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Abstract 

Momentum accommodation is a key factor governing the transport of particles in gases from 
electric mobility, Brownian diffusion to thermophoresis. This paper explores the relationship 
between momentum accommodation of nanoparticles in dilute gases and surface adsorption. We 
demonstrate that the momentum accommodation factor is fundamentally equal to the probability 
of surface adsorption.  Molecular dynamic simulations show that surface adsorption is the key 
mechanism behind the diffuse scattering model; and that upon gas-particle collision the 
immediate reflection dynamics and surface adsorption events are governed by the kinetic energy 
distribution of the rebounding gas molecules. This distribution determines the transition of the 
dominant mode of molecular scattering off a particle surface from diffuse to specular elastic 
reflection as the particle approaches the realm of molecular size. The kinetics and equilibrium of 
physisorption are examined to shed light on the effect of the lifetime of surface adsorbates on 
momentum transfer. A statistical treatment is proposed for the adsorption and hence the gas-
nanoparticle momentum accommodation coefficient. The validity of the theoretical treatment is 
examined by comparing its prediction against experimental mobility data of silver nanoparticles. 
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I. INTRODUCTION 

A basic understanding of momentum accommodation of particles in dilute gases is critical to 

studies of a wide range of transport and reaction processes in aerosols and large molecules in 

gases [1-8]. In reactive aerosol flows ranging from soot or other nanoparticle formation in flames 

[9-12], catalysis of freely suspended nanoparticles [13,14] to heterogeneous and homogeneous 

nucleation and growth [15-17], the adsorption and desorption of gas molecules and the 

subsequent gas-surface reactions are often tightly coupled with the particle transport process. A 

key historic account of the particle transport problem dates back to Millikan’s experiments on oil 

drops in an electric field [18] and Epstein’s gas-kinetic analysis of the drag force on particles 

with the rigid-body assumption [19]. The momentum accommodation factor ϕ  was borne out of 

the oil-drop data interpretation and analysis. Millikan [20,21] found that in the large Knudsen 

number regime his data could be explained satisfactorily by a mix of 90% diffuse scattering and 

10% specular scattering as the average outcome of gas-particle collisions, or equivalently by a 

linear combination of Epstein’s drag forces in the diffuse and specular elastic scattering limits, 

 F = ϕFd + 1−ϕ( ) Fs , (1) 

with φ = 0.9. For a particle with radius R at the drift velocity V, Epstein gave the following drag 

force expressions in the specular and diffuse scattering limits, respectively:  

 Fs = 8
3

2πmgkBT NR2V  , (2) 

and
 

 

 Fd = 8 + π
3

2πmgkBT NR2V . (3) 

where kB  is the Boltzmann constant, mg, N and T are the mass, number density and temperature 

of the gas, respectively. Suffice it to note that Millikan conducted his experiments in air at room 

temperature.  The smallest drop tested has a radius of 20 nm. There is little to no evidence that a 

constant φ and the 0.9 value is applicable to smaller particles and for other gases under other 

thermodynamic conditions.  

By contrasting the available molecular transport theory with Millikan’s oil drop transport, it 

can be readily concluded that momentum accommodation cannot be a constant [2,22]. The 
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Chapman-Enskog theory [23] treats molecular collisions to be specular elastic (φ = 0). It 

successfully explained many molecular transport properties including the binary diffusion 

coefficient of small molecules in dilute gases. Taking Millikan/Epstein’s result on oil drops and 

the Chapman-Enskog theory together, we find that a general treatment of the momentum 

accommodation requires a consideration of its variation with respect to the particle size to the 

realm of molecular sizes.  Analysis of the available electric mobility data of nanoparticles of four 

different particle materials in air at room temperature suggests that the momentum 

accommodation factor does decrease from a value of 0.9 to 0 as the particle size decreases; the 

transition takes places at a particle size of several nanometers and is quite abruptly with respect 

to the particle size [22,24].  Currently, a theoretical treatment for the aforementioned transition 

of gas-particle momentum accommodation is unavailable.  

Earlier, a molecular dynamics (MD) study [25] offered a qualitative, molecular-level 

explanation for the two collision models of Epstein. In that study, two distinctive outcomes of 

gas-particle collisions were revealed. They differ in the degree of gas-particle momentum 

accommodation. The first outcome is immediate reflection—a specular-like process. Although 

the reflections are almost never exactly elastic due to stochasticity of the collision process, the 

momentum transfer is found to be specular elastic on average. The second outcome is gas 

adsorption on the particle surface. Adsorption leads to diffuse scattering [24,25] because the 

ensuing surface random walk of the adsorbed molecule and its eventual desorption retains little 

to no memory about its incident momentum or even the initial point of contact. The desorbing 

gas molecule behaves as if it undergoes diffuse scattering.  

