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Trabecular bone is a lightweight, compliant material organized as a web of struts and rods (tra-8

beculae) that erode with age and the onset of bone diseases like osteoporosis, leading to increased9

fracture risk. The traditional diagnostic marker of osteoporosis, bone mineral density (BMD), has10

been shown in ex vivo experiments to correlate poorly with fracture resistance when considered11

on its own, while structural features in conjunction with BMD can explain more of the variation12

in trabecular bone strength. We develop a network-based model of trabecular bone by creating13

graphs from micro-CT images of human bone, with weighted links representing trabeculae and14

nodes representing branch points. These graphs enable calculation of quantitative network metrics15

to characterize trabecular structure. We also create finite element models of the networks in which16

each link is represented by a beam, facilitating analysis of the mechanical response of the bone17

samples to simulated loading. We examine the structural and mechanical properties of trabecular18

bone at the scale of individual trabeculae (of order 0.1 mm) and at the scale of selected volumes of19

interest (approximately a few mm), referred to as VOIs. At the VOI scale, we find significant corre-20

lations between the stiffness of VOIs and ten different structural metrics. Individually, the volume21

fraction of each VOI is most strongly correlated to the stiffness of the VOI. We use multiple linear22

regression to identify the smallest subset of variables needed to capture the variation in stiffness. In23

a linear fit, we find that node degree, weighted node degree, Z-orientation, weighted Z-orientation,24

trabecular spacing, link length, and the number of links are the structural metrics that are most25

significant (p < 0.05) in capturing the variation of stiffness in trabecular networks.26

I. INTRODUCTION27

Trabecular bone is a porous, web-like arrangement of28

bone struts and rods (trabeculae), resulting in a strong29

yet lightweight and flexible tissue. One of two types of30

bone in the body, trabecular bone is found primarily31

in the vertebrae, wrist, hip, and femur, encased within32

a stiff shell of cortical bone, which is the other type33

of bone. Trabeculae erode with age; this process is ac-34

celerated with bone disease. Osteoporosis is a systemic35

skeletal disease characterized by low bone mass and36

micro-architectural deterioration of bone tissue, leading37

to fragility and increased susceptibility to fracture. It is38

estimated that osteoporosis affects approximately 10.239

million adults in the United States aged fifty years or40

older [1], in addition to millions worldwide [2]. Each year,41

an estimated 1.5 million Americans experience a fracture42

due to bone disease [3]. Hip fracture is associated with43

a 20% excess mortality in the year following the fracture44

[4]. In 1995, the cost of managing fractures was approx-45

imately $13.8 billion dollars in the United States alone46

and is projected to increase as life expectancy increases47

[4].48

Currently, estimation of areal bone mineral density49

(BMD) is the conventional method for diagnosis of osteo-50

porosis and prediction of fracture risk [5]. The two most51
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widely used methods of estimating BMD are dual X-ray52

absorptiometry (DXA), which measures density via the53

attenuation of x-rays by bone at different energies [6],54

and quantitative computed tomography (QCT), in which55

bone density is calculated from low-resolution 2-D image56

slices of bone [3]. However, recent studies suggest that57

BMD alone is a poor indicator of bone strength. On its58

own, it has been reported to account for between 40% and59

70% of the variation in the compressive yield strength of60

trabecular bone [1, 7–9], while taking both BMD and tra-61

becular architecture into account can reportedly explain62

up to 90% of the variance in bone strength as measured63

in ex vivo mechanical tests [1, 7, 10, 11].64

The architecture of trabecular bone is typically charac-65

terized with bone histomorphometry, the image-analysis-66

based study of bone tissue to obtain quantitative infor-67

mation about bone structure and remodeling [12, 13].68

Modern histomorphometry is accomplished using high-69

resolution imaging, such as micro-CT (µCT), which can70

capture image resolution down to the order of a micron71

[14, 15]. However, the large amounts of radiation involved72

in high-resolution tomography limits its in vivo usage to73

distal extremities in humans [16]. In this study, we utilize74

high-resolution µCT images of cadaveric vertebral bone,75

from which we generate accurate 3-D reconstructions of76

trabecular volumes and extract histomorphometric pa-77

rameters.78

The web-like structure of trabecular bone closely re-79

sembles a network, i.e., a system of nodes, or vertices,80

that are connected by links, or edges. Each trabecula81

resembles a link, while the points at which multiple tra-82
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beculae meet, referred to here as branch points, resem-83

