre-stress can
be considered to be stored in at least two separate man-
ners. First, there should be excess bending and stretching
energy of the filaments as they are pinned by the network
(represented by the quenched potential in our analysis)
into configurations that store more than T/2 per bend-
ing mode – the amount of energy storage consistent with
the equipartition theorem. Secondly, there may be ex-
cess energy stored in the strain associated with the cross
links themselves. We cannot directly measure this quan-
tity in our model. To obtain the excess energy stored
in the filament due to the pinning potential, we simply
compute the disorder average of the thermal expectation
value of the squared amplitude of each Fourier mode of
the filament.

A. Strong tension

First we work under the assumption of strong tension
in which the filament is nearly straight. We start by
expanding the undulations of the filament

y(x) =

∞∑
n=1

un sin (znx) . (46)

In terms of these Fourier modes the energy in a particular
realization of the force-controlled pinning ensemble is

E =
L0

4

∞∑
n=1

{(
κz4
n + τz2

n

)
u2
n + 2fnun

}
, (47)

where fn are the Fourier modes of the pinning force so
that

f(x) =

∞∑
n=1

fn sin (znx) . (48)
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In this Fourier expansion of the pinning force, we as-
sume that the potential is defined in a box of size [Lx×Ly]
with periodic boundary conditions and we set Lx = L0.
Now, we may use the equipartition theorem to demand

that each Fourier mode stores T/2 energy. This leads to

〈u2
n〉 =

2T

L0 (κz4
n + τz2

n)
+

fn
2

(κz4
n + τz2

n)
2 . (49)

We now average the above result using the force-
controlled distribution for the potential from Eq. 4 in
Fourier representation

P (Vkx,ky ) ∝ exp

{
−LxLyV 2

kx,ky

(
ξ2

8V 2
0

(k2
x + k2

y)2 +
1

8V 2
0

(k2
x + k2

y)

)}
. (50)

where Fourier modes are defined in a standard way

V (x, y) =
∑
kx,ky

Vkx,ky sin(kxx) sin(kyy). (51)

We now express fn from Eq. 48 in terms of the gradients
of Vkx,ky

fn =
∑
ky

kyVkx,ky (52)

with kx = πn
L0

= zn Using Eq. 52 and Eq. 50 we obtain

[f2
n] =

∑
ky

k2
y

2LxLy

(
ξ2

8V 2
0

(k2
x + k2

y)2 + 1
8V 2

0
(k2
x + k2

y)
) .
(53)

Taking Ly to be large we replace the summation with
integration to obtain

[f2
n] =

2V 2
0

Lxξ2
(√

z2
n + 1

ξ2 + zn

) . (54)

Since only the second term in Eq. 49 depends on the
pinning potential the average over the quenched disorder
yields an expression for the mean excess bending energy
of the filament

Ebend
n =

Tκz4
n

2(κz4
n + τz2

n)
+ ∆Ebend

n . (55)

in which the second term contains all the information
about the filament’s interaction with the pinning poten-
tial. That second term is

∆En =
κz4
nV

2
0

2(κz4
n + τz2

n)2ξ2
(√

z2
n + 1

ξ2 + zn

) . (56)

The first term is merely the standard result from the
equipartition theorem for a semiflexible filament [15]. It
follows similarly that contribution from the potential to
the mean energies stored in filament tension and in the

pinning potential are given by

∆Eten
n =

1

`2t z
2
n

∆Ebend
n (57)

Epot
n =

k

κz4
n

∆Ebend
n . (58)

In Fig. 5 we plot the bending energy stored in the fila-
ment as a function of dimensionless wavenumber q = ξzn
for a variety of pinning potential strengths (at fixed ex-
ternal tension) (upper panel A) and a variety of tensions
at a fixed value of the strength of the pinning potential
(lower panel B). From dimensional analysis we note that
there is a single scale that sets the strength of the pinning
potential

Ẽ =
V 2

0 ξ

Tτ
. (59)

When this quantity is large Ẽ � 1 we expect the pin-
ning potential to control the statistical ensemble of the
filament configurations. Conversely, we expect high ten-
sion to straighten out the filament so that it cannot fol-
low the local potential minima. Higher tension leads
to both straighter typical filament configurations and
configurations for which the effect of pinning becomes
harder to distinguish against a background of thermal
undulations. This transition between pinning dominated
states of the filament and thermally dominated ones is
wavenumber dependent. At sufficiently high wavenum-
bers q = ξzn > q? the modes of the filament are generi-
cally freed from the pinning potential.