The purpose of the current work is to take the work just discussed a step further. We 

demonstrate the momentum accommodation factor and surface adsorption probability are 

fundamentally equivalent. For this purpose, we carry out MD simulations to demonstrate this 

equivalence. Specifically, the kinetic energy distribution of gas molecules during their rebound is 

studied as a function of temperature, gas density, particle size, and surface coverage. A statistical 

theory is then proposed for the probability of gas adsorption on particle surfaces employing the 

MD data in the treatment. Simulations are carried out for two systems: the collisions of 
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buckminsterfullerene (C60) with argon and of a silver nanoparticle with nitrogen (N2) and in a 

bath of N2. The C60-Ar system provides physical insights into the problem. Silver nanoparticle 

was chosen because mobility data are available in the size range in which the specular-to-diffuse 

scattering transition has been observed [24]. The MD results are also used to enable a 

comparison of the theoretical momentum accommodation factor against experimental data. To 

examine the implication of the finite lifetime of surface adsorbates in momentum transfer, our 

MD simulations also extend to a study of the kinetics of physisorption and desorption and their 

equilibrium.  

 

II. SIMULATION METHOD 

GROMACS and leap-frog integration scheme [26] were used for the Ar-C60 simulation in a 

microcanonical ensemble (60C+1Ar, E) in which a single Ar atom with a given incident velocity 

is sent toward the C60. The Ar-C atom pairwise interactions are computed using the Lennard-

Jones 12–6 potential function,   
  

 Φ(r) = 4ε [(σ/r)12 – (σ/r)6], (4) 

where r is the separation distance. The collision diameter σ and potential well-depth ε
 
for Ar and 

C atoms are estimated using the empirical mixing rule with σ = (σg + σp)/2 and ε = (εg εp)1/2, 

where σg = σAr = 3.4 Å, εg/kB =  εAr/kB = 120 K, σp = σC = 3.47 Å, εp/kB =  εC/kB = 33.3 K [27]. 

The total potential energy between Ar and C60 is calculated as the sum of the Ar-C pairwise 

potentials. An increase in ε effectively deepens the gas-particle potential well. Higher-order, 

three body interactions are neglected. The intramolecular potential of C60 was taken from [28]. 

The C60 molecule is initialized with the atom-velocity variance in accordance with the 

Boltzmann distribution at a prevailing temperature. After relaxation for 10 ps, collision is 

initiated by sending a single Ar atom 2 nm away from the particle surface towards the center of 

C60 at a given incident speed. Another 10 ps simulation follows to explore the collision features.  
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MD simulations were performed also for an Ag particle with nitrogen (N2) in both 

microcanonical and canonical ensembles. In the microcanonical ensemble, the simulations aimed 

to resolve the effect of N2 rotation on the absorption probability, as discussed in [29] A bulk of 

the simulations was conducted in the canonical ensemble, in which gas-particle physisorption 

kinetics and equilibrium, the distribution of the post-collision kinetic energy and its relationship 

to the surface adsorption probability were studied in detail. The N2-Ag atom pairwise 

interactions were computed using Eq. (4).  The self-collision potential parameters adopted here 

are: σN2 = 3.652 Å, εN2/kB = 98.4 K [30], and σAg = 2.54 Å, εAg/kB = 3995.5 K [30]. Silver 

particles were constructed from a face centered cubic (FCC) crystal by removing atoms that lie 

outside a certain radius. The numbers of the Ag atom are 28, 101, 242, 826 and 1976 for particle 

radius R = 0.5, 0.75, 1.0, 1.5, and 2.0 nm, respectively. The tight binding potential function [31] 

was employed for Ag-Ag intra-particle potential. The potential function has been verified against 

bulk material properties including the mass density and melting point. The equations are solved 

using Beeman’s leapfrog algorithm [32], with time step equal to 1 fs. In each simulation, a single 

Ag particle with a bare surface is initialized in a N2 bath of over 863 N2 molecules. The initial 

velocities of the N2 molecules and silver atoms were assigned with a pre-specified temperature. 

At 300 K and 1 atm, the physical dimension of the MD system is 32.83 nm3.  Since the largest 

particle size simulated is R = 2 nm, the computational domain is large enough to allow for the 

use of period boundary condition. The N2 rotational and vibrational effects are neglected. The 

system temperature is re-scaled periodically (every 50 ps) such that the system maintains the 

target temperature in spite of the minor temperature rises due to exothermic gas adsorption. 
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III. RESULTS 

A. The Ar-C60 system 

Two collision outcomes, immediate reflection and surface adsorption, are illustrated in Fig. 