ble nodes. Hence, we capitalize on this resemblance by84

modeling trabecular bone as a network. We exploit the85

existing mathematical framework developed in network86

science to analyze the topology of trabecular bone in a87

streamlined fashion. Network science has rarely been ap-88

plied to the study of bone [17] but has been used to study89

a variety of systems across disciplines, including social90

and ecological systems, biological vasculature, granular91

materials, and soil [18–21].92

We begin by converting µCT images of trabecular bone93

into network models that are compactly represented in a94

mathematical form, in contrast to previous methods of95

trabecular analysis that involve specialized image pro-96

cessing techniques [5, 11]. To relate structure to mechan-97

ics, we also create two types of finite element models that98

respectively correspond to 3-D realizations of the bone99

images and of the network models.100

We examine the statistical variability in architectural101

and mechanical properties across scales. At the smallest102

scales, we characterize individual trabeculae and branch103

points with network metrics. Moreover, we compute dis-104

tributions of these metrics for a network derived from a105

volume of bone that may contain hundreds of trabeculae106

and branch points. For a mesoscale analysis, we coarse-107

grain an entire vertebral body into such volumes (Fig. 1)108

and compare distributions across these volumes.109

Likewise, we analyze mechanical response across scales110

with simulated deformation of the bone models. The111

stress in one trabecula – here modeled as a beam in a112

finite element model – represents the smallest-scale me-113

chanical measure, and mesoscale response is represented114

by the overall stiffness of bone volumes. We compare the115

stress distribution of a beam network and its stiffness116

with structural metrics. Analysis at the mesoscale reveals117

several correlations between architectural and mechani-118

cal quantities in bone.119

II. METHODS120

A. µCT image analysis121

To develop network models of trabecular bone, we uti-122

lize a 37 µm resolution µCT image set obtained from the123

Bone 3D Project Team [22]. This set includes 970 axial124

image slices, each 2048 pixel × 2048 pixel (75 mm × 75125

mm) in size, of vertebral body L3 from a human cadaver,126

imaged using the Scanco µCT 80 scanner. Stacked along127

the axial direction, the images encompass a volume with128

dimensions 75 mm × 75 mm × 35.9 mm.129

Pre-processing of µCT images is performed with CT-130

analyser (CTAn) [23]. The raw images are binarized us-131

ing the Otsu thresholding method [24]. All the images132

undergo a “despeckling” procedure to remove spurious133

pixels; all black or white clusters consisting of fewer than134

100 pixels in three dimensions are removed. The stack is135

divided into small volumes of interest (VOIs) to facilitate136

future processing. Each VOI comprises a stack of 100 im-137

ages that are each 100 pixel × 100 pixel, corresponding138

to a cube with dimensions (3.7 mm)3, or a volume of139

approximately 50 mm3 (Fig. 1).140

B. Generating networks141

Network models of trabecular bone are derived using142

skeletonization, a process that isolates the medial axis of143

an image – the “skeleton” [25]. The medial axis of an144

object in 3-D is the locus of the centers of the maximally145

fitting spheres where the spheres touch the surface of146

the object at more than one point. Due to the web-like147

structure of trabecular bone and the rod-like geometry148

of individual trabeculae, the medial axis of a section of149

trabecular bone is usually a collection of connected lines,150

each running through what previously was the center of151

each of the trabeculae (Fig. 2).152

We use the Skeleton3D library [26] for MATLAB153

(MathWorks, Natick, MA) to compute trabecular skele-154

tons for each VOI. This library utilizes an algorithm that155

skeletonizes an image by iteratively removing surface vox-156

els from the volume in such a way that the topology of157

the sample is preserved. As a result, all branch points158

and cavities in the original shape remain after each iter-159

ation. This process is repeated until all that remains is a160

collection of one-voxel-thick segments [26].161

The Skel2Graph library [26] for MATLAB is used to162

convert the skeletons into networks. Links are defined as163

individual trabeculae, and nodes as the branch points164

between trabeculae. The process of dividing the bone165

into VOIs results in isolated trabeculae in each VOI that166

“float” in space; these are removed, and a single con-167

nected component is isolated. The links are weighted with168

the average thicknesses of the individual trabeculae. Bone169

thickness is computed with the BoneJ plugin [27] for Fiji170

[28], a biological image-focused distribution of ImageJ171

(National Institutes of Health, Bethesda, MD).172

III. RESULTS173

A. Structural analysis174

We characterize the structure of bone by investigat-175

ing histomorphometry, geometry, and network topology176

at the scale of individual trabeculae (of order 0.1 mm)177

and at the VOI scale (approximately a few mm). At the178

smaller scale, we determine characteristics of nodes and179

links, as well as their distributions within a VOI. At the180

larger scale, we compare the distributions of such charac-181

teristics across VOIs and examine the spatial distribution182

of structural properties (Fig. 3). We analyze a total of 40183

VOIs, each measuring (3.7 mm)3 ≈ 50 mm3. Each VOI184

is small enough for structural and mechanical properties185

to be calculated in a short amount of computational time186
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FIG. 1. Trabecular bone images used in this study. A: µCT transverse image slice of human vertebral body L3 [22]. The
highlighted region is divided into volumes of interest (VOIs) shown in B. The inset shows a schematic of a sagittal cross-section
of a human vertebral body as it corresponds to our sample. The red arrow indicates the principal direction of loading. B: The
selected region is divided into 100 pixel (3.7 mm) × 100 pixel tiles; each tile shown is the top image of a 100-image stack (Z-
coordinate) that defines a VOI. The X, Y, and Z directions refer to the medial-lateral, anterior-posterior, and superior-inferior
directions, respectively.
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FIG. 2. Trabecular bone modeling pipeline. µCT image slices
of bone are stacked to create a 3-D volume (A). The skele-
ton (B) is generated by iteratively thinning the volume until
a one-voxel-wide line remains. Branch points in the skeleton
are assigned as nodes (yellow circles) in a network (C), with
edges representing trabeculae connecting the branch points.
Endpoints of trabeculae created as a result of image segmen-
tation are also assigned as nodes. A continuum finite element
model (D) is generated by meshing the original bone images,
while a beam-element model (E) is generated by converting
each edge in the network to a beam, where the thickness of
the beam is defined relative to the edge weight.

