
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Stress-stabilized subisostatic fiber networks in a ropelike
limit

Sadjad Arzash, Jordan L. Shivers, Albert J. Licup, Abhinav Sharma, and Fred C. MacKintosh
Phys. Rev. E 99, 042412 — Published 22 April 2019

DOI: 10.1103/PhysRevE.99.042412

http://dx.doi.org/10.1103/PhysRevE.99.042412


Stress-stabilized sub-isostatic fiber networks in a rope-like limit

Sadjad Arzash,1, 2 Jordan L. Shivers,1, 2 Albert J. Licup,3 Abhinav Sharma,4 and Fred C. MacKintosh1, 2, 5

1Department of Chemical & Biomolecular Engineering, Rice University, Houston, TX 77005
2Center for Theoretical Biological Physics, Rice University, Houston, TX 77030

3Department of Physics & Astronomy, Vrije Universiteit, Amsterdam, The Netherlands
4Leibniz Institute of Polymer Research Dresden, Dresden, Germany

5Departments of Chemistry and Physics & Astronomy, Rice University, Houston, TX 77005, USA

The mechanics of disordered fibrous networks such as those that make up the extracellular matrix
are strongly dependent on the local connectivity or coordination number. For biopolymer networks
this coordination number is typically between three and four. Such networks are sub-isostatic and
linearly unstable to deformation with only central force interactions, but exhibit a mechanical phase
transition between floppy and rigid states under strain. Introducing weak bending interactions
stabilizes these networks and suppresses the critical signatures of this transition. We show that
applying external stress can also stabilize sub-isostatic networks with only tensile central force
interactions, i.e., a rope-like potential. Moreover, we find that the linear shear modulus shows a
power law scaling with the external normal stress, with a non-mean-field exponent. For networks
with finite bending rigidity, we find that the critical stain shifts to lower values under prestress.

I. INTRODUCTION

Networks of biopolymers are ubiquitous in biological
systems involved in structural and mechanical stabil-
ity. Examples include cross-linked cortical actin in the
cytoskeleton and branched collagenous networks in the
extracellular matrix. The underlying local network ge-
ometry and the nature of interactions between the con-
stituent fibers play a key role in determining the sta-
bility of these networks. Typically, these networks have
average coordination or connectivity between three and
four, corresponding to branched or cross-linked geome-
tries, respectively. As shown by Maxwell, the isostatic
threshold connectivity for linear stability of an intercon-
nected mechanical structure of simple springs is twice the
dimensionality for large number of elements, i.e., zc = 2d
[1]. Based on this argument, biological networks are in-
trinsically sub-isostatic. Therefore, if the fibers interact
only via central forces such as tension and compression,
then these networks are unstable with respect to small
deformations. Nevertheless, sub-isostatic networks can
be rigidified through various stabilizing effects such as
strain [2], fiber bending interactions [3–8], active stresses
[9–13], or thermal fluctuations [14–16] giving rise to a
stable linear elastic response.

Biopolymer networks also exhibit striking nonlinear
elasticity: with barely a 10% increase in strain, the stiff-
ness increases by almost two orders of magnitude. Such
nonlinear mechanics are observed for intracellular cy-
toskeletal filaments, extracellular fibrin clots, and even
whole tissues [17–23]. The nonlinear mechanics of ather-
mal networks have been described theoretically in terms
of a crossover from bending-dominated to a stretching-
dominated response [24, 25], normal stresses [26], or
strain-controlled critical phenomena [27]. In these theo-
retical approaches, bending rigidity provides stability in
the linear regime. It is also known experimentally that
polymerization of hydrogels such as collagen and fibrin
generally results in prestress [28]. In fact, some prestress

is almost inevitable as crosslinks form between fibers [29].
But, it is still not well understood how such prestress,
either externally applied or due to internal constraints,
affects network stability and nonlinear mechanics [30].
In the case of active stresses, such as by myosin motors
in the cytoskeletal or platelet contraction in blood clots,
such active prestress can give rise to shear moduli that
can exceed the passive shear modulus of the underlying
substrate [10, 11].