In Fig. 6 we observe this transition from strongly
pinned modes, where the pinning contribution to the
bending energy Epin is greater than the thermal com-
ponent ET for q < q? to effectively unpinned ones.

Since the work done by tension to extend the filament
is τ∆L, we can use Eqs. 56,57 to compute the excess
length

∆L =

∞∑
n=1

V 2
0

2(κz2
n + τ)2z2

nξ
2
(√

z2
n + 1

ξ2 + zn

) . (60)
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FIG. 5. (color online) (A) Ebend(q), the energy energy per
mode of a tensed, pinned filament (in units of T ) as a func-
tion of q = ξzn. The pinning potential strength is set by
dimensionless Ẽ = V 2

0 ξ/Tτ using the exponential potential
distribution. The small q modes typically have more bending
energy than expected for a thermalized filament without the
pinning. The high q modes are effectively unpinned. (B) The
effect of changing tension on bending energy: τ = 0.1, 1, 5τ0
where τ0V

2
0 ξ/T . We set κ = ξ2τ0.

The sum is rapidly convergent so the first terms will dom-
inate. In the limit of a short correlation length ξ/L0 � 1,
L0

√
τ
κ � 1 we get

∆L =

∞∑
n=1

V 2
0

2τ2z2
nξ
. (61)

The summation results in

∆L =
V 2

0 L
2
0

12τ2ξ
. (62)

If instead we consider the case of the large bending we
should take the limit L0

√
τ
κ � 1 and

FIG. 6. (color online) For a given value of the pinning strength
and tension, there is a transition at q? between pinned modes
q < q?, which trap a significant excess energy as compared to
the free filament and free modes q < q?, which do not. We ex-
amine this transition by plotting the ratio of the excess bend-
ing energy resulting from the pinning potential Epin to the
energy of that mode without the pinning potential ET. The
pinning potential and the tension are T/(2ξ) and

√
2κV0/ξ.

The figure is qualitatively the same for other values of these
parameters.

∆L =

∞∑
n=1

V 2
0

2κ2z6
nξ

=
V 2

0 L
6

1890κ2ξ
(63)

For the case of large correlation length, ξ/L0 � 1,
large tension L0

√
τ
κ � 1 we get

∆L =

∞∑
n=1

V 2
0

2τ2z3
nξ

2
, (64)

which results in

∆L =
V 2

0 L
3
0

4π3τ2ξ2
ζ(3) (65)

where ζ(x) is Riemann ζ-function. Since the correlation
length is much larger than that the filament, we expect
that the filament feels an essentially uniform force field,
much like that of a hanging rope in a gravitational field.
Indeed, the result for the excess length in this classical

problem is ∆L =
g2L3

0

6τ2 , which demonstrates the same
power law dependence on tension τ and the separation
of the end points L0.

B. Weak tension

For case of weak tension where the filament can better
follow the potential minima, we are free to use the valley
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approximation. In this case the filament’s energy is given
by Eq. 21. Doing the same calculation for the variance
of each Fourier mode of the filament in a valley whose
bottom curve is described by the Fourier modes of y0(x),
yn0 , we find

〈u2
n〉 =

2T

L0

(
κz4
n + τz2

n + V0

ξ2

) +
V 2

0 (yn0 )2

ξ4
(
κz4
n + τz2

n + V0

ξ2

)2 .

(66)
Once again, the first term is independent of the dis-

order in the valley, but does depend on the curvature
of the potential. This result corresponds to the case of a
semiflexible filament in a straight parabolic potential [16].
The second term corrects this result for the tortuosity of
the valley. To compute this correction we note that[

(yn0 )2
]

=
1

L
2ξ z

2
n + Lξ

2 z
4
n

. (67)

From this result and from energy function – see Eq. 21,
we immediately find that

[
Ebend
n

]
=

Tκz4
n

2(κz4
n + τz2

n + V0

2ξ2 )
+

κV 2
0 z

4
n

4ξ4
(
κz4
n + τz2

n + V0

ξ2

)2 (
1
2ξ z

2
n + ξ

2z
4
n

) . (68)

FIG. 7. The maximum value for the energy stored in the po-
tential is reached at ξ = 1/zn which resembles the resonance
absorption spectrum. Here ξ is measured in the units of 1/zn,
V0 = 20(τ + κ) in these units.