while large enough to capture significant structural vari-187

ation.188

Topological characteristics of nodes considered here in-189

clude degree and weighted node degree. Degree refers to190

the number of links connected to a node, while weighted191

node degree is the sum of the weights of the links con-192

nected to a node. For both of these measures, nodes of193

degree less than 3 are not considered, as the presence194

of these nodes is directly dependent on locations of the195

boundaries of VOIs. For example, nodes of degree 1 rep-196

resent the ends of trabecular bone at the boundaries of197

VOIs. Nodes of degree 2, which are rare in trabecular198

bone and theoretically should not exist based on the def-199

inition of the trabecular networks, are the result of large200

“chunk”-like pieces of bone, which are classified as nodes201

by the Skel2Graph algorithm, connected to two trabecu-202

lae.203

For links, we consider geometric properties relevant204

to spatially-embedded networks: average thickness (“tra-205

becula width”), link length, vertical orientation (“Z-206

orientation”, Zo), and weighted vertical orientation207

(“weighted Z-orientation”, Zow). We define Z-orientation208

as the dot product of the position vector of a link with209

the unit vector in the Z-direction (superior-inferior di-210

rection). Z-orientation ranges from 0 to 1, where 0 and211

1 refer to a link that is perpendicular and parallel to212

the Z-direction, respectively. Weighted Z-orientation is213

defined as the Z-orientation of a link multiplied by the214

corresponding weight of the link. We also analyze the av-215

erage width of the pores (“pore width”) between trabec-216

ulae. Pore width is a metric we introduce to examine the217

distribution of spaces between trabecula at the smaller218

scale. Details regarding the calculation of these metrics219

are included in the Supplementary Information.220

At the mesoscale, we compare averages of the above221

properties within each VOI across the vertebral body.222

Following bone histomorphometry conventions, the av-223

erage width of trabeculae in a VOI is called trabecular224

thickness, or Tb.Th, and the average of pore widths in a225

VOI is called trabecular separation or trabecular spacing,226

abbreviated Tb.Sp (Supplementary Information) [14, 27].227

For weighted Z-orientation (but not unweighted orienta-228

tion), we use the sum of the weighted Z-orientation of229

the links in a VOI as the VOI-scale measure, rather than230
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FIG. 3. Distributions of structural metrics. A: node degree; B: weighted node degree; C: trabecular spacing (Tb.Sp); D:
trabecular thickness (Tb.Th); E: Z-orientation; F: weighted Z-orientation; G: link length; H: number of links; I: assortativity; J:
volume fraction (BV/TV). Each panel consists of two plots, except for panels H, I, and J: the left plot illustrates the distribution
of metrics at the node/link scale, and the right plot shows the distribution of metrics at the VOI scale. (Number of links (H),
assortativity (I) and volume fraction (J) are only defined at the VOI scale.) The node/link-scale plots show distributions within
three example VOIs; the mean (or sum, in the case of weighted Z-orientation) of each distribution is indicated in the respective
top right corners. Values are binned, with markers indicating the midpoint of each bin, except for node degree, which takes
integer values. The VOI-scale plots illustrate the spatial distributions of structural metrics across the vertebral body. The color
of each tile represents the average structural metric for one VOI. The three VOIs for which the histograms are plotted on the
left are indicated on the right by shapes corresponding to their respective markers and illustrate results for representative high
(yellow circles), mid-range (light green/blue diamonds), and low (dark blue squares) values of the corresponding VOI scale
metrics.

the mean. We also determine the assortativity of each231

VOI, which is the tendency of nodes to be connected232

to other nodes that have similar properties. In this pa-233

per, we specifically determine degree assortativity, the234

tendency of nodes to be connected to nodes of similar235

degree. Nodes with a high assortativity (near 1) are said236

to display assortative mixing and nodes with low assor-237

tativity (near -1) are said to display disassortative mix-238

ing. Networks with assortativity near 0 are called neutral.239

Furthermore, we compute the volume fraction (BV/TV),240

a traditional histomorphometric quantity, and the total241

number of links in the network model of each VOI.242

Fig. 3A-G compares within-VOI (left) and across-VOI243

(right) distributions for seven structural metrics (node244

degree, weighted node degree, pore width/Tb.Sp, trabec-245

ula width/Tb.Th, Z-orientation, weighted Z-orientation,246

and link length). The within-VOI plot shows distribu-247

tions of each respective metric at the node/link scale for248

three representative VOIs that illustrate the within-VOI249

statistical distribution of the structural metric for rep-250

resentative high, medium, and low values of the corre-251

sponding VOI-scale average. The across-VOI plot illus-252

trates the spatial distribution of the average of the met-253

ric in each VOI. Fig. 3H-J illustrates only across-VOI254



5

Metric A k kw BV/TV Tb.Sp Tb.Th L Zo Zow No. links

Assortativity (A) –
0.7219,

0.001

0.6959,

0.001

0.5610,

0.001

-0.3207,

0.0437

0.7260,

0.001

0.6279,

0.001

-0.3647,

0.0207

-0.4550,

0.0032

0.4757,

0.0019

Node degree (k) – –
0.8651,

<0.001

0.5715,

< 0.001

-0.2712,

0.091

0.8730,

< 0.001

0.6925,

< 0.001

-0.6229,

< 0.001

-0.7077,

< 0.001

0.5208,

< 0.001

Weighted node

degree (kw)
– – –

0.7575,

<0.001

-0.4083,

0.0089

0.9051,

< 0.001

0.7026,

< 0.001

-0.5411,

< 0.001

-0.6593,

<0.001

0.5686,

< 0.001

Volume fraction

(BV/TV)
– – – –

-0.8193,

< 0.001

0.5040,

<0.001

0.2792,

0.0810

-0.4630,

0.0026

-0.6022,

<0.001

0.8673,

<0.001

Tb.Sp – – – – –
-0.1008,

0.5358

0.1522,

0.3484

0.3169,

0.0463

0.4665,

0.0024

-0.9047,

<0.001

Tb.Th – – – – – –
0.8672,

<0.001

-0.4492,

0.0036

-0.5229,

<0.001

0.3225,

0.0424

Link length

(L)
– – – – – – –

-0.1569,

0.3337

-0.2063,

0.2016

0.0168,

0.9180

Z-orientation

(Zo)
– – – – – – – –

0.9626,

<0.001

-0.4578,

0.0030

Weighted Z-orientation

(Zow)
– – – – – – – – –

-0.6037,

<0.001

Number of links – – – – – – – – – –

TABLE I. Structural metrics at the VOI scale. Pearson correlation coefficient r and corresponding p-values between the
structural metrics (Fig. 3) are shown. In each cell, the upper value is r and the lower value is p. Significant correlations with p
less than 0.05 are highlighted in bold.

distributions for three metrics: number of links, assorta-255

tivity, and volume fraction, which are not defined at the256

individual node/link scale.257

Distributions of node degree (Fig. 3A) within a VOI258

consistently demonstrate a peak at degree 3 and a tail259

extending to larger degree values. In general, VOIs with260

A B

k = 4.13k = 3.38
FIG. 4. Illustration of 3-dimensional structure for two exam-
ple VOIs. A: This sample corresponds to the example low-
degree VOI indicated in Fig 3A and has an average node
degree of 3.38, the smallest of any of the VOIs analyzed in
this paper. B: This sample corresponds to the example high-
degree VOI in Fig 3A and has an average node degree of 4.13,
the largest node degree of all VOIs.

a higher average degree and a higher peak at degree 3261

also contain a few nodes of degree greater than 10. The262

yellow square-marked curve in Fig. 3A, corresponding263

to the largest node degree, is one example, containing264

nodes of degree 10, 11, 13, 15, 16, 22, 24, 37, 72, and 110.265

Nodes of degree greater than 20 are not shown so that266

the low degree behavior of the distributions is visible.267

These nodes are responsible for the yellow curve having268

the highest average node degree, despite the fact that269

the light blue diamond-marked curve has more nodes of270

degree 3 through 9. Nodes of such high degree are uncom-271

mon in most of the trabecular bone samples analyzed in272

this paper. They tend to exist only in VOIs that contain273

dense regions of bone. These regions do not share the274

characteristic rod-like geometry of most trabecular bone,275

but are connected to many trabeculae due to their large276

surface area. In the network conversion process, these277

regions are approximated as nodes of unusually high de-278

gree.279

To illustrate how the 3-dimensional structure of VOIs280

varies for different values of average degree, Fig. 4 shows281

the continuum models generated by meshing the VOIs282

with the smallest (Fig. 4A) and largest (Fig. 4B) aver-283

age node degrees. These correspond to the blue square-284

marked tile and the red circle-marked tile in the tilemap285
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of Fig. 3A. Fig. 4A displays a web-like structure through-286