Here, in order to investigate the stabilization effect of
prestress, we study sub-isostatic rope networks without
bending interactions. The elastic response of a rope-
like fiber is governed purely by central-force interactions
under tension and has vanishing resistance under com-
pression. This represents a minimal model for ather-
mal fibers with zero bending rigidity, for which the Eu-
ler buckling threshold vanishes. The external normal
stress is applied by either bulk or uniaxial expansion.
We show that the linear shear modulus scales as power
law with the imposed external normal stress, with a non-
mean-field exponent which leads to a divergent suscep-
tibility. This suggests that sub-isostatic rope networks
become infinitely susceptible to any stress that invokes
fiber stretching modes, including the self-generated nor-
mal stresses. We also show that the mechanics of stress-
stabilized rope networks can be captured in terms of these
normal stresses. Furthermore, by calculating the non-
affine fluctuations for both prestressed rope and bend-
stabilized networks, we show that prestressing removes
criticality from sub-isostatic rope networks and shifts the
critical point to lower values for a bend-stabilized net-
work.

II. MODEL

We use the phantom triangular lattice model [31–33] to
study fibrous networks in the rope limit. The networks
are generated on a periodic 2D triangular lattice with
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FIG. 1. Different geometries used to model fiber networks. (a)
A full phantom triangular lattice which has a connectivity of
z = 4. The arcs specify that one of the three crossing fibers
has been detached from the crosslink, i.e., it is phantomized.
(b) Showing a full hexagonal (honeycomb) lattice which gives
a connectivity of z = 3. (c) A Delaunay network of a random
point set. Delanauy network has a non-uniform local connec-
tivity. The average connectivity is 6. (d) A Voronoi network
of random points which has an average connectivity of z = 3.
The Voronoi diagram has uniform local connectivity of 3.

lattice spacing l0 = 1 and freely-hinging crosslinks at in-
tersection points. The lattice occupies an area A = aW 2,
where W is the network size and a is the area of a unit
cell. The full triangular network has local connectivity
of 6. In real biopolymer networks, the local connectiv-
ity can be either 3, corresponding to a branching point,
or 4, corresponding to a crosslink between two fibers, so
the maximum average connectivity cannot exceed 4. To
satisfy this constraint, we randomly detach one of three
fibers at every crosslink on a triangular lattice, reducing
the average connectivity from 6 to 4. Moreover, we cut a
single bond on each fiber at a random location to remove
the unphysical effects of network-spanning fibers. Since
there are 3×W fibers on a triangular lattice and the aver-
age network connectivity z is calculated as twice number
of bonds divided by number of nodes, this fiber cutting
step gives a connectivity z = 4− 6

W which approaches 4
in the limit of large W . We then remove random bonds
to obtain the desired connectivity. Dangling ends, which
have no effect on the mechanical behavior of the net-
work, are removed. Figure 1a shows a small section of a
full phantom triangular model.

In order to compare our results with other geometries,
we use three additional 2D network structures: (i) fully
branched hexagonal (honeycomb) lattice [34] (ii) Delau-
nay triangulation network [35, 36] and (iii) a Voronoi net-
work [37–39]. We note that the notion of fibers in these

structures is less well-defined than in the context of a tri-
angular lattice. The honeycomb network is easily derived
from a full triangular lattice by cutting specific bonds.
The Delaunay networks are constructed by placing N
random points in a W ×W box and triangulate them in
a way that there is no point inside the circumcircle of any
triangle (the unique circle passing through the three ver-
tices of the triangle) which maximizes the smallest angle
among all triangulations of the given point set [35]. We
use N = W 2 to obtain an average bond length close to
1 similar to the triangular lattice model. An interesting
aspect of a full Delaunay structure is that it has, by con-
struction, a non-uniform local connectivity, in contrast to
a uniform structure of a full triangular lattice. The aver-
age connectivity of a full Delaunay network, however, is 6
similar to a triangular lattice. To achieve a sub-isostatic
Delaunay network (z < 4) , we randomly remove bonds
with no phantomization. Voronoi networks are derived
from Delaunay networks of N = W 2/2 random points by
connecting the centers of the circumcircles which gives
an average bond length close to 1 similar to the hon-
eycomb lattice structure. Like the honeycomb lattice,
Voronoi networks have a uniform local connectivity of
3. To remove edge effects, we impose periodic boundary
conditions in both directions for all networks and utilize
Lees-Edwards boundary conditions [40] to apply shear
strain. We use the network size of W = 100 for phantom
triangular, W = 120 for honeycomb, and W = 70 for
Delaunay and Voronoi models. In order to obtain suffi-
cient statistics, we use 50 different realizations for every
simulation. Moreover, to remove possible effects of un-
derlying anisotropy, we average the quantities over both
the positive and negative strain directions.

