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Earthquakes are one of the most devastating natural disasters that plague society. Skilled, reliable earthquake

forecasting remains the ultimate goal for seismologists. Using the detrended fluctuation analysis (DFA) and

conditional probability (CP) methods we find that memory exists not only in inter-occurrence seismic records,

but also in released energy as well as in the series of the number of events per unit time. Analysis of a stan-

dard Epidemic Type Aftershock Sequences (ETAS) earthquake model indicates that the empirically observed

earthquake memory can be reproduced only for a narrow range of model’s parameters. This finding, therefore

provides tight constraints on the model’s parameters and can serve as a testbed for existing earthquake forecast-

ing models. Furthermore, we show that by implementing DFA and CP results, the ETAS model can significantly

improve the short term forecasting rate for the real (Italian) earthquake catalog.

I. INTRODUCTION

The process through which earthquakes occur is com-

plex involving spatio-temporal dynamics [1, 2] and has

previously been characterized as a paradigm of self-

organized criticality [3, 4]. However, the underlying

mechanisms of earthquakes are still not fully understood

[5], and as a consequence, forecasting events’ magni-

tude, location, and time in advance remains elusive. Over

the past decades, scaling laws for the distribution of wait-

ing times between earthquake events have been obtained

for seismic data [3, 6] and for rock fracture [7] as well as

for “Woodquakes” [8] laboratory experiments. Perhaps

the most promising observation is that a rescaling involv-

ing region size and magnitude threshold, produces data

collapse onto a universal gamma distribution for many

worldwide regions [6]. This observation is of great im-

portance for the development of physical and statistical

models of earthquake dynamics. However, an analysis

on the ETAS model, have indicated that this distribution

is not universal [9, 10], but instead it is a bimodal mix-

ture distribution [11]. These modeling studies have cap-

tured much of the earthquake dynamics through the dis-

tribution of recurrence intervals but they have not consid-

ered the memory found in real earthquakes time series.
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Ribeiro et. al reported the analogies between the crack-

ing noise of ethanol-dampened charcoal and earthquakes

and found that the most fundamental seismic laws are

valid in their experiments [12].

Long-term memory has been reported in many natural

systems, such as the climate system [13–15], physiol-

ogy [16, 17], and in seismic activity [18, 19]. For exam-

ple, Livina et. al found that consecutive recurrence times

(for different magnitude threshold) depend on each other,

such that both short and long recurrence times tend to

cluster in time (i.e., short interevent after short interevent

and long interevent after long interevent) [18]. Later,

Lennartz et. al studied the Northern and Southern Cali-

fornia earthquake catalogs and found long-term memory

using the detrended fluctuation analysis (DFA). The goal

of the present study is to uncover the mechanisms that

underlie the memory observed in earthquake data.

The structure of our paper is as follows: in the next

Chapter, we describe and introduce DFA for the real seis-

mic catalogs. In Chapter III, CP analysis for the real seis-

mic catalogs are presented. In Chapter IV we discuss the

memory analysis in ETAS model. In Chapter V, results

of earthquake forecasting are shown. Finally, in Chap.

VI a short summary and outlook are provided.



II. DETRENDED FLUCTUATION ANALYSIS FOR

THE REAL SEISMIC CATALOGS

DFA [20] is often used to detect long-range correla-

tions of diverse time series including DNA sequences

[21], heart rate [16, 17, 22], and climate records [15].

When the time series is long range correlated, the fluc-

tuation function, F (n), increases according to a power-

law relation: F (n) ∼ nα where n is the window

size and α is the scaling exponent. Here, F (n) =
√

1
n

∑n

t=1 (Xt − Yt)
2
, where Xt =

∑t

i=1(xi − 〈x〉) is

the cumulative sum or the “profile” of a time series xi,

and Yt is the fitting polynomial. The exponent α is cal-

culated as the slope of a linear fit to the log-log graph of

F (n) vs n. An exponent α = 0.5 indicates the absence

of correlations (white noise), whereas α > 0.5 indicates

long range correlations in the time series where higher

values of α imply stronger correlations.