out its volume with visible trabeculae. Fig. 4B displays287

an example of a VOI that contains a node of incredibly288

high degree. This node is located in the upper left corner289

of the the figure, where the VOI contains a dense section290

of bone.291

The distributions of weighted node degree (Fig. 3B)292

consistently display peaks between 10 and 15 while hav-293

ing significantly smaller fraction of nodes of weighted294

degree less than 10 and greater than 20. Certain VOIs295

have significantly higher weighted node degree due to296

the presence of high degree nodes connected to links of297

large weight. These nodes can have weighted degrees in298

the hundreds, while the majority of nodes have weighted299

degrees less than one hundred. As a result, full distri-300

butions of the weighted node degree of VOIs are heav-301

ily right-skewed. In Fig. 3B, all three of the VOIs have302

such high weighted node degrees; we only show the nodes303

with weighted node degree between 0 and 60 so that the304

shape of each distribution is visible. Despite only showing305

a fraction of the full range of this plot, we only obscure306

about 0.2% of the nodes in each of the three distributions,307

which make up the long tails of each of the distributions.308

The trabecular spacing Tb.Sp (Fig. 3C) in a VOI varies309

greatly across the bone volume, ranging from 0.5 to 1.0310

mm. Distributions of pore width within a VOI also vary311

in shape. The dark blue square-marked VOI, correspond-312

ing to the lowest Tb.Sp, exhibits a relatively symmetric313

distribution centered around 0.5 mm, while the distribu-314

tions of the green diamond (mid-range Tb.Sp) and yellow315

(largest Tb.Sp) circle-marked VOIs are peaked at higher316

pore width values, with a heavy tail at low Tb.Sp.317

The trabecular thickness (Tb.Th) (Fig. 3D) of a VOI318

ranges from 0.12 to 0.35 mm, but the majority of VOIs319

have a Tb.Th less than 0.2 mm. The distributions of tra-320

becula width within a VOI tend to have a sharp peak321

at small widths around 0.15 mm followed by a tail. The322

length of the tail reflects the size of the Tb.Th, with the323

dark blue square-marked distribution having the shortest324

tail and smallest Tb.Th.325

The distributions of Z-orientation (Fig. 3E) indicate326

that some VOIs (e.g. the blue square-marked distribu-327

tion with the smallest average Z-orientation) contain328

more trabeculae oriented perpendicular to the Z-axis,329

while others have more trabeculae oriented along the330

Z-axis (e.g., the yellow circle-marked distribution with331

the highest average Z-orientation). Overall, the mean Z-332

orientation does not vary greatly between the VOIs and333

ranges from 0.45 to 0.5, where the lower limit indicates334

VOIs that contain a slight prevalence of trabeculae ori-335

ented transverse to the Z-axis.336

The distributions of weighted Z-orientation (Fig. 3G)337

consistently display a decay with increasing length. The338

VOI-scale color map illustrates the sum of all weighted339

Z-orientation values in each VOI, rather than the mean,340

in order to facilitate comparison with VOI-scale (un-341

weighted) Z-orientation. While weighted Z-orientation at342

the link scale ranges from 0 to 2.2×10−3, it ranges from343

0.45 to 0.52 at the VOI scale. This narrow range can be344

attributed to our general observation that the sum of the345

thicknesses of the links in a VOI is usually roughly twice346

that of the sum of the thickness of each link multiplied347

by its Z-orientation. Thus, when dividing these quantities348

to get the weighted Z-orientation, we find values that are349

close to 0.5.350

Distributions of link length (Fig. 3G) consistently351

demonstrate a large decaying behavior, with each VOI352

having hundreds of links of length about 0.2 mm but353

fewer than 20 links of length 0.9 mm or greater. The354

average link length of a VOI is heavily dependent on355

the range of lengths of the VOI. For instance, the yel-356

low circle-marked VOI, which has the largest average link357

length of all VOIs, contains links as long as 1.7 mm, while358

the longest links in the blue square-marked VOI, which359

has the shortest average link length, are about 1.2 mm.360

The number of links in the network model of each VOI361

varies greatly over the analyzed region (Fig. 3H). The362

network with the fewest links contains about 950 links,363

while the network with the greatest contains about 2600364

links. However, a majority of networks contain fewer than365

1500 links.366

Fig. 3I shows that the VOIs analyzed in this paper367

display neutral mixing (assortativity near 0), with the368

assortativity values ranging from -0.08 to 0.12. This in-369

dicates that the nodes in these trabecular bone networks370

show no tendency to mix with nodes of either similar or371

dissimilar degree.372

The majority of the VOIs have a volume fraction less373

than 0.2 (Fig. 3J). Seven adjacent VOIs on the left side of374

the plot have slightly higher volume fraction, signifying375

a denser set of trabecular networks spanning that region.376

Table I contains the Pearson correlation coefficients (r-377

values) and corresponding probability values (p-values)378

for each pair of structural metrics, with significant cor-379

relations highlighted in bold. We define a weak correla-380

tion as corresponding to the absolute value of r-values381

ranging from 0 to 0.3, moderate correlation as 0.3 to382

0.6, and strong correlation as 0.6 to 1. We assert that383

there is strong evidence for a linear correlation (a cor-384

relation coefficient is significant) if p ≤ 0.05. Assorta-385

tivity and weighted node degree are significantly corre-386

lated with all of the other structural metrics. Volume387

fraction, Z-orientation, weighted Z-orientation,and link388

number are significantly correlated with all metrics ex-389

cept link length. Trabecular spacing is not significantly390

correlated with trabecular thickness or link length. Tra-391

becular spacing is strongly negatively correlated with vol-392

ume fraction, as is expected, and is also moderately corre-393

lated with Z-orientation. That is, a VOI with large aver-394

age pore width tends to contain links that are less aligned395

with the vertical axis. Trabecular thickness is moderately396

negatively correlated with Z-orientation and weighted Z-397

orientation. Hence, in our sample, VOIs with thicker tra-398

beculae on average may tend to contain trabeculae less399

aligned with the vertical axis.400

Weighted Z-orientation is negatively correlated with401



7

0 0.5 1 1.5 2 2.5
Weighted Z-orientation Zow ×10 -3

0

0.1

0.2

0.3

0.4

0.5

0.6
Fr

ac
tio

n 
of

 li
nk

s 
in

 V
O

I
Σi Zow (i)  = 0.52 
Σi Zow (i)  = 0.45

FIG. 5. Distributions of weighted Z-orientation illustrating
differences between high average Zow VOIs (yellow squares)
and low average Zow VOIs (blue diamonds). The distribution
of the representative high Zow VOI (marked in Fig. 3F by a
circle) is much broader and displays a heavier tail compared
to the narrower distribution of the representative low Zow
VOI (marked in Fig. 3F by a square).