The energy of these networks has two main contribu-
tions: stretching of individual bonds and bending be-
tween nearest-neighbor bonds (collinear bonds in phan-
tom triangular networks). Therefore, the total energy
of the network with stretching stiffness µ and bending
stiffness κ is written as

H =
µ

2

∑
〈ij〉

(lij − lij,0)2

lij,0
+
κ

2

∑
〈ijk〉

(θijk − θijk,0)2

1
2 (lij,0 + ljk,0)

(1)

where lij,0 and lij are the initial and current bond length
between crosslinks i and j, respectively, and θijk,0 and
θijk are the initial and current angle between neighbor-
ing bonds ij and jk, respectively. For networks with
finite stiffness, we set µ = 1 and vary the dimensionless
bending stiffness κ̃ = κ

µl20
. In the rope limit, however,

the total energy depends only on extension of bonds, i.e.,
we remove bending and also compressive terms from the
above energy expression which gives

H =
µ

2

∑
〈ij〉

Θ(lij − lij,0)
(lij − lij,0)2

lij,0
(2)

where Θ(x) is the Heaviside step function. This is in-
deed an extreme limit of an asymmetric Hookean spring
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which has spring constant µ in the extended state and no
resistance under compression. Figure 2a shows the force-
extension curve for a rope segment with insets describing
stretching and compression of the segment with original
length l0 under extension ∆` = `− `0. After applying a
deformation, we minimize the total energy of the network
using FIRE algorithm [41]. The stress components are
calculated using the microscopic definition of stresses in
a polymeric system as discussed in [42, 43]

σαβ =
1

2A

∑
〈ij〉

fij,αrij,β (3)

where A is the area of the simulation box, fij,α is the α-
component of the force exerted on crosslink i by crosslink
j, and rij,β is the β-component of the displacement vec-
tor connecting crosslinks i and j. In order to investigate
the effect of external stresses on a sub-isostatic rope net-
work, we induce finite normal stresses by applying either
bulk or uniaxial extension. After applying bulk or uni-
axial strain to induce a finite external normal stress, we
investigate the shear rheology of the network by apply-
ing incremental shear strains to the prestressed network.
This procedure is schematically shown in Fig. 2b.

The phase diagram of sub-isostatic networks in the
rope limit is shown in Fig. 2c and Fig. 2d by looking
at non-affine fluctuations and differential shear modu-
lus respectively. In the case of simple shear strain only,
the network is floppy below an applied critical strain
that is a function of network connectivity and geome-
try. Beyond this critical point, stretching modes rigidify
the network (Arrow A in Fig. 2c). Although volume-
preserving shear deformation of sub-isostatic networks
has been extensively studied in prior work, this strain-
induced rigidification occurs under any type of applied
extensional strain; indeed, we see similar phase transition
between unstable and stable states under both isotropic
expansion and uniaxial extension (Arrow B in Fig. 2c).
This strain-controlled transition occurs due to tension
propagation between boundaries that generates a state
of self-stress, therefore stabilizes the network [44]. To
test this in the rope limit, we deform networks by ei-
ther isotropic expansion or uniaxial extension until the
network develops a finite (normal) prestress σP and ap-
ply step-wise shear strains in the direction of arrow A in
Fig. 2c. The isotropic case mimics the uniform active
stresses generated by motor proteins or cell contractility
on a fibrous network substrate. The second case is moti-
vated by axial expansion or compression experiments of
biopolymer gels surrounded by buffer, where the solvent
freely flows in or out of the sample thereby preserving
the gel boundaries [28]. Since the uniaxial extension is
applied in y-direction, throughout this paper, σP = σyy
refers to the normal prestress generated by uniaxial ex-
ension prior to a step-wise shear deformation, likewise
σP = σB = 1