Here we study the long-term memory in the real seis-

mic catalogs of Italy and Israel [23, 24]. Fig. 1 shows

the results on examples of the return intervals (days) in

the Israeli (from 1981 to 2017) and Italian (from 1986 to

2017) seismic catalogs using different magnitude thresh-

olds, Mc. Note that the earthquake events with M ≥ 2.0
(3.0) for Israeli (Italian) are complete, meaning that all

earthquakes above this magnitude are included in the

catalog. The DFA results of the return intervals time

series indicate the existence of similar long-term mem-

ory in both the Israeli and Italian earthquake catalogs

(Fig. 1c,d). The estimated scaling exponent is α ∼ 0.75
and is independent of the magnitude Mc [see also, Fig. 4

(a) and (b)]; this value is consistent with previous study

of the southern and northern California catalogs [19].

To validate the existence of the long-correlations we

analyzed also the randomly reshuffled earthquake cata-

log records. The shuffling procedure destroys the cor-

relations between the return intervals but keeps the dis-

tribution of the return intervals unaffected. We calcu-

lated the averaged α± the standard deviation of 1000

such shuffled records (Fig. 4a,b) and found that the ex-

ponents of the real data are significantly larger than the

exponents of the shuffled data, validating the existence

of long-range correlations in the real data. The large in-

crease in the scaling exponent in both real and shuffled

data for large Mc is probably due to finite size effects

[25].

We also performed DFA on other seismic variables,

such as the number of earthquake events and the released

energy within a coarse time window dt. To analyze the

energy associated with the earthquakes, for each catalog

we define a time series [26], S(t) =
∑E(t)

l=1 10
3

2
Ml(t),

where E(t) denotes the number of events that occurred

between t and t + dt, and Ml(t) denotes the magnitude
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Figure 1. Interoccurrence time series between earthquake

events from the Israeli (a) and Italian (b) catalogs using mag-

nitude threshold Mc. DFA of the interoccurrence times from

the (c) Israeli and (d) Italian catalogs with different Mc values.

The solid lines are the best fit lines with slope α ≈ 0.75; the

R-square is larger than 0.99. For comparison we also include a

dashed-dotted line that indicates no memory (α = 0.5).

of the event. The time series is proportional to the total

energy released in a dt time period. To deal with more

homogeneous time series we switch to, s(t) = log(S(t))
for S(t) > 1 and zero for S(t) ≤ 1 and e(t) = log(E(t))
for E(t) > 1 and zero for E(t) ≤ 1. This (log) opera-

tion aims to suppress extremely high values of E(t) and

S(t) that can affect F (n) and its correlation exponent

α. Figs. 2 and 3 depict the DFA analysis for earthquake

magnitude time series, s(t), and for the number of events

time series, e(t), for the Israeli and Italian catalogs, for

different time windows dt. We find that for both coun-

tries and for all studied magnitudes the value of the scal-

ing exponent α is quite robust ∼ 0.75, i.e., the size of

dt does not affect the memory exponent. Thus, the re-

turn intervals, the number of events and released energy

are significantly correlated and have very similar scal-

ing exponent. This, apparent universal scaling exponent,

α, can potentially be used to validate the performance

of earthquake forecasting models and for narrowing the

range of model’s parameters; we use it below to optimize

the ETAS model parameters.

III. CONDITIONAL PROBABILITY ANALYSIS FOR

THE REAL SEISMIC CATALOGS

According to Omori’s law [27] earthquake events tend

to cluster in time due to the time-dependent relaxation
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Figure 2. DFA of (a, b and c) the released energy time series,

(d, e and f) the number of events time series, within a dt time

period for Israeli catalog. The solid lines are the best fitting

lines with slope α where R-square > 0.99. For comparison, the

dashed-dotted line with slope α = 0.5, indicating no memory,

is presented.
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Figure 3. DFA of (a, b and c) the released energy time series,

(d, e and f) the number of events time series, within a dt time

period for Italian catalog. The solid lines are the best fitting

lines with slope α where R-square > 0.99. For comparison, the

dashed-dotted line with slope α = 0.5, indicating no memory,

is presented.

of the crust through the release of triggered aftershocks.

The rate, n(t), of aftershocks above a certain magnitude

Mc decays with time t as n(t) ∼ t−p. This clustering

and power-law decay indicates that both short and long-

range correlations (memories) exist in seismic data. To

better characterize and understand all types of memory

in earthquake events, we now further develop and apply

a general CP method; see also [18].

We begin by sorting the full time series of recurrence

intervals in ascending order and divide it into four 25%
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Figure 4. DFA scaling exponent α as a function of the mag-

nitude threshold Mc for the (a) Israeli and (b) Italian catalogs.