1(a) using the Ar-C60 system as the example.  The distinctive outcomes are primarily related to 

the kinetic energy of the gas immediately following the collision (E').  For the gas to escape the 

attractive force field, E' must be larger than a certain threshold Eesc above which the force is 

insufficient to attract Ar back to the particle surface.  E' is a function of the distance between the 

gas molecule and particle because of the interplay between potential and kinetic energies. For 

convenience, we evaluate E' at a critical rebound radius r* which is defined as the distance of the 

reflected gas to the mass center of the particle above which the variation in the potential energy 

practically vanishes.  All rebound trajectories must still reach the critical radius, including those 

that would lead to gas adsorption eventually. The thus-defined E' is a stochastic quantity in part 

due to molecular vibration in the particle. For the Ar-C60 pair, the critical r* may be chosen to be 

10.5 Å for an incident gas velocity of 72.5 m/s, an initial C60 vibrational temperature of 50 K and 

the impact factor b = 0.  The choice for the r* value is not unique, but choosing a different r* 

merely shifts the mean E' value; it would not affect the subsequent analysis.  

A sample distribution of E' is evaluated from 400 MD trajectories and presented in Fig. 1(c). 

The immediate reflection and adsorption events are marked by the different grey intensities or 

colors in the histogram. Several observations can be made from Fig. 1(c).  First, the distribution 

may be modeled by the Gamma distribution, 
 

 P ′E ′E( ) = D−1 c2

Γ 1 c2( ) ′E
1 c2−1( ) exp − ′E

D
⎛
⎝⎜

⎞
⎠⎟

, (5) 

where Γ() is the Gamma function, c = σ ′E ′E  is the coefficient of variation of E', D = cσE' is the 

index of dispersion,  ′E  is the mean post-collision energy, and   is the variance. Clearly, ′E  

and σ ′E  are functions of the incident kinetic energy of the gas and particle temperature. The 

Gamma distribution was chosen for convenience because of its attractive mathematical 

properties and the fact that it is one of the most versatile two-parameter distributions. The 

interactions of the gas molecule with the particle are localized and involve mostly several surface 
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atoms at a time. For this reason,  ′E  and σ ′E  are weak functions of the impact parameter and 

particle size.   

The transition from immediate reflection to surface adsorption is rather abrupt with respect to 

E' as shown in Fig. 1(c). For this reason, the probability of adsorption Pa(E') can be modeled by 

a step function  
 

 Pa ′E( ) =
1   for ′E ≤ Eesc

0   for ′E > Eesc

⎧
⎨
⎪

⎩⎪
 (6) 

where the escape energy Eesc is defined as the kinetic energy of at which exactly ½ the gas 

molecules is attracted back to the particle surface undergoing adsorption. 

The probability of surface adsorption may then be defined as  
 

 
π = Pa ′E( ) P ′E ′E( )d ′E

0

∞

∫ . (7) 

Putting eqs (5) and (6) into eq (7), we find 
 

 
π = D−1 c2

Γ 1 c2( ) ′E
1 c2−1( ) exp − ′E

D
⎛
⎝⎜

⎞
⎠⎟

 
0

Eesc

∫ d ′E . (8) 

The parameters needed to evaluated the above equation are Eesc,  and σE', and they may be 

evaluated from the E' distribution.  Compared to the probability of surface adsorption directly 

calculated from the MD simulations, Eq. (8) produces the MD results rather well as it can be 

seen in Fig. 1(d). For the comparison, we varied the self-collision well depth of the gas εg to 

mimic the change of the well depth between the gas molecule and C60. Clearly, the adsorption 

probability increases with an increase in the gas-particle binding energy.   

For the system considered all adsorbed gas molecules would desorb at some point.  If the 

adsorbate lifetime is long enough, the overall process of adsorption-surface random walk-

desorption has the same effect as diffuse scattering as far as the gas-particle momentum transfer 

is concerned.  From this consideration, an adsorbing event is equivalent to diffuse scattering for 

which the momentum of the gas is fully accommodated; and a non-adsorbing event is specular-

elastic like for which the momentum accommodation is zero. It follows that the probability of 

surface adsorption and momentum accommodation coefficient are completely equivalent.   
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B. Kinetics and Equilibrium of Physisorption  

Kinetics and equilibrium of physisorption can play a role in the gas-particle momentum 

accommodation in several ways. The time evolution from a bare particle surface to a surface 

undergoing equilibrium adsorption and desorption could produce certain transient effects in 

momentum transfer if the kinetic process is slow relative to the time scale of particle transport. 

At adsorption/desorption equilibrium and depending on the surface coverage, the surface 

adsorbates can interact with incident gas, thus leading to secondary collision events that involve 

one or more adsorbates. Again depending on the surface coverage and particle size, the 

adsorbates cause the particle to be larger and hence, a potentially larger momentum 

accommodation coefficient than when the particle is bare.   