Again the first term represents the bending energy
associated with the semiflexible filament in a straight
parabolic potential. The potential decreases the bending
energy, as is physically reasonable. The potential sup-
presses the normal thermal undulations of the filament.
The second term, however, represents an increase in the
mean bending energy associated with the curvature of
the potential valleys. For a fixed local mean curvature of
the pinning potential, V0/ξ

2 = const, the dependence of
this tortuosity correction is nonmonotonic in wavenum-
ber. We examine this in Fig. 7. There we see that the
wavenumber dependent bending energy goes through a
local maximum at the scale of the potential’s correlation
length,i.e., where znξ = 1.

V. SIMULATIONS

The established computational framework for the
Brownian dynamics of semiflexible filaments proposed
in [17] and used e. g. in [1] has been extended to account
for forces resulting from the random potential field.

A. The finite element Brownian dynamics
simulation framework

A single filament is modeled by nonlinear, geomet-
rically exact, 3D Simo-Reissner beam theory and dis-
cretized in space using finite elements [18]. In terms of
the structural rigidity of the filament, we thus account
for axial, torsional, bending, and shear deformation. To
model the Brownian motion, we include viscous drag as
well as thermal forces, each distributed along the entire
filament length. More precisely, viscous forces and mo-
ments are computed assuming a quiescent background
fluid and individual damping coefficients for translations
parallel and perpendicular to the filament axis as well as
rotation around the filament axis, respectively. Thermal
forces are determined from the stochastic Wiener process
in accordance with the fluctuation-dissipation theorem.
Finally, an Implicit-Euler scheme is used to discretize in
time and a Newton-Raphson algorithm solves the result-
ing nonlinear system of equations. Further details on
this simulation framework including all formulae can be
found in [17].

B. Incorporation of the background potential field

As described in section I, the potential field V acting
on the filament has dimensions of energy per length. Its
contribution to the virtual work required for the weak,



12

variational formulation of the problem can be stated as

δΠ = −
∫ L0

0

ds
{

(∇V (r(s)))
T
δr(s)

}
(69)

where r ∈ R3 is the centerline position and s ∈ [0, L0] de-
notes the arclength coordinate in the stress-free reference
configuration of the filament. Subsequent discretization
of the admissible centerline variations δr according to
the finite element method yields the contributions to the
discrete element force vector. We apply the trapezoidal
rule on each finite element to numerically evaluate the
integral along the filament. Regardless of the fact, that
we only consider planar problems throughout this arti-
cle, the entire simulation framework as well as Eq. 69
is capable of modeling arbitrary filament configurations
in 3D. Note that the potential exerts forces on the fila-
ment, however, as it models a surrounding network, it is
independent of the filament motion. This is commonly
denoted as one-way coupling.

To mention the most important algorithmic details: In
a pre-processing step, we use a random number genera-
tor, apply a discrete Fourier transformation, and finally
a finite difference scheme to arrive at the force field −∇V
on a sufficiently fine grid in the entire simulation domain.
In each iteration, we then interpolate these grid values to
compute −∇V at the current position of each node and
evaluate Eq. 69 element-wise.

C. Simulation setup and results

The simulation setup consists of a single filament of
length L0 = 20µm and persistence length Lp ≈ 14µm.
Its initial, stress-free reference configuration is chosen
straight and parallel to the global x-axis, as shown in
Fig. 8 (A). By means of Dirichlet boundary conditions,
the filament is constrained to the xy-plane and simply
supported, i. e., free to rotate at both ends, however only
free to move in x-direction at one endpoint. Its circular
cross-section is specified by the area A = 1.9× 10−5µm2,
area moment of inertia I = 4.3×10−12µm4 and polar
moment of inertia Ip = 8.6×10−12µm4. The material is
defined by the Young’s modulus E = 1.3× 1010pN/µm2

and the Poisson ratio ν = 0.3. Temperature is set to
T = 293K and the dynamic viscosity of the quiescent
background fluid to η= 10−3 Pa s. The filament is dis-
cretized in space using 400 linear beam finite elements
and the time step size is chosen as ∆t = 0.01s.

Two variants of the potential field have been consid-
ered in simulations. First, the potential with exponential
suppression of high Fourier modes defined by Eq. 5 and
second, the force controlled distribution defined by Eq. 4.

(A)

(B)

FIG. 8. (color online) (A) Simulation snapshot of the initial
setup. An initially straight, stress-free filament is constrained
to the xy-plane and simply supported at its endpoints. It
interacts with a random potential V (x, y) that is shown as
a heat map with contour lines. (B) Simulation snapshot of
a deformed configuration showing the forces on the filament
resulting from the pinning potential.