CP memory coefficient ρ1 and ρ4 as a function of magnitude

threshold Mc for the (c-d) Israeli and (e-f) Italian catalogs. The

blue line (circles) in the bottom of each subplot depicts the

mean results of randomly shuffled records, averaged over 1000

realizations; the shaded area indicates the error bars (std).

quantiles; i.e., the first quantile, Q1, represents shortest

25% of waiting times, etc. We next consider the distribu-

tion of recurrence times, τ , that follow a prior recurrence

time τ0, P (τ |τ0), where τ0 belongs to either one of the

quantiles at the extremities, Q1 or Q4. Essentially, given

that a prior recurrence time was either short (in Q1) or

long (in Q4), we ask what is the distribution of the sub-

sequent recurrence times. In records without memory,

P (τ |τ0) should independent of τ0 and should be identi-

cal to P (τ). Figs. 5 (a) and (c) show the PDF of waiting

times [Q, Q1 and Q4] for the Israeli and Italian cata-

logs, respectively. The figure suggests, as in Refs. [18],

that P (τ |τ0) depends strongly on the previous recurrence

time τ0, such that short recurrence times are more likely

to be followed by short ones, and long recurrence times

follow long ones. Note that, the present study is different

from the analysis of Refs. [6, 18], as the distribution of

recurrence times in our analysis is not rescaled and nor-

malized by the mean event rate. This is since (i) short

interevent times are also considered; (ii) the difference

between Q1 and Q4 is much clearer compared with the

rescaled case (Fig. 2 for Refs. [6]).
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We next consider the Cumulative Distribution Func-

tion (CDF) of the recurrence times and quantify the dif-

ference between the overall CDF of the unconditional re-

currence times for the entire catalog, Q, and the CDF for

a given quantile by considering the area represented in

the gap between the curves (see Fig. 5 (b) and (d)). Here,

we denote the CDF of the recurrence time for Q, Q1 and

Q4 as CQ(τ), CQ1(τ) and CQ4(τ), respectively. To

this end, we define the level of memory for Q1 as, ρ1 =
∫

(CQ1(τ)−CQ(τ))dτ/
∫

dτ , and similarly, the level of

memory for Q4 as, ρ4 =
∫

(CQ4(τ)−CQ(τ))dτ/
∫

dτ .

Thus, 0 ≤ ρ1 ≤ 1 and −1 ≤ ρ4 ≤ 0, and higher

|ρ1| (or |ρ4|), implies stronger memory and ρ1 = 0
(or ρ4 = 0), implies no memory. Fig. 5 shows the

results for Israeli and Italian earthquake catalogs. We

find ρ1 = 0.248, ρ4 = −0.193 for Q1 and Q4 of the

Israeli catalog whereas ρ1 = 0.260, ρ4 = −0.153 for

Q1 and Q4 of the Italian catalog. Fig. 4 (c–f) suggest

that the values of ρ are robust and do not depend on Mc.

These results are consistent with the DFA results (Fig. 1

and Fig. 4 a,b). To study the dependence of the correla-

tions (α, ρ1, and ρ4) on the geographical location (tec-

tonic setting), we performed the DFA and CP analysis

for other earthquake catalogs, including, New Zealand

(NZ), Southern California Earthquake Center (SCEC),

Japan Unified hI-resolution relocated Catalog for Earth-

quakes (JUICE) and Preliminary Determination of Epi-

centers (PDE) global earthquake catalogs. The results

are presented in Figs. 6–9. We find that for all catalogs

and for all studied magnitudes the values of α, ρ1, and

ρ4 are quite robust. Detailed description of each catalog

is given in the Appendix.