The kinetics and equilibrium of physisorption of N2 on Ag particle was simulated in the 

canonical ensemble for 1.6 ns. In the simulation, N2 rotation is neglected. The effect is shown to 

be unimportant for the current problem, as discussed in [29].  A bare Ag particle was introduced 

into an N2 bath gas at a prescribed pressure. The vibrational temperature of the particle was set to 

be equal to the gas temperature. Typical MD time profiles of the number of adsorbates per 

particle are presented in Fig. 2 for three particle sizes (top panel) and for R = 1 nm under several 

thermodynamic conditions. Over the range of conditions calculated, the time to reach adsorption 

and desorption equilibrium is rapid, <O(1 ns), indicating that the relaxation to equilibrium poses 

no influence on momentum accommodation in typical reactive flows.  

The net rate of adsorption can be described by the competition between adsorption or the 

influx to the particle surface and desorption or outflux from the particle surface: 
 

 
dn
dt

= I − n
τ

 , (9) 

where n is the number of N2 molecules adsorbed, I is the rate of adsorption on the particle, and 

τ  is the mean lifetime of the adsorbate. Integration of eq. (9) yields  
 

 n = Iτ 1− e−t τ( ). (10) 
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In principle, I may be evaluated from the wall collision rate, but since for a particle just a few 

nanometers in size its surface area can be difficult to define, I is treated here as a fitting 

parameter. Along with τ , the MD results are fitted to Eq. (10), as shown by the dashed lines of 

Fig. 2.  The mean lifetime of the adsorbate is plotted in Fig. 3 as a function of temperature for a 

particle with R = 1 nm.  It can be seen that τ  is of the order of 0.1 ns, and it decreases with an 

increase in temperature.  The velocity of random walk of the adsorbates on the particle surface 

may be estimated from the root mean squared velocity of N2 on a 2-D surface and the energy 

barrier for surface hopping.  If the hopping energy barrier is 1 kcal/mol, the τ  values of Fig. 2 

gives a minimum length of O(10 nm) for the surface random walk of the adsorbates, which is 

large compared to the particle size. Furthermore, the inset of Fig. 3 shows the distribution of τ at 

300 K. Around 25% of the adsorbed N2 have a lifetime < 33 ps, corresponding to a random-walk 

length of ~2 nm, which is still long compared to the particle size. The lifetime distribution 

follows an exponential decay function, which is consistent with a fully de-correlated statistical 

process: mathematically the exponential distribution is one of the only two distributions that are 

associated with memoryless events [33]. This and the surface random walk length argument 

indicate that the desorbed N2 should retain no memory of its incidence under the conditions 

tested.  Yet the adsorbate lifetime is short enough so that surface adsorption followed by 

desorption effectively governs the gas-particle momentum transfer mechanism with the net effect 

identical to that of the diffuse scattering, or one of the two reflection models assumed in the gas-

kinetic theory analyses of Epstein [19] and Li and Wang [2]. 

With the presence of adsorbates, gas-particle collisions can have two additional outcomes, 

both of which stem from gas collision with a surface adsorbate, instead of the particle material.  

The first outcome involves the exchange of the incident gas with an adsorbate, which is specular 

like on average.  The second outcome involves the rebound of the gas molecule upon its collision 

with the adsorbate. The surface adsorbate usually dampens the force of interaction between the 

rebounding gas molecule and particle surface atoms.  Therefore, both outcomes lead to a reduced 

probability of adsorption. On the other hand, an enlarged particle size due to adsorption increases 
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the collision cross section and an increased probability of adsorption.  The two effects 

compensate each other, and the net impact on momentum accommodation coefficient is expected 

to be small.  For the cases studied here, the maximum surface coverage was found to be around 

30%. The coverage is determined by dividing the number of adsorbed molecules by the number 

of particle surface atoms. Hence, the probability of striking into a surface adsorbate is 

significant, but not dominating compared to direct N2-Ag interactions.  

An even more interesting aspect of the problem is that since physisorption is also a necessary 

first step to gas-surface reactions, the analysis here offers a unique point of view about a unified 

treatment for nanoparticle transport and reaction in gases.  In nanoparticle catalysis, the surface 

coverage of reactant(s) plays a major role in the reaction rate. Evidence concerning the size 

dependency of catalytic activity is abundant (see, e.g., [34-36]). Empirically, a critical particle 

size has been observed below which the catalytic activity diminishes [34]. In nucleation and 

surface growth, the Kelvin effect provides a thermodynamic explanation for vapor condensation 

on available particle surface through a consideration of the critical particle radius and surface 

tension [37]. The understanding garnered here offers a coherent view involving momentum 

transfer and accommodation and the kinetic and equilibrium processes of gas-particle processes. 