2 (σxx + σyy) in the case of bulk expansion
and σ⊥ = σyy denotes the generated normal stress during
shear deformations which is equal to σP at γ = 0.

III. RESULTS

Figure 3a shows the differential shear modulus K =
dσ‖
dγ where σ‖ is the shear stress, versus shear strain γ

for a sub-isostatic rope network (z = 3.2) for different
amounts of external normal stress σB caused by bulk ex-
pansion. In the absence of external stress (σB = 0), the
sub-isostatic rope network has no resistance under small
shear deformation. Applying sufficient bulk expansion to
induce finite σB (crossing the phase boundary along the ε
axis in Fig. 2c) stabilizes the network, resulting in a finite
shear modulus in the linear regime, and further increas-
ing σB leads to an increase in K in the linear regime.
Similar behavior is observed in sub-isostatic fiber net-
works with finite bending stiffness κ when κ is increased
[26, 27, 45, 46] in the absence of applied bulk strain (be-
low the phase boundary in Fig. 2c). Despite this simi-
larity between stress-stabilized and bend-stabilized net-
works, the microscopic picture of these two mechanisms
is intrinsically different. Bend-stabilized networks resist
deformations in the linear regime due to their bending
stiffness κ, whereas stress-stabilized rope networks have
already crossed the phase boundary (ε ≥ εc in Fig. 2c)
and thus show resistance under small shear strains be-
cause of highly stretched segments. We find that in rope
networks under either bulk or uniaxial expansion, the
linear shear modulus G = limγ→0K increases with the
external normal stress σP as a power law, G ∼ σαP , with
a non-mean-field exponent α (see Fig. 3b). As expected,
stress-stabilized networks with higher average connectiv-
ity z show a larger linear shear modulus under equiva-
lent σP . As shown in the inset of Fig. 3b, we find a very
weak dependence of this scaling exponent on the network
average connectivity z. Moreover, this scaling exponent
appears to be independent of the prestressing method we
used, i.e., bulk or uniaxial extension. As shown in Fig.
3b, the linear shear modulus of different network connec-
tivity under large prestress deviates substantially from
the power law scaling and has a converging trend. This
is due to the fact that network segments are massively
stretched under large expansion steps and hence the lin-
ear shear modulus is primarily governed by this stretch-
ing load rather than connectivity or density of networks.
The significance of a sublinear scaling suggests the role of
prestress in stabilizing a rope network. We define a sus-
ceptibility to the applied prestress, χP ∝ dG

dσP
∼ σα−1

P ,
which diverges as σP → 0 for α < 1. In the small
strain regime γ < γc, we find that the excess normal
stress |σ⊥−σP | generated under shear remains negligible
(. 10−5) with fixed axial strain ε. This is in contrast with
fiber networks stabilized by finite bending modulus κ or
super-isostatic networks with only central force interac-
tions, where in the linear regime, the normal stress in the
shear deformation is quadratic , i.e., σ⊥ ∼ γ2 [45, 47, 48].
Interestingly, normal stresses in the shear deformation of
a super-isostatic rope network, which is stable due to the
large number of constraints, are proportional to shear
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FIG. 2. Description of the rope limit and corresponding phase diagram. (a) Showing a schematic force-extension curve for a
segment with backbone length `0 in the rope limit. The segment behaves as a simple Hookean spring under extenstion and has
zero resistance under compressive loads. (b) A schematic of the simulation procedure in the case of prestressing a network by
bulk expansion. We first affinely apply a bulk strain ε to the original network that is shown schematically as a black square.
The prestress σP is calculated after finding the minimum energy configuration, allowing for non-affine deformations. To find
the shear properties of the network under prestress σP , we affinely shear the expanded network and minimize its elastic energy