IV. MEMORY ANALYSIS IN ETAS MODEL

A. ETAS model

We will now study the possible origin of the mem-

ory in real data by analyzing the ETAS model [28] that

can also be used to generate synthetic earthquake cata-

logs. ETAS is a stochastic point-process model in which

background events occur through a Poisson process in

time with rate µ, and all past events above a threshold

magnitude Mc may produce aftershocks. It has been

successfully used for operational earthquake forecast-

ing, e.g., the complex Amatrice-Norcia seismic sequence

[29]. The ETAS model is based on two well established

empirical basic laws: (i) the Gutenberg-Richter law [30],

logN = a − bm, where N is the number of events in

a given time period with magnitude ≥ m, and a, b are

constants; (ii) the Omori law, n(t) = K/(c+ t)p, where

n(t) is the number of aftershocks after time t, and K , c,

 Q4
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Figure 5. (a,c) Conditional PDF and (b,d) CDF of the recur-

rence times τ for the (a,b) Israeli catalog above the threshold

Mc = 2.0 and for the (c,d) Italian catalog above the threshold

Mc = 3.0.
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Figure 6. Results on the New Zealand (NZ) earthquake catalog.

(a) DFA memory scaling exponent α as a function of magnitude

threshold Mc. (b) and (c) CP memory coefficient ρ1 and ρ4 as

a function of magnitude threshold Mc. The blue lines in the

bottom of each subplot indicate the DFA scaling exponent α

and the CP memory measure ρ1, ρ4 for the control randomly

shuffled records, averaged over 1000 realizations; the shaded

region indicates the error bars (std).
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the ETAS model is,

λ(t|Ht) = µ+A
∑

i:ti<t

exp[αM (mi−Mz)]

(

1 +
t− ti
c

)−p

,

(1)

where ti are the times of the past events and mi are their

magnitudes; Ht = {(ti,mi); ti < t} is the history of

occurrence. λ(t|Ht) provides the probability to have an

earthquake above a threshold magnitude Mz at time t,
given the earthquake history. Here, A = K/cp is the

occurrence rate of earthquakes in the Omori law at zero

lag [11], and αM , is called the productivity parameter.

B. Effects of Background Rate µ

We next investigate how the background rate, µ, af-

fects the memory in the ETAS model. We have only

considered variations of µ without changing the branch-

ing ratio (see below) by setting A = 6.26, c = 0.007,

αM = 1.4 and p = 1.13. [These are the prior estimates

for the Italian catalog, and µ = 0.2 [31].] Fig. 10 shows

that the memory coefficients α (of the DFA) and ρ (of

the CP for Q1 and Q4) decay with µ, which suggests,

as expected, that µ significantly affects the memory such

that smaller µ, implies stronger memory. This is because

the variation in µ arises from the effect of the interfer-

ence of temporally overlapping aftershock subsequences

or “correlated inter-event times” [11]. As µ is increased,

fewer aftershocks occur and more overlapping aftershock

sequences take place, increasing the fraction of indepen-

dent inter-event times. Thus, the memory is destroyed.

We also notice (not shown) that decreasing µ affects the

distribution of recurrence times, changing it from a uni-

modal to a bimodal distribution [11].

C. Effects of Branching Ratio n′

To further understand the origin of memory in the

ETAS model, we also analyzed the effects on mem-

ory of the productivity parameter αM and the Omori’s

law power p. Here we chose µ = 0.2 [following the

prior estimates for the Italian catalog [31]] where the

other ETAS model parameters are the same as mentioned

above. Fig. 11 presents simulation results of the model,

for p ∈ [1.1, 2.0] and αM ∈ [0.1, 1.5]. We find that

the memory in ETAS model strongly depends on both p
and αM : smaller p and larger αM imply stronger mem-

ory. Note that memory patterns for DFA (α) and CP (ρ1,

ρ4) are highly consistent. This result can be explained

by the branching ratio n′, the average number of after-

shocks generated by each parent event. As the branching

ratio grows, correlated aftershocks increase and the back-

ground fraction decreases, resulting in stronger mem-

ory. The branching ratio n′ is obtained by integrating

A exp(αMm)(1 + t
c
)−p over both time and magnitude

from 0 to ∞, and is given by [32]: n′ = Ac
p−1

β
β−αM

,

where β = b ln(10), is obtained from the Gutenberg–

Richter law; here we chose b = 1.0. When writ-

ing Eq. (1) as λ(t|Ht) = µ + A
∑

i:t<ti

exp[αM (mi −

Mz)]
p−1
c

(

1 + t−ti
c

)−p
, then n′ = A(p−1)

c
β

β−αM

, is also

related with c and p. The condition (with p > 1 and

β > αM ) for physical stability is that n′ is finite and less

than 1 [33]. The parameter µ has no effect on aftershock

generation. We find that n′ is proportional to αM and

1/p, which agrees well with our results [see Fig. 11]. To

determine the sample uncertainty, we performed 100 in-

dependent simulation realizations for each combination

of parameter values. The error bars (standard deviations)

are shown in Fig. 12. We also present the DFA of

the occurrence times for a specific simulation realization

with ETAS parameters, µ = 0.2, A = 6.26, αM = 1.5,

p = 1.1 and c = 0.007, see Fig. 13. The model results

yield the same α as in real data. The CP analysis for

the same realization is shown in Fig. 14. Fig. 15 demon-

strates that the values of α, ρ1 and ρ4 are robust, do not

depend on Mc in the ETAS model and are similar to the

results based on the real catalogs.