 

 

C. Probability of Surface Adsorption 

As discussed in Section III.A and also shown in Fig S1 of [29], the outcome of a collision is 

determined by the competition between the post-collision kinetic energy of the gas and the gas-

particle attractive force during the initial gas rebound. For all other things being equal, a larger 

particle gives a higher surface adsorption probability because of the increased potential energy of 

interaction during gas rebound following the initial contact; and a higher gas incident velocity 

leads to a reduced surface adsorption probability, because of a correspondingly higher rebound 

kinetic energy. The immediate reflection events are those with the gas molecules having enough 

kinetic energy to overcome the attractive force, thus escaping the gas-particle potential field.  
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To illustrate the above point, post-collision kinetic energy distributions were evaluated at r* = 

R + 0.5 nm from simulations of a single Ag particle in a N2 bath after the system reached the 

absorption/desorption equilibrium. The results are plotted in Fig. 4 over a range of particle size at 

T = 300 K. In these plots, E' is normalized as μ = ′E σ ′E . Over 100 collision events were 

considered for each E' bin. Also included in the plots are the Gamma distribution fits to the MD 

data (Eq. 5).  In general, the histograms are “noisier” than that of the Ar-C60 system in which the 

variations of the initial condition are substantially smaller.  Here, the greater levels of “noises” 

are obviously due to the variations of the gas kinetic energy, the impact factor, and for smaller 

particles, their more irregular surfaces. The magnitude of energy fluctuation in the particle 

increases with an increase in its temperature. Nevertheless, the Gamma distribution still works 

well, as evidenced by the results shown in Fig. 4 and also the series of histograms for a fixed 

particle radius (R = 1 nm), but at several temperatures, as shown in Fig. 5. Also shown are the E' 

distributions for collision events that lead to immediate reflection (the shaded bars) and the 

distributions corresponding to adsorption (the open bars).  Qualitatively, the MD results 

discussed thus far are consistent with the statistical treatment proposed in Section III.A. 

The probability of surface adsorption can be treated by Eq. (8) with Eesc,  ′E  and σ ′E   as the 

input parameters. As discussed in section III.A, these parameters may be evaluated from MD 

simulations. Here we simplify Eq. (8) by nondimensionalizing it,  
 

 π = 1
Γ 1 c2( )

μ 1/c2−1( )

c1/c2 exp − μ c( )d
0

μesc

∫ μ , (11) 

 

where the dimensionless post-collision kinetic energy μ  is defined as  
 

 μ = ′E σ ′E = ′E c ′E ,  (12) 

and the dimensionless escape energy μesc is  
 

 μesc = Eesc c ′E ,  (13) 
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The notation Eesc  is used for a system in which the particles immersed in a bath gas so as to 

distinguish it from Eesc  used in the earlier case of single gas-particle pair interactions. 

Furthermore, we consider the energy conservation of a collision event, 
 
 ′E = Ei − Φ r∗( ) − ΔE ,  (14) 

where Φ r∗( )  and ΔE are the potential energy and kinetic energy exchange during collision, 

respectively. ΔE is taken to be positive if the gas loses energy to the particle, and negative if the 

gas gains energy. Averaging Ei over the Boltzmann energy distribution, we find 
 

  
′E = Ei − Φ r∗( ) − ΔE ,  (15) 

where ΔE  is the average of ΔE over the incident kinetic energy distribution. ΔE  increases with 

an increase in the difference of the gas incident kinetic energy and the mean vibrational energy 

of the particle Es
 [38,39]. As a first approximation, we let ΔE = λ Ei − Φ r∗( )⎡

⎣
⎤
⎦ − Es{ } , where λ 

(0 ≤ λ ≤ 1) may be interpreted as the energy accommodation factor.  If the gas and particle are 

equilibrated, we have  Ei = Es  and 
 

 ′E = Ei − 1− λ( )Φ r∗( ) . (16) 

The above treatment yields three dimensionless parameters (μesc, λ and c) for evaluating Eq. (11). 

To simplify the treatment further, we note that the escape energy μesc is determined largely by 

the attractive gas-particle force and is therefore related to the potential energy at r*.  To illustrate 

this point, we plot μesc in Fig. 6 as a function of the dimensionless potential energy Φ(r*)/cĒ', 

varying particle size, temperature, and gas density. Here, the potential function of Rudyak et al. 

[40] is adopted to evaluate Φ(r*), 
 

 Φ r( ) = Φ9 r( ) − Φ3 r( ) , (17) 

where 
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Φi r( ) = Ci r − R( )− i
− r + R( )− i⎡

⎣⎢
⎤
⎦⎥

− ai r − R( )− i+1
− r + R( )− i+1⎡

⎣⎢
⎤
⎦⎥{ } ,

a9 = 9 8r( )
a3 = 3 2r( ) ,

C9 = 4πεσ 12 45V( ).
C3 = 2πεσ 6 3V( ).

 

In the above equations, V = M ρs , where ρs and M  are the mass density and mean atomic mass 

of the particle material. The parameters σ and ε are gas-particle atom pairwise potential 

parameters identical to those employed in the current MD simulation (see, section II). 