1. Results for the potential with exponential suppression of
high wavenumber modes

For the results presented already along with the theo-
retical prediction in Fig. 4, we applied the potential from
Eq. 5, using 3096 Fourier modes, a correlation length
of ξ ≈ 1.6µm and V0 = 0.175pN. In addition, a single
point force τ = 10−2 . . . 50pN was applied in global x-
direction to the (right) endpoint of the filament that is
free to move in this direction. Each simulation was run
for 5×104 time steps. To speed up simulations, we made
use of parallelization and simulated systems of five fila-
ments at a vertical spacing much larger than ξ and with-
out any interactions between the filaments. Each data
point in Fig. 4 results from the statistical ensemble of 70
to 100 such systems with five filaments each, depending
on the deviation in results that was higher for the small
tension values. Finally, the excess arclength ∆L is ob-
tained from simulation data as the negative displacement
of the (right) filament endpoint in x-direction.
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2. Results for the force controlled distribution

While the simulations using the potential with the ex-
ponential suppression of the high wavenumber modes are
more robust, the theory assumes a force controlled dis-
tribution. Therefore, unlike for the previous variant of
the potential distribution, there are no adjustable pa-
rameters necessary to directly compare these numerical
results to the theory. We consider two parameter sets:
one representing the case of large tension and another one
representing the case of large bending and zero tension.

The first parameter set is given as V0 = 1/2562 pN, τ =
0.006 pN, ξ = 1µm, L0 = 5µm. The simulation gives us
〈∆L〉 = 2.0± 0.6× 10−5µm, while Eq. 61 predicts ∆L ≈
1.3× 10−5µm. The second parameter set is V0 = 1/2562

pN, τ = 0, ξ = 1µm, L0 = 5µm, κ ≈ 0.0125 pNµm2.
Here, the result from our simulations is 〈∆L〉 = 2.2 ±
0.4×10−5µm, while Eq. 63 predicts ∆L ≈ 1.2×10−5µm.
We performed sixteen simulation runs for each parameter
set.

VI. DISCUSSION

We have examined the statistical mechanics of a single
semiflexible filament in a quenched pinning potential as a
model for studying how the network environment changes
the typical stored elastic energy of filaments and leads to
prestress. Based on these calculations we propose that
there are two experimental quantities for which we may
make predictions even with our single filament model.
The first is that we expect the pinning environment of
the network to impose a different (and nonequilibrium)
statistical weight to filament configurations. One way
to parameterize this difference between the ensemble of
filament configurations in a network and of a filament
in isolation is that the effective persistence length of the
network filament will no longer be `P = κ/T .

Using our results for the disordered-averaged Fourier
modes of the filament’s undulations, we may directly
compute the tangent tangent correlations. We find that

G(x1, x2) = 〈ẏ(x1)ẏ(x2)〉 ∝ e−|x1−x2|/˜̀
P , (70)

where the nonthermal persistence length ˜̀
P is given by

˜̀
p = max

{
1

Re(ω1)
,

1

Re(ω2)
, ξ

}
, (71)

where ω1,2 are the eigenvalues introduced in Eq. 28.
We examine the dependence of the effective, disorder-
influenced persistence as a function of tension and po-
tential correlation length in Fig. 9.

For the case of sufficiently strong tension or weak pin-
ning potential τ � V0, we find that the tangent corre-
lations do not decay exponentially with separation along
the filament. Instead they decay as a polylogarythmic
function of the separation: Li2(eiπ|x1−x2|/L). In that

FIG. 9. Weak tension persistence length

FIG. 10. Strong tension correlation function

case, no persistence length can be defined. See Fig. 10
for the behavior of the correlation function

Turning to the case of prestress, we offer a prediction
for the mean excess free energy density of the network
due to trapped elastic deformations of its constituent fil-
aments. To arrive at this prediction within our one fil-
ament model, we assume the excess free energy density
may be computed by summing the excess bending and
tension energy ∆Ebend + ∆Eten of a filament due its in-
teraction with the pinning potential and then dividing
that quantity by the area occupied by that filament. In
our two dimensional calculation this is simply L0 × ξ.
To make a prediction for a three dimensional network
we assume that there are two independent polarization
states of the filament’s undulations (which is reasonable
for small bending angles) resulting in a prediction

∆F '
(
2∆Ebend + ∆Eten

)
L−1

0 ξ−2. (72)

We expect that this quantity should set the scale for the
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anomalous nonequilibrium stress fluctuations observed
in transiently cross linked networks of semiflexible fila-
ments.