(see the sketch at right side of the figure). We shear the network in multiple steps, find differential shear modulus K =
∂σ‖
∂γ

and the linear shear modulus G = K(γ → 0). (c) The phase diagram of sub-isostatic fiber networks in a rope-like potential.
The data is for a phantom triangular network with connectivity of z = 3.2 that is prestressed by bulk expansion. For small
amount of shear strain γ or bulk strain ε, the network is unstable. However, applying large shear (Arrow A) or extensional
strain (Arrow B) removes floppy modes and stabilizes the network. The phase transition from floppy to rigid is captured by
showing the differential non-affinity parameter (see Eq. 5 in the text), which measures the non-affine fluctuations of the network
crosslinks. As expected, the transition curve corresponds to large non-affine fluctuations. The asymmetric behavior of δΓ under
volumetric strain ε and shear strain γ is due to the fact that we measure fluctuations under shear strain as can be seen from
δΓ definition. (d) The phase diagram of data in (c) in terms of the differential shear modulus K. Floppy networks have no
resistance under deformations (K = 0) and are rigidified by applying shear or extentional strain larger than a critical value.
The phase boundary is the same as the boundary we find in (c) by looking at the fluctuations.

strain in the linear regime, i.e., σ⊥ ∼ γ (see Fig. 3d).
This is due to the fact that the symmetry of the poten-
tial is broken in the rope limit. From these observations,
we propose the following nonlinear stiffening relation in
the stress-stabilized sub-isostatic rope networks [26]

K ∼ χPσ⊥, γ ≤ γc (4)

in which γc refers to the critical strain of a rope network
in absence of any prestress. Since in the linear regime

σ⊥ ∼ σP , the above relation results in the sublinear scal-
ing relation G ∼ σαP . The dashed lines in Fig. 3a show
predictions of the above stiffening relation.

The scaling relation G ∼ σαP with a non-mean-field
exponent α < 1.0 signifies the influence of the non-mean-
field characteristics of sub-isostatic phantom triangular
networks, i.e their disordered structure and inhomoge-
neous local connectivities. Networks with more ordered
geometries are expected to show mean-field behavior. To
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FIG. 3. External normal stress stabilizes sub-isostatic fiber networks in the rope limit. (a) Differential shear modulus K versus
shear strain γ for various amount of external normal stress imposed by bulk expansion on a phantom triangular rope network
with average connectivity of 〈z〉 ' 3.2 and size W 2 = 1002. In the absence of prestress, the network is floppy below the critical
shear strain γc, which is indicated by the red arrow in the figure. However, by applying sufficient bulk expansion to induce
finite external normal stress σB , the network becomes stable under shear deformation and exhibits finite K. Dashed lines are
the results of the stiffening relation (Eq. 4 in the text). (b) Linear shear modulus G (obtained as K in the linear regime, with
γ ' 10−4) versus applied normal stress for varying average connectivity 〈z〉 of phantom triangular rope networks. The external
normal stress σP is imposed by both bulk (closed symbols) and uniaxial expansion (open symbols). In the small prestress
regime, we see a sublinear scaling G ∼ σαP with α ' 0.85 which is shown as dashed line in the figure. Inset: showing the scaling
exponent α versus network connectivity z which is obtained by fitting a power law to small prestress data σP . 3× 10−3. This
exponent shows no dependence on the network connectivity. Moreover, prestressing the network via bulk or uniaxial extension
appears to give the same scaling exponent. (c) Linear shear modulus G obtained by the same procedure as in (b) for different
network geometries in the rope limit. The structures with uniform local connectivity, i.e., full honeycomb and Voronoi exhibit
an apparent mean-field scaling exponent of α = 1.0, in contrast the disordered Delaunay and phantom triangular networks
exhibit a non-mean field behavior. (d) Normal stress σ⊥ = σyy versus shear strain for a super-isostatic Delaunay network with
z = 6.0 and no applied external normal prestress. As expected, for a network with pure central force interactions the normal
stress is quadratic in shear strain, however, for a rope network this relation is linear. The solid lines are calculated using the
pure affine isotropic network model as discussed in [21] using either rope or Hookean spring force-extension relations.