both the number of links in a VOI and the volume frac-402

tion. Fig. 3F shows that the VOIs with high weighted Z-403

orientation are in the regions with the fewest links (Fig.404

3H) and the lowest volume fraction (Fig. 3J). We were405

initially surprised by this result. However, for the bone406

sample shown in Fig. 1, we observe that VOIs with lower407

volume fraction have a larger fraction of thicker links408

aligned with the Z-axis. Fig. 5 shows the distribution409

of weighted Z-orientations for the VOIs with the high-410

est (yellow diamond-marked curve) and the least (blue411

diamond-marked curve) weighted Z-orientation. The yel-412

low curve furthermore has among the fewest links of all413

VOIs and one of the lowest volume fractions, while the414

blue curve has among the most links and one of the415

largest volume fractions. The yellow distribution has a416

larger fraction of links with Zow > 0.5 than the blue417

distribution. We find that this is true for all VOIs with418

higher average weighted Z-orientation but low volume419

fraction and low number of links; they tend to have a420

larger range of weighted Z-orientation with a larger frac-421

tion of vertically oriented links.422

We use principal component analysis (PCA) to iden-423

tify uncorrelated metrics that explain the majority of the424

variation in the VOI mesoscale structural data (Fig. 3).425

PCA was conducted using the Statistics and Machine426

Learning Toolbox for MATLAB. We examine the frac-427

tion of the total variance in structural metrics explained428

by each of the principal components (PCs) individually429

and cumulatively (Fig. 6A). The first PC explains ap-430

proximately 60% of the variance, while the second and431

third explain approximately 21% and 11% respectively.432

In total, they explain approximately 92% of variance in433

the data. Since all the other components explain less than434

10% of the variance in the data, we focus further analysis435

on only the first three PCs.436
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FIG. 6. Principal component analysis of structural metrics. A:
Fraction of variance explained by each principal component.
The (upper) blue curve indicates the fraction of cumulative
variance explained, while the (lower) red curve indicates the
fractions explained by each principal component. The first
three principal components explain 92.1% of the total vari-
ance in the structural metric data. B-D: Correlation coeffi-
cients of the first three principal components of the structural
metric data feature space. PC 1, which explains about 60%
of the data, only moderately or weakly correlates to any of
the individual metrics. This is also true for PC 2, which ex-
plains about 21% of the variance in the data. Z-orientation is
strongly correlated to PC 3, which explains about 11% of the
variance in the data.

Fig. 6B-D shows the correlation coefficients between437

the structural metrics and each of the first three PCs. PC438

1 and PC 2 are either weakly or moderately correlated439

to all of the metrics. Notably, all of the correlation440

coefficients in PC 1 are relatively similar (between 0.25441

and 0.40). PC 3 is strongly correlated to Z-orientation442

and moderately correlated to node degree and weighted443

Z-orientation. PC 1 and PC 2 explain the majority444

of the variance in the structural metrics and are at445

best moderately correlated to the individual structural446

metrics. This result indicates that no smaller subset447

of the metrics (or linear combinations of them) can be448

used to capture the majority of the variance in the data,449

despite the significant correlations between almost all450

the structural metrics (Table I).451

452
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B. Finite element analysis453