FIG. 11. Prestress

There are limits to the single filament description of the
collective phenomenon of network structure and excess
free energy. Following the example of mean field models
of magnets, one might imagine finding a self consistent
description of network structure in which the statistics
of the pinning potential are determined by the calculated
properties of a filament in that potential in a sort of Weiss
molecular field description. We leave such self-consistent
calculations to future work.

We also note that our description of a single filament
is inadequate for studying the crumpling of filaments in
a even stronger pinning environments. States of larger
deformation, as might be expected in flexible polymers
without sufficient tension, cannot be described by our
framework; their description requires more complex and
inherently nonlinear elasticity. Fortunately, nature pro-
vides numerous examples of semiflexible protein filaments
for which our analysis should be sufficient. Transiently
cross linked networks of such stiff filaments are an arena
for the study of the role of quenched disorder on their
ensemble of shapes and elastic energy storage.
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Appendix A: Calculating the traces

In this appendix we discuss the calculation of the trace
of the operator O−1G−1 obtained in Eq. 16. The oper-
ators O and G were introduced in Eqs. 8 and 14 re-
spectively. To calculate the traces, we need the complete
spectrum of the two differential operators in question. In

other words, we must solve

OΨ = EnΨ (A1)

subject to the fixed-end boundary conditions Ψ(0) =
Ψ(L0). The solution is a constant and the set of stand-
ing waves satisfying the boundary conditions: Ψ(y) =
A sin(zny), where, as discussed in the main text, zn =

nπ/L0 for nonnegative integer n. Defining ω =
√

k
m we

may write the trace as

TrG−1 = 2ξ

∞∑
n=0

1

z2
n

. (A2)

Since both operators can be simultaneously diagonalized,
it is also possible to write

Tr(O−1G−1) =
4ξ

k

∞∑
n=0

1

z2
n

1

z2
n + ω2

(A3)

Using the above results and Eq. 16, one finds directly
that

∆F =
mξ

2

∞∑
n=0

1

z2
n

(
1− ω2

z2
n + ω2

)
. (A4)

The second term in the product occurring in the sum-
mand removes the singularity associated with the n = 0
term.

∆F =
kξ

2

∞∑
n=0

1

z2
n + ω2

(A5)

The summation can be done in closed form leading to
the disorder-averaged free energy:

[F ] = FSHO +
kξ

4

1 + ωL0 coth(ωL0)

ω2
(A6)

Appendix B: The Modified Harmonic Oscillator

In this appendix we review the partition function of
the modified harmonic oscillator. The modified har-
monic oscillator Hamiltonian has an addition p4 where
p → −i∂ is the momentum operator. This leads to a
time-independent Schrödinger operator of the form Oκ
introduced to discuss the semiflexible filament in the text.
A more complete exposition of this problem can be found
in Refs. [14] and [19]. We begin by factoring the differen-
tial operator Oκ, defined in Eq. 23 into a product of two
commuting second order differential operators as shown
in Eq. 27:

Oκ = O1O2, (B1)

where

Oj = ∂2 + ω2
j . (B2)
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It immediately follows that the partition sum for the
modified harmonic oscillator is given by a product of the
partition functions of two separate harmonic oscillators
Z1 and Z2,

ZMHO =
1√

detO1

1√
detO2

= Z1Z2, (B3)

with frequencies ω1 and ω2 respectively. The free energy
immediately follows. From Eq. B3, it is the sum of the
free energies of the two harmonic oscillators introduced
above in Eq. B1,

FMHO = F1+F2 = T ln(2 sinh(ω1L0/2))+T ln(2 sinh(ω2L0/2)).
(B4)

The remainder of this appendix uses the above result.
We first compute the free energy of the filament in a

confining potential (finite k). Since the mass term in
the equation of motion represents tension m = τ/T –
see Eq. 8– and since tension is conjugate to arclength in
the Hamiltonian, the derivative of the free energy with
respect to mass gives us mean arclength that we seek.

〈L〉 =
1

T
∂mF. (B5)

There is one complication. The free energy is divergent
in the limit that k → 0. We require the arclength of the
unconfined filament in order to compute ∆L, as defined
in Eq. 19. To address this problem, we compute the mean
arclength at finite k, take the necessary derivative, and
then take the limit k → 0, which then provides a finite
result.