investigate this, we simulate full honeycomb, full Voronoi,
and diluted Delaunay networks in the rope limit. As
expected, networks with uniform local connectivity of
3, i.e., full honeycomb and Voronoi, exhibit mean-field
α = 1 in contrast to the diluted Delaunay network, with
inhomogeneous local connectivity, which yields a non-

mean-field α ∼= 0.9 as the diluted phantomized triangular
networks (see Fig. 3c).

The transition between floppy (bending-dominated)
and rigid (stretching-dominated) states of sub-isostatic
fiber networks has been studied in the absence (presence)
of bending interactions [26–28, 34, 43, 44, 46, 49–56].
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FIG. 4. Non-affine fluctuations of sub-isostatic networks both
in the rope limit and in presence of bending interactions.
(a) Differential non-affinity calculated for phantom triangular
networks with connectivity z = 3.2 in the rope limit for dif-
ferent external stress which is applied by isotropic expansion.
The suppression of non-affine deformations due to the exter-
nal normal stresses is clearly observed. Inset: showing the
external stress versus volumetric strain ε. Sub-isostatic net-
works with rope-like potential are unstable under small strains
ε < εc. (b) Showing differential non-affinity for the same net-
work in (a) in presence of bending interactions. We used the
dimensionless bending stiffness of κ̃ = 10−6. Small applied
external stress σB shifts the critical strain γc to lower values.
Applying sufficient extension to drive these networks above
the critical extension, like in stress-stabilized rope networks,
removes the peak in δΓ. Inset: showing the external stress
versus volumetric strain ε for networks with bending interac-
tions. Due to bending interactions, the networks are stable
and their behavior can be captured under any small amount
of applied prestress. Similar to rope networks, the non-affine
fluctuations in bend-stabilized networks are suppressed under
large volumetric strain ε > εc.

Many of these prior studies have shown that this transi-
tion is accompanied by critical signatures, such as the di-
vergence of the non-affine (inhomogeneous) fluctuations
in the strain field. Although prior work has discussed
possible discontinuity of the modulus at the transition
[44, 55], it is important to note that such a discontinuity
does not alter the critical nature of this strain-controlled
transition. Since it involves a second derivative of the en-

ergy with respect to the control variable strain, the mod-
ulus can be thought of as analogous to the heat capacity
[43], which can be discontinuous at a critical point.

Similar to previous studies [27], we define the differen-
tial non-affinity as

δΓ =
〈‖ δuNA ‖2〉

l2δγ2
(5)

where l is the typical bond length of the network and
δuNA = u− uaffine is the differential non-affine displace-
ment of a crosslink caused by applying a small amount of
shear strain δγ. We find the average of this quantity over
all crosslinks in the network. Like in sub-isostatic spring
networks, sub-isostatic rope networks in the absence of
any external stresses show a mechanical phase transition
under simple shear deformation between floppy and rigid
states (Arrow A in Fig. 2c) coinciding with a peak in the
non-affine fluctuations. Without any applied prestress,
δΓ of a sub-isostatic rope network shows a large peak at
the critical strain γc where the stretching energy becomes
finite and stabilizes the network (see Fig. 4a). The crit-
ical strain has a strong dependence on the network con-
nectivity z as has been discussed previously [27, 43, 45].
Applying any finite external stresses by either isotropic or
uniaxial expansion, however, removes the criticality sig-
natures and therefore δΓ shows no peak as shown in Fig.
4a. This is due to the fact that by imposing large expan-
sion prior to shear deformation (Arrow B in Fig. 2c), we
indeed move the network out of floppy state and stabi-
lize it. Moreover, applying small extensional strain ε < εc
leads to a decrease in γc with γc = 0 for ε ≥ εc. This
effect can be captured more easily in a bend-stabilized
network in which finite σP occurs for ε < εc. As shown in
Fig. 4b, for bend-stabilized sub-isostatic fiber networks,
the applied prestress by bulk expansion σB clearly shifts
the critical strain to lower values until a point where σB
is large enough, i.e., ε ≥ εc to transform the bending-
dominated to stretching-dominated state and removes
criticality from the network.