 Over the particle size range considered, μesc is seen to vary linearly with Φ(r*)/cĒ': 
 

 μesc ≅ −1.45 × ÷1.1( )Φ r∗( ) c ′E .   (18) 

To examine how general the relationship is, we also plot in Fig. 6 the μesc values varying T (150 

and 450 K) and gas density N at 0.5N0 and 2N0, where N0 is the density at p = 1 atm.  Clearly, the 

influence of temperature and gas density is rather weak on the relationship, and as such the 

dashed lines bracket the uncertainty in the proportionality.  The uncertainty factor is found to be 

1.1 as given in Eq. (18).  With the above treatment, only two parameters are now needed to 

evaluate Eq. (11). They are the energy accommodation factor λ and the coefficient of variation c.   

The λ values were evaluated from MD simulations over ranges of particle size, temperature, 

and gas density.  They are listed in Table 1.  Over the ranges tested, λ is basically a constant and 

equal to 0.80 with a standard deviation of 0.02.  The coefficient of dispersion c also shows small 

variations. Its average value is 0.49 and the standard deviation is 0.04. The last three columns of 

Table 1 compare the adsorption probabilities calculated directly from MD and from Eq. (11) 

using the μesc, λ and c values individually evaluated by MD, and from the same equation but 

using μesc of Eq. (18) and the mean λ and c values listed on the bottom row of Table 1. The 

comparisons are also provided in Fig. 7.  Clearly, the simplifications discussed above reproduce 

the MD results well. Sensitivity of π to λ and c is negligible as shown in Fig. 8, but the sensitivity 
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to μesc can be appreciable. Yet in all cases, the variation for π is smaller than the scatters in 

available data, as will be discussed below.   

 

D. Quantitative Equivalence between Adsorption Probability and Momentum 

Accommodation Factor 

We demonstrate here the quantitative equivalence between the probability of surface 

adsorption π and the momentum accommodation coefficient φ by comparing the prediction of 

Eq. 11 with available mobility data of silver nanoparticles in N2 (or air). To start, we discuss first 

the 0.9 value commonly assumed for the momentum accommodation factor. We used the Ag 

particle in N2 as the example and calculated π or equivalently φ as a function of R at several 

temperatures all under 1 atm pressure.  The results are shown in Fig. 9.  As is seen, φ is not a 

constant. It increases with an increase in the particle size. At 300 K, the transition from 

immediate reflection with φ = 0 to absorbing collision (φ approaches unity) occurs at a few 

nanometers in particle radius. Importantly, we find φ approaches 0.8 as R grows to 10 nm, which 

is close to the emprical φ value of 0.9 from Millikan oil-drop data (R > 20 nm).  Of course, there 

is no theoretical reason why φ should be 0.9 under all conditions. Fig. 9 demonstrates that the 

limiting φ values is dependent on temperature.  At 150 K and for large particles, φ exceeds 0.9; 

and the specular-to-diffuse transition is sharper with respect to the particle size and occurs at a 

smaller size than at 300 K. Conversely, at 450 K, φ asymptotes to a value smaller than 0.9 and 

the transition is slower with respect to the particle size.  The above result illustrates the fact that 

the momentum accommodation factor should never be considered as a constant, and that the 0.9 

value widely adopted in aerosol and other studies is applicable only for room temperature and oil 

droplet in air, nitrogen or air-like bath gases. 

Among the available mobility data of silver nanoparticles, Kuga et al. [41] and Scheibel et al. 

[42] determined the particle size by transmission electron microscopy; de la Mora and coworkers 

[43] measured particle mass by aerodynamic impaction. The reported mobility data may be 

recast into the corresponding values of the reduced collision integral for each particle size [24]: 
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 Ω 1,1( )* = 3q
8 2πmrkBT NR2

1
Z

, (19) 

where q and Z are the particle charge and measured mobility, respectively, and mr is the reduced 

mass. The Ω(1,1)* values derived from the experimental mobility data are shown in Fig. 10 as a 

function of the particle radius by the open symbols.   

Equation (19) was derived from a gas-kinetic theory analysis of drag on particle for Kn >> 1 

[2,43],  given as  
 

   
Fd s = 8 3( ) 2πmrkBT NR2Ωd s

1,1( )*V  (20) 

where Fd and Fs are the drag forces for specular and diffuse scattering, respectively. We have 

demonstrated previously that Eqs. (2) and (3) are the special cases of Eq. (20) in the rigid body 

limit [2]. In Eq. (20), Ωd
1,1( )* and Ωs

1,1( )* are the respective reduced collision integrals given in [2].  