To analyze mechanical response, we convert the bone454

networks into finite element models that consist of beam455

elements representing each link. We refer to these as456

“beam models” (Fig. 2). We also construct continuum457

models generated from meshing the original µCT images458

(Fig. 2) to serve as an in silico validation of the beam459

models. We analyze both the bulk force-displacement re-460

sponse to compressive loading of the beam models and461

the distribution of stress in the beams. We individually462

carry out this analysis for each VOI in Fig. 1. Further-463

more, we investigate how the structural properties of tra-464

becular bone contribute to its mechanical response. We465

calculate the stiffness of the bone network in each VOI,466

and investigate correlations between the effective moduli467

and the structural metrics shown in Fig. 3.468

We develop the beam models by converting each link in469

a network to a beam element (Fig. 2). The beam elements470

are rigidly connected such that, under deformation, the471

angle between two beams remains the same. The result-472

ing models function as 3-D realizations of the network473

model. Simulations with the continuum models, which474

are full-scale mesh reconstructions, are used to validate475

the simulation results of the beam model. The beam-476

element and continuum models are analyzed in Abaqus477

FEA (Dassault Systèmes, Vélizy-Villacoublay, France).478

Compared to the continuum models, the beam models479

correspond to a reduction in the degrees of freedom by480

about one order of magnitude, and require about an order481

of magnitude less computation time to solve.482

We simulate compressive (top to bottom) loading in483

the linear-elastic regime. The elastic modulus of each484

beam is equal and set to 10 GPa, and the Poisson ra-485

tio is set to 0.16, following ranges reported for trabecular486

bone in the literature [29, 30]. However, since the anal-487

ysis is linear-elastic, a different choice of values simply488

corresponds to a linear scaling of the results.489

The topmost and bottommost nodes of the VOI are490

identified as those lying in the transverse planes on the491

top and bottom of the VOI. The bottom nodes are held492

fixed in all dimensions, while the top nodes are displaced493

slowly in the -Z (superior-inferior) direction at a constant494

loading rate.495

For each VOI, we validate the beam model by compar-496

ing results of the simulated compression with that of the497

continuum model, using the continuum result as an in498

silico validation. In the linear-elastic regime, initial com-499

parisons (not shown) of the force-displacement curves in-500

dicate that the beam model has lower stiffness compared501

to the continuum model. In order to match the stiffness502

of the beam model to the continuum model, the radius of503

each beam was increased. For the example VOI analyzed504

in Fig. 7, an overall scale factor of 1.55 was required to505

match the force-displacement response (Supplementary506

Information). Our use of the scale factor is attributed507

to geometric differences between the beam and the con-508

tinuum models. The cross-section of a trabecula is not509

exactly circular, but is approximated as circular in the510

formulation of the beams in the finite element model. Us-511

ing a square cross-section for the beams while keeping the512

same thickness increases the overall cross-sectional area513

of the model and would slightly reduce but not entirely514

eliminate the scale factor. Moreover, while the individ-515

ual beams have uniform thickness, the continuum model516

trabeculae have inhomogeneous thickness. Additionally,517

while the beam model approximates the branch points518

as nodes, the branch points in the continuum model are519

regions of bone with significant bulk properties that add520

to the stiffness of trabecular bone. The models used to521

produce the results shown in this paper contain beams522

with circular cross-sections.523

Fig. 7A illustrates the stress states of each element of524

the beam and continuum models at the end of the sim-525

ulations of linear compressive loading, colored according526

to the stress in each element. Stress in this paper refers527

specifically to maximum principal stress, the first (diag-528

onal) element of the stress tensor in a coordinate system529

with no shear stress. Because the two models have differ-530

ent numbers of elements and different types of elements531

(beams in the beam model, tetrahedral elements in the532

continuum model), to facilitate a comparison of the spa-533

tial stress distribution, we coarse-grain each model by534

dividing the (3.7 mm)3 VOI into a regular grid of (0.185535

mm)3 bins and average the stress in each bin (Fig. 7B).536

While the locations of high stress are similar, the high-537

est stresses in the continuum model are almost an or-538

der of magnitude greater than the beam model. (Note539

that Fig. 7B plots stress normalized by the maximum540

stress in one individual element for each model.) Both541

models exhibit a low-to-high-stress gradient along the542

+Z (superior-inferior) direction. However, this gradient543

is more pronounced for the beam model, while the con-544

tinuum model contains greater spatial variation in stress.545

A trabecula is typically non-uniform in thickness, and546

can contain significantly thinner regions, but the net-547

work conversion process averages the thickness over a548

trabecula to produce the beam model. Hence, the con-549

tinuum model can contain much thinner regions than the550

beam model, as well as relatively sharp corners that are551

smoothed in the beam model but which could be regions552

of localized stress in the continuum model.553

During loading, the stress carried by individual beams554

in the VOI varies significantly. Fig. 8 shows the distribu-555

tion of normalized stress in the beam model sample (Fig.556

7A) undergoing compressive loading in the linear regime.557

While Fig. 8 shows the distribution of stress during the558

final timestep of loading, the shape of this distribution559

remains constant in the linear regime for all timesteps.560

We define the parameters ζ0.001 and σ0.9 to characterize561

this distribution, where ζ0.001 is the fraction of beams562

with normalized stress less than or equal to 0.001, and563

where ninety percent of beams bear a stress less than or564

equal to σ0.9. In the VOI shown in Fig. 8, ζ0.001 = 0.340565

and σ0.9 = 0.153. For the VOIs studied in this paper, the566

average value of ζ0.001 is 0.410, while the average value of567
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FIG. 7. Finite element models of trabecular bone, for a sam-
ple VOI. The continuum model (A) and beam-element model
(B) generated from the same VOI are compressed from the
top. Colors show maximum principal stress in each element
at the end of the simulation. C-D: Coarse-grained spatial dis-
tributions of maximum principal stress for the continuum (C)
and beam-element (D) models. Each model is divided into a
regular grid of (0.11 mm)3 bins; each point corresponds to the
average stress in one bin. Stress is normalized to the highest
stress value (measured for a single element) in each model.

σ0.9 = 0.136. ζ0.001 ranges from 0.3 to 0.6 and σ0.9 ranges568

from 0.038 to 0.224 across all VOIs.569

C. Relating structure and mechanics570

We investigate the relationship between structural571

properties – histomorphometric, geometric, and network-572

topological metrics – and mechanical properties at both573

the individual link (or node) scale and the VOI mesoscale.574

1. Individual Link Scale575

At the scale of individual links, we analyze the stress576

borne by each link during the final timestep of com-577

pression in our simulations. We compare link structural578

features to the distribution of stresses about the links579

to determine whether any structural properties are cor-580

related to mechanical properties at the individual link581

scale. For each VOI, we calculate Pearson correlation co-582

efficients and corresponding p-values between the stresses583

and link metrics. We present the average of the r and p-584

values across all VOIs in Table II. We observe significant585

but weak correlations between stress and Z-orientation.586

Weighted Z-orientation is also significantly correlated587

with both Z-orientation and trabecula width, which is un-588

surprising due to its definition. Additionally, the length of589

the links is weakly, negatively correlated to Z-orientation.590

Metric S Width L Zo Zow

Stress (S) –
-0.0331,

0.2810

0.0453,

0.2106

-0.1320,

0.0081

-0.0013,

0.3641

Trabecula

width
– –

0.0294,

0.3408

-0.0868,

0.0797

0.5137,

< 0.001

Link length (L) – – –
-0.0792,

0.0462

-0.0187,

0.2003

Z-orientation (Zo) – – – –
-0.4985,

< 0.001

Weighted

Z-orientation (Zow)
– – – – –

TABLE II. Comparing stress with structural metrics at the
individual link scale. Pearson correlation coefficient r and cor-
responding p-values between structural metrics and stress at
the individual link scale are shown. In each cell, the upper
value is r and the lower value is p. The values reported here
are the averages of the coefficients over all VOIs. Significant
correlations with p less than 0.05 are highlighted in bold.

2. VOI Scale591

At the VOI mesoscale, we analyze the stiffness of592

each VOI. Stiffness is defined as the slope of the force-593

displacement curve in the linear regime. Fig. 9 shows the594

spatial distribution of stiffness across all VOIs. In the595

linear-elastic regime, the stiffness is a constant over the596

loading process for each individual VOI. Fig. 10 com-597

pares stiffness with ten network-topological, geometric,598

and traditional histomorphometric metrics.599

We find significant linear correlations between the stiff-600

ness of each sample and all structural metrics shown in601

Fig. 3. Stiffness is most strongly correlated with vol-602

ume fraction (r = 0.857, p < 0.001), number of links603

(r = 0.807, p < 0.001), and weighted node degree604

(r = 0.791, p < 0.001. We also observe significant,605

strong positive linear correlations between stiffness and606

degree (r = 0.627, p < 0.001) as well as stiffness and607

Tb.Th (r = 0.623, p < 0.001). Stiffness exhibits a sig-608

nificant, strong negative linear correlation with Tb.Sp609

(r = −0.647, p < 0.001). We also observe moderate610

but significant correlations between stiffness and assor-611

tativity (r = 0.592, p < 0.001), link length (r = 0.400,612

p = 0.011), Z-orientation (r = −0.443, p = 0.004),613

and weighted Z-orientation (r = −0.555, p < 0.001).614

These results indicate that the number of links, de-615

gree, weighted degree, and assortativity can be informa-616

tive network topological features to supplement BMD in617

characterizing bone strength. Furthermore, weighted Z-618

orientation can be an informative geometric property of619

the spatially-embedded network, in addition to volume620

fraction, trabecular spacing, and trabecular thickness for621

histomorphometric analysis. The strong correlation be-622
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FIG. 9. Spatial distribution of stiffness across the vertebral
body. The color of each tile represents the stiffness for one
VOI.