We first recall the (possibly complex) frequencies ω1,2

and use them to compute derivatives of the free energy
in Eq. B4.

∂mFMHO

T
=
∂mω1L0 cosh(ω1L0/2)

2 sinh(ω1L0/2)
+
∂mω2L0 cosh(ω2L0/2)

2 sinh(ω2L0/2)
(B6)

We know that ω2
1 + ω2

2 = m
`P

and that ω1ω2 =
√

k
`P

.

When there is no confining potential k = 0, one fre-
quency vanishes. This implies that the spectrum of the
corresponding operator includes a zero eigenvalue, which,
as discussed above, will be problematic for the analysis.
In preparation for taking the k → 0 limit we keep only
the lowest terms in k here. Expanding to lowest order in
k we find that

ω2
1 + ω2

2 ± 2ω1ω2 =
m

`P
± 2

√
k

`P
, (B7)

which means

ω1 ± ω2 =

√
m

`P
± 2

√
k

`P
(B8)

Solving for ω1,2 we find that

ω1 =

√
m

`P
(B9)

ω2 =

√
k

m
. (B10)

These results allow us to take the appropriate m deriva-
tives:

∂mω1 =
1

2

√
1

m`P
(B11)

∂mω2 = −1

2

√
k

m3
. (B12)

By assuming that the filament is long we may take
ω1L0 � 1. We also assume that k may be sufficiently
small so that ω2L0 � 1 (we will take it to zero shortly).
The free energy of the filament is then

FMHO = Tω1L0/2 + T ln (ω2L0) . (B13)

Taking the derivative as shown in Eq. B5, we obtain the
mean length

〈L〉|k=0 =
1

4

√
1

m`P
L0 −

1

2m
. (B14)

For large L0 the last term can be ignored, leaving us with
the k = 0 result.

We now turn to the case where k remains finite. Then
for long filaments we have ω1L� 1 and ω2L� 1, allow-
ing us to write FMHO, defined in Eq. B4 as

FMHO = T (ω1 + ω2)
L0

2
=
TL0

2

√
m

`P
+ 2

√
k

`P
. (B15)

Then, taking the m derivative as above, we obtain the
mean arclength of the filament with a confining potential
k 6= 0:

〈L〉MHO =
1√
m`P

1√
1 + 2φ

L0

4
(B16)

Subtracting the equivalent quantity for the k = 0 case,
shown in Eq. B14, we obtain an expression for the change
in excess mean arclength due to the presence of the con-
fining potential

∆LMHO =
1√
mb

1√
1 + 2φ

L0

4
− 1

4

√
1

m`P
L0 (B17)

Returning the original, physical parameters of the semi-
flexible filament model, this expression becomes

∆LMHO =
1

β
√
τκ

(
1√

1 + 2φ
− 1

)
L0

4
. (B18)

Appendix C: Replica Trick

The core idea of the replica trick is the following. We
want to find [lnZ] where the average is over the ensem-
ble of quenched potentials. We may rewrite this in the
following form

[lnZ] = lim
R→0

[
ZR − 1

R

]
(C1)
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In many cases the straightforward calculation of the left
hand side is intractable, while it is possible to compute on
the right hand side for positive integer R and then take
the limit. The reader is referred to Ref. [20] for further
details of this approach. We first demonstrate the utility
of the replica method in a simplified model. We assume a
Gaussian Hamiltonian so that the partition function has
the form

Z =

∫
Dy(x)e−

∫
yAy+2y0By (C2)

where A,B are operators acting on the variable y. The
variable y is affected by a quenched potential, y0 whose
statistics are fixed by the Gaussian distribution

P(V ) ∝ e−
∫
y0Cy0 , (C3)

controlled by another operator C. This problem is de-
signed to be sufficiently simple that it can be solved with-
out the replica trick. It is also directly related to valley
approximation, as the reader may confirm. A straight-
forward calculation of the partition function, followed by
taking the logarithm and then averaging the resulting
free energy over the quenched potential distribution leads
to

[lnZ] = ln
1√

detA
− 1

2
tr(C−1BA−1B). (C4)

If we now repeat the calculation using the replica trick,
we first replicate the Hamiltonian to form ZR:

ZR =

∫
Dyr(x)e−

∫ ∑R
r=1 yrAyr+2y0Byr , (C5)

where the replicated variables are indexed by r: yr, r =
1, . . . , R. We now average the replicated partition sum
over the quenched potential (notice we are swapping the
order of the two averages) to obtain

[
ZR
]

=

∫
Dyr(x)Dy0(x)e−

∫ ∑R
r=1 yrAyr+2y0Byr+y0Cy0∫

Dy0(x)e−
∫
y0Cy0

.