They have been parameterized [22] for the gas-particle potential function of Rudyak et al. [40],  
 

 Ωd
1,1( )* = 1+ π

8
+ 1.072 + 2.078

T *1 4 + 1.261
T *1 2

⎡
⎣⎢

⎤
⎦⎥

′σ + 3.285 − 8.872
T *1 4 + 5.225

T *1 2
⎡
⎣⎢

⎤
⎦⎥

′σ 2 , (21) 

and 

 Ωs
1,1( )* = 1+ 0.316 + 1.47

T *1 4 + 0.476
T *1 2

⎡
⎣⎢

⎤
⎦⎥

′σ + 1.53− 5.013
T *1 4 + 4.025

T *1 2
⎡
⎣⎢

⎤
⎦⎥

′σ 2 , (22) 

where σ' = σ/R, T* = kT/ε', and ε' = 2πεσ3/3V.  The dashed lines of Fig. 10 are calculated using the 

above equations with the potential parameter values identical to those used in the current MD 

simulation. As is seen, the experimentally-derived reduced collision integrals are bracketed by 

the theoretical collision integrals in the specular and diffuse limits. The comparison highlights 

the transition of the dominant mode of momentum transfer from specular scattering at a small 

particle size to diffuse scattering at larger sizes.  

de la Mora et al. [43] measured the particle mass for silver particles over a range of particle 

sizes. To convert mass to particle size, we utilized the MD geometries to determine the material 
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density through a measure of the average distance of particle mass center to the surface atoms. 

Method 1 assumes the particle radius to be the sum of the aforementioned distance and σ, while 

Method 2 use σAg/2 to account for the particle “surface volume”.  As shown in the inset of Fig. 

10, both methods predict a decrease of the mass density as the particle size decreases, as 

expected. Method 2 yields a mass density that converges to the value of bulk silver.  Because the 

particle mass in de la Mora et al. [43] was derived from aerodynamic impaction and hence the 

carrier gas adsorption on the particle surface is of importance to the measured particle mass, the 

density values from Method 1 are adopted.  We assume here that the particles are spherical. 

For comparison of our statistical treatment with experimental data, we define an effective 

reduced collision integral in the same manner as Eq. (1), i.e., Ω 1,1( )∗ = ϕΩs
1,1( )∗ + 1−ϕ( )Ωd

1,1( )∗  .  

Equating π and φ, and combining the above equation with Eq. (11), we obtain  
 

 
  

Ω 1,1( )* = 1
Γ 1 c2( ) Ωs

1,1( )* μ 1/c2−1( )

c1/c2 exp − μ
c

⎛
⎝⎜

⎞
⎠⎟

dμ
0

μesc

∫ + Ωd
1,1( )* μ 1/c2−1( )

c1/c 2 exp − μ
c

⎛
⎝⎜

⎞
⎠⎟

dμ
μesc

∞

∫
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
. (23) 

The above expression reproduces the experimental data well as shown in Fig. 10.  Also shown in 

the figures are predictions using the φ values by directly following >100 MD collisions for 

several particle radii (R = 0.5, 1, 1.5 and 2 nm).  Clearly, Eq. (23) reproduces the MD results also 

well. 

Fig. 11 presents a similar Ω 1,1( )* -versus-R analysis for Cu2O and polyethylene glycol (PEG) 

particles. The mobility data of Cu2O [40] and PEG [44,45] were converted to the reduced 

collision integrals in a similar manner. The potential parameters of N2-Cu2O and N2-PEG and the 

collisional integrals for the limiting scattering cases are taken from Ref. [24] again using the 

potential function of Rudyak et al. [40]. In principle, the data shown can be modeled with MD, 

but this is beyond the scope of the present work.  Here, Eq. (23) was used to fit the data.  It was 

found that λ = 0.8 also works well for both Cu2O and PEG particles. The coefficient of 

dispersion c is the only fitting parameter.  Its value was found to be 0.04 and 0.24 for Cu2O and 

PEG, respectively. As shown in Fig. 11, a smaller coefficient of dispersion produces a sharper 
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transition in the transition of momentum transfer with respect to R.  

The observation about the relationship between particle mobility and surface energy by Jung 

et al. [3] is consistent with the current result. A higher surface energy leads to a great tendency 

for a particle to adsorb its surrounding gas molecules, and hence a more efficient momentum 

accommodation. The relationship between particle surface energy and the E' distribution is 

another fruitful area for further investigation. 

 

IV. CONCLUSION 

We performed MD simulations to elucidate the critical role of surface adsorption in gas-

particle momentum accommodation. The diffuse scattering is in fact the result of surface 

adsorption of the gas.  The transition from specular scattering at small particle sizes to diffuse 

scattering toward large size is caused by an increased ability of the particle to accommodate the 

incident kinetic energy of the gas due to the more significant potential energy of gas-particle 

interactions. A statistical theory is proposed for the momentum accommodation coefficient based 

on these observations. The validity of the key assumptions in the statistical theory has been 

examined by the MD simulations over a range of particle size, temperature and pressure for 

silver particles in nitrogen (N2). The kinetic energy distribution of the gas molecules during their 

rebound is found to be critical to the two collision outcomes, namely specular scattering and 

diffuse scattering, and this distribution is dependent on gas temperature and density, particle size, 

and to an extent, surface coverage of the gas adsorbate. Within the framework of the statistical 

treatment proposed, these dependencies fundamentally impact the probability of surface 

adsorption and the gas-particle momentum accommodation and their relationships to the gas and 

particle properties.  