tween stiffness and volume fraction shows that trabecular623

networks tend to be stiffer as the ratio of bone volume624

to pore volume increases, and the strong correlation be-625

tween stiffness and weighted node degree indicates that626

stiffer trabecular networks have larger numbers of thicker627

trabecula connected to each other.628

To determine whether all ten metrics are necessary to629

predict stiffness, we performed a multiple linear regres-630

sion using the following model:631

y = β0 + β1x1 + β2x2 + . . .+ βnxn, (1)

where y corresponds to stiffness and the xi correspond632

to each of the structural metrics (n = 10). The data is633

standardized prior to fitting, and the standardized linear634

coefficients βi are listed in Table III.635

There are forty different observations included in the636

regression analysis, one for each VOI. These observations637

correspond to the ten metrics calculated for each VOI.638

We find that the linear model is a significantly better fit639

to the data (p < 0.001) than a constant model under640

the F -test, and that the ten metrics are strongly predic-641

tive of stiffness (coefficient of determination r2 = 0.905).642

Furthermore, significance values for each of the individ-643

ual metrics (Table III) indicate the significant contribu-644

tion of seven metrics to the prediction of stiffness: degree,645

weighted node degree, trabecular spacing, link length, Z-646

orientation, weighted Z-orientation, and the number of647

links. Most notably, volume fraction does not contribute648

significantly in the linear model, despite its strong corre-649

lation with stiffness. Furthermore, removing any of these650

seven metrics, as well as Tb.Th, from the model decreases651

the adjusted r2 (Supplemental Material), which penalizes652

the number of explanatory variables in the model. For a653

linear model containing only the aforementioned seven654

significant metrics, adding any additional variable to the655

model also decreases the adjusted r2. This indicates that656

these seven metrics are the most informative metrics in657

predicting stiffness with a multilinear model. The model658

with ten significant metrics has an adjusted r2 = 0.872.659

The model with seven significant metrics has an adjusted660

r2 = 0.882.661

We also performed a multiple linear regression using662
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βi (fit) Standard error p

Intercept 0 0.057 1

Assortativity 0.009 0.097 0.927

Degree -0.635 0.191 0.002

Weighted degree 0.872 0.295 0.005

Volume fraction 0.872 0.215 0.59

Tb.Sp 0.416 0.192 0.038

Tb.Th -0.172 0.277 0.053

Link length -0.699 0.299 0.026

Z-orientation 0.753 0.355 0.042

Weighted Z-orientation 1.30 0.230 < 0.001

Number of links 0.914 0.287 0.004

TABLE III. Standardized linear coefficients, standard errors,
and p-values for a multiple linear regression model relating
stiffness with the ten structural metrics. Metrics with p < 0.05
are highlighted.