(C6)
Introducing ~y = (y0, y1...yR) we can write Eq. C6 in

the form

[
ZR
]

=

∫
D~y(x)e−

∫ T
0
~yA~y∫

Dy0(x)e−
∫
y0Cy0

(C7)

where the matrix A can be written in the block form

A =

(
C B̃T

B̃ Ã

)
. (C8)

The Ã block is the R×R matrix coupling the replicated
variables. The B̃ block is an R × 1 matrix coupling the
R replicated variables to the quenched disorder y0. The

remaining calculation involves performing the Gaussian
integrals over ~y. We find

[ZR] =

(
detA
detC

)−1/2

(C9)

The determinant of the block matrix can be written as

detA = det Ã det
(
C − B̃T Ã−1B̃

)
, (C10)

and we observe that, in our model, the variables yr, r =
1, . . . , R are noninteracting so that the det Ã = detAR.
As a consequence,

[ZR] =
{

detAR det(1−RBTA−1BC−1)
}−1/2

. (C11)

By taking the R → 0, we reproduce the exact result,
Eq. C4.

Now, we consider using the replica trick for the prob-
lem at hand. Specifically, we examine a flexible poly-
mer at temperature T interacting with a quenched delta-
correlated random potential. The polymer has tension
τ and length L. We will examine the average potential
energy of the filament in the pinning potential. For later
computational convenience, we introduce a coupling con-
stant α controlling the interaction of the polymer with
pinning potential.

The partition function is

Zα =

∫
Dy(x)e

−β
L∫
0

dx τ2 ẏ
2+αV (x,y)

(C12)

We can calculate the average potential energy as

∂F

∂α

∣∣∣∣
α=1

=

〈∫
V (x, y(x))dx

〉
. (C13)

After this thermal average, we take the average of the
potential over the ensemble of pinning potentials

∂[F ]

∂α

∣∣∣∣
α=1

=

[〈∫
V (x, y(x))dx

〉]
(C14)

We assume that averaging and differentiation commute.
We expect that the mean potential energy should be neg-
ative. Indeed, the random potential will pick negative
and positive values with the same probability. The poly-
mer, however, will prefer the negative regions to the pos-
itive.

We now perform the necessary averages using the
replica trick with, as before, the replica index being
r = 1..R. The replicated partition sum is now

ZRα =

∫
Dyi(x)e

−β
L∫
0

dx
R∑
i=1

τ
2 ẏ

2
r+αV (x,yr(x))

. (C15)

The average over the pinning potential, once again, cou-
ples the replicas. We first write that average over the
distribution of V (x, y),
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[
ZRα
]

=

∫
Dyre

−β τ2
∫ L
0
dx

R∑
i=1

ẏ2r
∫
DV P(V )e

−β
∫ L
0
dx

∫
dy

R∑
i=1

αV (x,y)δ(y−yr(x))
(C16)

Since P(V ) is a Gaussian with fixed variance σ we can
directly perform the Gaussian integral over V . We also
notice that the delta functions δ(y − yr(x)) allow us to
do the integral over y in the exponent. Doing both steps
we obtain

[
ZRα
]

=

∫
Dyre

−β(
L∫
0

dx
R∑
i=1

τ
2 ẏ

2
r−σβα

2
R∑

i,j=1
δ(yi(x)−yj(x))

.

(C17)
Eq. C17 now appears to be the partition function of R

particles interacting through a delta-potential. It can be
written in the form

[Znα ] =

∫
Dyre−L0H(y1(x),...,yR(x)) (C18)

where the multi-particle Hamiltonian is

H =

R∑
r=1

1

2βτ
p2
r − σβ2

R∑
i,j=1

α2δ(yj(x)− yi(x)). (C19)

Notice that in Eq. C18 that the length of the polymer
L0 plays the role of inverse temperature 1/T for the fic-
titious particles. Of course, L0 6= β, which is the inverse
temperature of the polymer. We also note that x plays
the role of time in this dynamical system of interacting
particles.