However, Figs. 10 and 11 show that the ETAS model

can reproduce the same memory as in real catalogs, only

for a small range of parameter values, i.e., µ = 0.2,

αM = 1.5 and p = 1.1. These are close to, though

still statistically different from the previous parameters

found, which were µ = 0.2, A = 6.26, αM = 1.4,

p = 1.13 and c = 0.007 [31]. In estimating the ETAS
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for short recurrence times Q1, (c) CP coefficient ρ4 for long recurrence times Q4. The other ETAS parameters used are A = 6.26,

αM = 1.4, p = 1.13, c = 0.007, and Mc = 3.0 for the Italian catalog, following [31]. The error bars (std) are based on 100

independent simulation realizations.
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Figure 11. The mean values of the (a) DFA scaling exponent α, (b) CP coefficient ρ1 for short recurrence times Q1, and (c) CP

coefficient ρ4 for long recurrence times Q4 as a function of ETAS model parameters, p and αM . The other ETAS parameters used

are A = 6.26, µ = 0.2 and c = 0.007, for the Italian catalog, following [31].

model parameters for an earthquake catalog, the ETAS

parameters are commonly inverted from the data based

on the point-process maximum likelihood (ML) method,

by the Davidon-Fletcher-Powell algorithm [28] or by

Simulated Annealing [31]. Our results provide a narrow

range of values that are capable of reproducing the mem-

ory and provide an intuition for why only these values

are reasonable. Thus, our results and methods can be

used to improve the choice of the parameters of ETAS

model which can potentially help to improve the fore-

casting rate of earthquakes.

V. EARTHQUAKE FORECASTING

Clearly, earthquake forecasting is a very important

challenge due to the devastating possible outcome of

earthquakes. The forecasting accuracy depends on the

temporal extension T of the period we are focusing

on; e.g., for long-term forecasting, T is an interval of

decades and centuries, for intermediate-term forecasting,

T is of the order of months, and for short-term forecast-

ing T is within the interval of a few seconds to weeks

[34]. The above ranges can be related to the ratio be-

tween a typical time scale, such as the average inter-time

between large shocks 〈∆T 〉 and T . Below we show,

based on the real Italian earthquake catalog, that the

ETAS model (when considering the memory effects) can

significantly increase the short-term forecasting.

As a test case we forecast the CUMULATIVE NUM-

BER OF EVENTS, NC, after the Capitignano 5.7 main

shock that happened on 18 January 2017 [35] by using

the ETAS model. The cumulative number of earthquakes

at time t is given by integrating Eq. (1) from 0 to t [36].
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Figure 13. DFA of the interoccurrence times from the ETAS

model, with parameters A = 6.26, µ = 0.2, p = 1.1,

αM = 1.5 and c = 0.007. The solid line is the best fitting

line with slope α = 0.75, R-square > 0.99. For comparison,

the shuffled data with with slope α = 0.5, indicating no mem-

ory, are presented.

We define the forecasting rate as,

f(t) =
|NCf (t)−NCr(t)|

NCr(t)
, (2)

where NCf (t) is the forecasting cumulative number of

earthquakes and NCr(t) is the real cumulative number.

Here, 0 ≤ f(t) ≤ 1, and smaller f(t), implies higher

forecasting accuracy.