the model described by Eq. (1), with the principal com-663

ponents shown in Fig. 6. A model including all ten prin-664

cipal components has the same r2 and adjusted r2 as the665

model shown in Table III. A model including the prin-666

cipal components which contribute most significantly to667

the prediction of stiffness (p < 0.05) has an r2 of 0.878668

and an adjusted r2 of 0.864. These values indicate that a669

model consisting of the significant principal components670

does not perform as well as a model with the significant671

structural metrics.672

IV. CONCLUSION673

We introduce a network characterization of bone that674

provides a new framework for analyzing bone architec-675

ture. This approach incorporates existing mathematical676

and computational methods developed for graph theory677

and network science with finite element analysis, directly678

relating topological, geometric, and mechanical proper-679

ties of trabecular bone. Moreover, the beam models de-680

veloped in this paper provide streamlined, efficient alter-681

natives to traditional methods of mechanical analysis of682

bone, which depend on computationally expensive im-683

age processing methods to conduct structural and finite684

element analysis. In this paper, we use the network char-685

acterization and beam models to analyze bone structure686

and mechanics at the scale of individual trabeculae and687

at the scale of 50 mm3 volumes of interest. Further stud-688

ies will involve investigating trabecular bone at larger689

scales, extending to the entirety of the vertebra.690

Our method of generating beam models of trabecular691

bone through skeletonization has some similarities with692

the network representation of soil samples developed in693

[21], as well as 3-D Line Skeleton Graph Analysis (LSGA)694

developed specifically for trabecular bone in [31]. LSGA695

analyzes the mechanical properties of trabecular bone by696

skeletonizing bone images and converting the skeletons697

into FEM beam models. LSGA also achieves an improved698

force-displacement curve fit with a more detailed bone699

model only after the thickness of the beams is increased.700

However, unlike the LSGA method, we use network sci-701

ence methods to further analyze the bone topology in702

addition to creating beam models. Additionally, we use703

the network and beam models to characterize trabecular704

bone not only at the VOI scale, but also at the scale of705

individual trabeculae, which is not analyzed with LSGA.706

We analyzed the within-VOI distribution of network-707

topological, geometric, and traditional histomorphomet-708

ric properties at the sub-millimeter scale (the level of in-709

dividual links), as well as the spatial distribution across710

VOIs at the millimeter scale. While it would be informa-711

tive to quantify the distributions of the individual met-712

rics in detail, such an analysis is outside the scope of713

this paper. The goal of the structural analysis was to714

determine a set of useful metrics for describing trabecu-715

lar bone structure, and we determined that these metrics716

are correlated with the stiffness of trabecular bone using717

40 healthy trabecular bone samples. Future work can in-718

clude a more comprehensive statistical analysis using a719

significantly larger data set containing both healthy and720

osteoporotic bone in order to characterize how the struc-721

tural metrics vary as the overall health of bone samples722

decreases.723

Though the distributions of structural metrics shown724

in Fig. 3 are generally not normal distributions, we de-725

termine the mean value of the metrics as a convenient726

statistic to differentiate between VOIs. We follow the con-727

vention in network science of characterizing a network by728

its mean degree and/or weighted degree, and the conven-729

tion in histomorphometry of using the mean trabecular730

thickness, spacing, and length. Future work can involve731

a more extensive statistical analysis on a larger data set732

to identify other markers for characterizing trabecular733

architecture.734

Using principal component analysis, we find no subset735

of properties that captures the majority of the variation736

in the structural metrics, indicating that all metrics pro-737

vide unique information about the structure of the tra-738

becular networks. We also determine the Pearson corre-739

lation coefficients between structural metrics and stiff-740

ness, and find that stiffness is significantly (positively741

or negatively) correlated with all structural metrics an-742

alyzed. The strongest positive correlation observed was743

between stiffness and volume fraction, corroborating pre-744

vious studies which also find that volume fraction ex-745

plains a large percentage of the variation of stiffness in746
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osteoporotic bone for similarly sized VOIs (spatial di-747

mensions on the millimeter scale) [7, 32]. We further-748

more demonstrate a positive correlation between stiffness749

and weighted node degree that is considerably stronger750

than the correlation between stiffness and degree (which751

characterizes connectivity without taking thickness into752

consideration) and the correlation between stiffness and753

trabecular thickness (which characterizes thickness with-754

out connectivity). This may indicate that stiffer networks755

contain links that are both thicker and more intercon-756

nected.757

We use multiple linear regression to identify seven758

metrics that contribute the most to explaining the vari-759

ance in the data in a linear regression model: degree,760

weighted node degree, trabecular spacing, link length,761

Z-orientation, weighted Z-orientation, and the number762

of links all had significant p-values in the multiple lin-763

ear regression (Table III). These metrics are determined764

by computing a slightly different set of measures: node765

degree, trabecular thickness, trabecular spacing, link766

length, Z-orientation, and number of links. Addition-767

ally, we use multiple linear regression with the princi-768

pal components of the structural metric data to deter-769

mine whether or not they present a better fit to stiff-770

ness. We find that that a model consisting of the sig-771

nificant structural metrics fits the stiffness data better772

than a model consisting of the significant principal com-773

ponents (adjusted r2 = 0.882 for the former versus ad-774

justed r2 = 0.864 for the latter).775

It is surprising that the analysis did not identify vol-776

ume fraction as a significant (p < 0.05) variable for the777

prediction of stiffness, considering that volume fraction778

exhibits the strongest linear correlation with stiffness out779

of all 10 structural metrics in a linear regression model780

(Fig. 10). This does not indicate that volume fraction is781

uninformative in the prediction of stiffness. Its lack of sig-782

nificance in the multiple linear regression implies that it783

does not improve the predictive ability of a linear model784

which includes the seven significant metrics previously785

indicated. However, volume fraction is known to be the786

primary predictor of stiffness in porous media [33]. Pre-787

vious studies have indicated nonlinear relationships be-788

tween mechanical properties, including compressive yield789

strength and elastic modulus, and volume fraction in tra-790

becular bone [34]. In this paper, we use multiple linear791

regression analysis to identify the smallest subset of met-792

rics that captures the most variation in stiffness; future793

work will extend the current regression model to account794

for the possible nonlinear dependence of stiffness on vol-795

ume fraction and other variables in order to improve pre-796

dictive power.797

From the stress distribution across the elements of the798

beam models, we find that only a small number of beams799

withstand a load comparable to the maximal stress on a800

network, while the majority of links bear a stress less801

than or equal to one-third of this maximal stress. Fur-802

ther development of our modeling framework will extend803

the beam model to the nonlinear plastic regime, and ulti-804

mately to the point of failure, to investigate how the fail-805

ure of individual links affects the distribution of stress on806

the network and the overall compressive strength of the807

network. This may prove informative in predicting the808

fracture susceptibility of a trabecular network and can809

serve as a biologically-motivated application of previous810

studies characterizing the failure of disordered elastic net-811

works [35]. Furthermore, simulating the response of bone812

to other types of loading conditions, such as shearing,813

tension, or rapid impacts, can be useful in developing a814

comprehensive model of fracture.815

Trabecular bone exhibits hierarchical organization at816

various scales. Individual trabeculae are made up of817

lamellae, which themselves are composed of mineralized818

collagen fibrils (MCFs, the “building blocks” of bone).819

MCFs consist of mineral plates embedded within a col-820

lagen matrix, and the microscale and nanoscale mechan-821

ics of MCFs contribute to overall bone elasticity [36–38].822

Future work can integrate results from different scales to823

provide a more complete characterization of bone from824

its molecular constituents to its architecture at large.825

Our results identifying relationships between struc-826

tural metrics and mechanical properties suggest these827

mesoscale metrics may prove informative for bone health.828

Extensions of our work to comparisons between healthy829

and osteoporotic bone samples may inform future diag-830

nostics. In particular, extensions of the analyses of Table831

I and Fig. 10 to diseased bone may inform the charac-832

terization of fracture resistance by identifying structural833

differences between healthy and diseased bone. Addition-834

ally, applying network analysis to bone at various stages835

of disease or aging may provide insight into how healthy836

bone changes over time.837

In clinical applications, high-resolution in vivo mea-838

surements are increasingly appreciated as necessary for839

the evaluation of bone fragility. Innovative techniques for840

high-resolution data acquisition of fine tissue structure841

are already in development [39], as well as techniques for842

in vivo mechanical assessment such as reference point in-843

dentation [40]. The methods developed in this paper aim844

to complement advances in medical diagnostic measure-845

ments by identifying biomarkers that may be useful to846

target using clinical procedures. Moreover, should high-847

resolution in vivo imaging of human bone throughout the848

body become feasible, network models can be generated849

from bone scans of patients and used to assess fracture850

risk. Our framework can hence inform the development851

of improved procedures for assessing bone health and de-852

tecting the onset of disease.853
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FIG. 10. Stiffness compared with structural metrics at the VOI scale. For each VOI, the stiffness is plotted against the average
degree (A), weighted node degree (B), trabecular spacing (C), trabecular thickness (D), Z-orientation (E), weighted Z-orientation
(F), and link length (G), as well as the overall number of links (H), assortativity (I), and volume fraction (J).