Since the sum contains the term i = j, there is a pos-
itive infinite constant C in the Hamiltonian. Separating
these terms explicitly we rewrite the Hamiltonian as

H =

R∑
i=1

1

2βτ
p2
i−2σβ2

∑
i<j

τ2α2δ(yj(x)−yi(x))−Cσβ2τ2α2.

(C20)
Reflecting on the fact that the path integral in Eq. C18

is analogous to the quantum transition amplitude for the
system of fictitious particles [21] and that the long poly-
mer limit L0 → ∞ corresponds to the zero temperature
limit for that system, we may focus on the ground state
wavefunction [22, 23]. To find the ground state wave-
function, we use the Bethe ansatz:

Ψ0 = C0 exp

−κ∑
α<β

|yα − yβ |

 . (C21)

The constant C0 is chosen to satisfy the normalization
condition. The constant κ is set so that the discontinu-
ity of the first derivative cancels the delta-function, i.e.,
2
βτ κ = 2σβ2α2 .

We transform the sum by choosing a particular order-
ing of the R particles on the y line: y1 < y2 < . . . < yR.

In this ordering the sum in Eq. C21 is particularly simple:∑
α<β

|yα − yβ | =
∑
α

(2α− n− 1)yα. (C22)

From this we obtain the ground state energy

ER = RCσβ2τ2α2 − 1

2βτ
κ2R(R+ 1)(R− 1)

3
(C23)

Then the partition function is

ZR = e−βER (C24)

and the free energy is

βF = −[logZ] = − lim
R→0

[
ZR − 1

n
] = β lim

R→0

ER
R
. (C25)

Taking the limit we get

F = Cσβτ2α2 +
1

6
σ2β4α4τ. (C26)

Using Eq. C14, we obtain the potential energy of the
thermalized polymer in the random pinning potential,
averaged over an ensemble of such potentials:[〈∫

V (x, y(x))dx

〉]
= 2Cσβτ2 +

2

3
σ2β4τ (C27)

This potential energy is positive definite, which is clearly
unphysical. The result shows that the replica trick fails
to find the averaged potential energy of the polymer in
the pinning potential. The problem may lie in either the
introduction of the infinite constant C, or in the replica
trick itself.

We conjecture that the failure of the replica trick in
this case is related to the failure of the analytical con-
tinuation inherent in the method. To expand on this
idea we consider an example related to directed polymers
(without a bending energy) in a complex random poten-
tial with zero correlation length (ξ → 0), as explored by
Zhang [24]. In that work [Eq. (11) of that article] the
author asserts that∫

dFP (F )e−nF = e−t(nF0−an3), (C28)

where P (F ) is the probability distribution of free energies
of the directed polymer due to the statistical ensemble
of quenched potentials in its environment and n is the
replica index. The left hand side of this expression is
[Zn]. Now P (F ) should decay exponentially or faster for
negative F , otherwise the integral will be divergent. The
result on the right hand side, arrived at through a saddle
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point evaluation of the integral, is exact for all positive
integer n in the limit of large t. The goal (as in our case
too) is to examine the n→ 0 limit.

To examine this point let us perform the integration in
Eq. C28 by first Taylor expanding the exponential and
then integrating term by term.∫

dFP (F )

∞∑
k=0

(−nF )k

k!
=

∞∑
k=0

(−(nF0 − nβ))k

k!
. (C29)

From Ref. [25] we know that the large positive F behav-

ior of P (F ) is ∼ exp(−F 5
2 ), ensuring the convergence of

these integral and justifying the swapping of the order of
summation and integration. The sum on the right hand
side can be reorganized in terms of powers of the replica
index n so that each term in the summand takes the form
dkn

k. In this form that sum can be combined with inte-
gral on the left to write an infinite sum that is now equal
to zero.

∞∑
k=0

ckn
k = 0 (C30)

where

ck =

∫
dFP (F )

(−F )
k

k!
− dk. (C31)

If we were allowed to assert that each term in the
sum Eq. C30 separately vanished, then we would be
able to calculate all moments of the free energy directly
from the known coefficients dk. This process for k = 1
is the essence of the replica trick as used to compute
the mean free energy. Unfortunately, this conclusion is
not necessarily valid. A simple counter example can
be obtain from the Taylor expansion of the function
F (z) = f(z) sin(πz), where f(z) is an analytic function.
Let ak be Taylor expansion coefficients for F (z). Then
it is easy to see that if we choose ck = ak

k! we will get
Eq. C30, but not all ck are zero. The same issue appears
in Ref. [22].
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