Our forecasting results are presented in Fig. 16(a) for

14 days (two weeks) after the Capitignano 5.7 main

shock. We can also see here that the ETAS model, when

considering the memory, improves the forecasting rate

[37]. Fig. 16(b) depicts the forecasting rate f(t) (Eq. (2))

within 14 days after the main shock and indicates that our

choice of ETAS model parameters improves the forecast-

ing by more than 20% (maximum). Thus, it is seen that

 Q4

C
D
F

t

(a) (b)

Figure 14. Conditional (a) PDF and (b) CDF of the recurrence

times τ for the ETAS model, with parameters A = 6.26, µ =

0.2, p = 1.1, αM = 1.5 and c = 0.007.
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Figure 15. (a) DFA memory scaling exponent α as a function

of magnitude threshold Mc; (b) CP memory coefficient ρ1 and

ρ4 as a function of magnitude threshold Mc for ETAS model,

with parameters A = 6.26, µ = 0.2, p = 1.1, αM = 1.5 and

c = 0.007.

the ETAS model parameters that are based on the corre-

lation results discussed above can significantly improve

the forecasting power of earthquakes. Here we chose

Mc = 2.9, since the earthquake events with M ≥ 2.9
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after 2017 for Italian catalog are complete. The choice

of the parameters in the forecasting algorithm are based

on the DFA (α), and CP (ρ1, ρ4) scaling parameters.

VI. SUMMARY

In summary, we have studied several seismic catalogs

(recurrence times, number of events and released energy)

and found long-range memory for different magnitude

thresholds Mc. We use the DFA and CP methods to

quantify the level of memory and long-term correlations.

We study the origin of the memory in real data by us-

ing synthetic catalogs generated by the ETAS model and

find that the origin of memory in the ETAS model is in-

fluenced by: (i) the background (noise) rate model’s pa-

rameter µ which affects the memory through interference

of temporally overlapping aftershock subsequences, i.e.,

smaller µ leads to stronger memory, and (ii) the expo-

nent relating the production of aftershocks as a function

of magnitude, αM , and the power p of the Omori’s law

can also affect memory through the branching ratio of

the ETAS model, i.e., smaller p and larger αM result

in stronger memory. The information on the memory

can be further incorporated into the algorithm to estimate

the maximum likelihood parameters of ETAS model, and

thus to improve the forecast rate. We believe that the ap-

proach developed here is unique and has the potential to

improve earthquake forecasting capability when fitting it

to earthquake clustering models, such as the ETAS model

with spatial components [38] and short-term earthquake

probability models [39].

Appendix: Data Description

The Italian earthquake catalog contains earthquake

events in Italy region. Most events are contained within

the region 35◦N –48 ◦N and 6◦E–20◦E. In present study,

we chose the time period from 1-1-1981 until 25-4-

2017. The magnitude threshold is 3.0, the number of

events is 8554. The source of data is https://www.

dropbox.com/home/OPERA_SharedFolder.

The Israeli earthquake catalog contains earthquake

events in Israeli region. Most events are contained within

the region 27◦N –35 ◦N and 31◦E–38◦E. In present

study, we chose the time period from 1-1-1986 until 3-

10-2017. The magnitude threshold is 2.0, the number of

events is 9789. The source of data is https://www.

dropbox.com/home/OPERA_SharedFolder.

The New Zealand (NZ) earthquake catalog contains

earthquake events in New Zealand region. Most events

are contained within the region 35◦S –50 ◦S and 160◦E–

185◦E. In present study, we chose the time period from

1-1-1988 until 31-10-2018. The magnitude threshold is

3.0, the number of events is 103234. The source of data

is https://quakesearch.geonet.org.nz.

The Southern California Earthquake Center (SCEC)

earthquake catalog contains earthquake events in the

Southern California region. Most events are contained

within the region 32◦N –37 ◦N and 238◦E–246◦E. In

the present study, we chose the time period from 1-1-

1988 until 31-10-2018. The magnitude threshold is 3.0,

the number of events is 9569. The source of data is

http://service.scedc.caltech.edu.

The Japan Unified hIgh-resolution relocated Catalog

for Earthquakes (JUICE) contains earthquake events in

Japan. Most events are contained within the region 30◦N

–46 ◦N and 128.6◦E–146◦E. The time period is from 1-

10-2000 until 31-12-2012. The magnitude threshold is

3.0 and the number of events is 13708. The data can

be found at http://www.hinet.bosai.go.jp/

topics/JUICE/?LANG=en.

The Preliminary Determination of Epicenters (PDE)

catalog contains the worldwide earthquake events. In the

present study, we chose the time period from 1-1-1983

until 31-7-2013. The magnitude threshold is 3.0, and

the number of events is 297996. The source of data is

https://www.usgs.gov.
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