Interestingly, the onset of strain stiffening γ0 which we
define the strain where differential shear modulus is twice
as large the linear shear modulus K ' 2G, increases with
increasing external normal stresses for a sub-isostatic net-
work in a rope-like potential (see Fig. 5). In the case of
bend-stabilized networks, however, γ0 decreases by ap-
plying extensional strain ε < εc and shows a similar be-
havior to rope networks under extensional strains larger
than εc. In the experimental studies of biopolymer net-
works, one could apply external normal stress σP and
measure the differential shear modulus K at this stressed
state. By measuring shear modulus curves for every ap-
plied prestress, onset of strain stiffening γ0 versus the
prestress σP can be obtained and could serve as an indi-
cator that such networks have been strained past the crit-
ical strain εc. So dependence of γ0 on σP can serve as an
indicator of whether the network is bending-dominated
or stretching-dominated in the reference state. Indeed
the experimental studies on the reconstituted collagen
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FIG. 5. The effect of prestress on the onset of strain stiff-
ening. The data is obtained using the same network as in
figure 4 and prestress is applied by bulk expansion. Onset
of strain stiffening γ0 which is defined as the strain where
K ' 2G increases by applying external stress to a rope net-
work. It is noted that rope networks are unstable if the ap-
plied bulk strain is less than εc, hence, based on our definition,
γ0 for rope networks is undefined in the regime where ε < εc.
Bend-stabilized networks show a non-monotonic behavior, γ0
decreases for small extensional strains ε < εc in which the net-
work is still bending-dominated and increases after applying
ε > εc in which the network is stretching-dominated.

networks are shown to develop normal stresses due to
polymerization and boundary effects [26] which can sig-
nificantly affect their mechanical response. In real tis-
sues, the external stresses exist due to the interactions
between different tissues as well as embedded cells.

IV. CONCLUSION

Floppy sub-isostatic fiber networks are stabilized via
various mechanisms such as applying large strain, in-
troducing fiber bending interactions, imposing active
stresses, and thermal fluctuations. Here we have shown
that external normal stresses can rigidify linearly unsta-

ble fiber networks. We considered the case in which con-
nected network nodes interact only through rope-like ten-
sile forces. The stability of rope-like structures has been
studied previously in the context of disordered networks
[57–59], although the role of prestress on the shear rheol-
ogy of such systems was not examined. We found that the
linear shear modulus of these stress-stabilized networks
scales as a power law with the applied external normal
stress. The scaling exponent exhibits a non-mean-field
value for connectively disordered networks and a mean
field value for connectively homogeneous structures. We
also investigated the effect of prestress on the critical-
ity of the networks. In order to stabilize a sub-isostatic
rope network, a non-zero prestress which corresponds to
an extension strain larger than εc needs to be applied.
This indicates that the network becomes rigid and the
criticality corresponding to the transition between two
floppy and rigid states is removed. Indeed, the non-affine
fluctuations of a stress-stabilized rope network show no
peak and are clearly supressed. For a bend-stabilized net-
work, however, small prestress corresponding to a small
extension ε < εc shifts the critical strain γc to lower
values which is clearly observed by calculating the non-
affine fluctuations. Moreover, we find that the onset of
strain stiffening γ0 monotonically increases by applying
prestress to a rope network. For a bend-stabilized net-
work, however, this behavior is non-monotonic with a
decreasing trend in the bending-dominated regime and
increasing trend similar to the stress-stabilized rope net-
works in the stretching-dominated regime. The distinc-
tive behavior of γ0 versus external stress σP can be used
to determine whether a fiber network is in the bending-
dominated or stretching-dominated regime.
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