Three parameters are required to evaluate the momentum accommodation coefficient using 

the statistical treatment proposed.  These are, the coefficient of dispersion of the kinetic energy 

distribution of the rebounding gas c, the dimensionless escape energy μesc, and the energy 

accommodation coefficient λ, all of which may be determined from MD simulations.  Moreover, 
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MD results show that two of the three parameters (c and λ) may be treated as constants for a 

given gas-particle system, independent of the thermodynamic condition of the gas and the 

particle size. The third parameter, i.e., the escape energy μesc, may be determined from the gas-

particle potential function. The statistical treatment just discussed is shown to reproduce 

available mobility-versus-size data of silver particles in air or nitrogen. Also demonstrated is the 

application of the theory in fitting available experimental mobility data of Cu2O and 

polyethylene glycol over a range of particle sizes. 

Suffice it to note that adsorption is the first step in catalytic reaction, nucleation, and particle 

surface growth. If gas-particle momentum accommodation and physisorption are equivalent, a 

study of one phenomenon naturally lends to the understanding of the other, and as such the 

conclusion of the current study offers an opportunity for us to advance a generalized treatment 

for transport, nucleation and gas-surface physicochemical processes of nanoparticles in gases.   

 

Acknowledgement 
The work was support by the US Air Force Office of Scientific Research (AFOSR) under grant 
number FA9550-16-1-0486. 



 19

V. REFFERENCES 
[1] J. H. Kim, G. W. Mulholland, S. R. Kukuck, and D. Y. H. Pui, J. Res. Natl Inst. Stan. 110, 

31 (2005). 
[2] Z. Li and H. Wang, Phys. Rev. E 68, 061206 (2003). 
[3] H. Jung, K. Han, G. W. Mulholland, D. Y. H. Pui, and J. H. Kim, J. Aerosol Sci. 65, 42 

(2013). 
[4] C. J. Hogan Jr, B. T. Ruotolo, C. V. Robinson, and J. Fernández de la Mora, J. Phys. Chem. 

B 115, 3614 (2011). 
[5] C. Larriba, C. J. Hogan Jr, M. Attoui, R. Borrajo, J. F. Garcia, and J. Fernández de la Mora, 

Aerosol Sci. Technol. 45, 453 (2011). 
[6] C. Larriba and C. J. Hogan Jr, J. Phys. Chem. A 117, 3887 (2013). 
[7] C. Liu, Z. Li, and H. Wang, Phys. Rev. E 94, 023102 (2016). 
[8] C. Liu, R. Zhao, R. Xu, F. N. Egolfopoulos, and H. Wang, Proc. Combust. Inst. 36, 1523 

(2017). 
[9] H. Wang, Proc. Combust. Inst. 33, 41 (2011). 
[10] S. Nikraz, D. J. Phares, and H. Wang, J. Phys. Chem. C 116, 5342 (2012). 
[11] C. Saggese, A. Cuoci, A. Frassoldati, S. Ferrario, J. Camacho, H. Wang, and T. Faravelli, 

Combust. Flame 167, 184 (2016). 
[12] C. Liu, J. Camacho, and H. Wang, ChemPhysChem 19, 180 (2018). 
[13] T. Shimizu, A. D. Abid, G. Poskrebyshev, H. Wang, J. Nabity, J. Engel, J. Yu, D. 

Wickham, B. Van Devener, and S. L. Anderson, Combust. Flame 157, 421 (2010). 
[14] B. Van Devener, S. L. Anderson, T. Shimizu, H. Wang, J. Nabity, J. Engel, J. Yu, D. 

Wickham, and S. Williams, J. Phys. Chem. C 113, 20632 (2009). 
[15] P. Chakraborty and M. R. Zachariah, J. Phys. Chem. A 112, 966 (2008). 
[16] S. Takahama and L. M. Russell, J. Geophys. Res. Atmos. 116 (2011). 
[17] W. G. Courtney, J. Chem. Phys. 35, 2249 (1961). 
[18] R. A. Millikan, Philos. Mag. 34, 1 (1917). 
[19] P. S. Epstein, Phys. Rev. 23, 710 (1924). 
[20] R. A. Millikan, Phys. Rev. 21, 217 (1923). 
[21] R. A. Millikan, Phys. Rev. 22, 1 (1923). 
[22] Z. Li and H. Wang, Phys. Rev. E 68, 061207 (2003). 
[23] T. G. Cowling and S. Chapman, The mathematical theory of non-uniform gases (University 

Press, 1960). 
[24] H. Wang, Ann. N. Y. Acad. Sci. 1161, 484 (2009). 
[25] Z. Li and H. Wang, Phys. Rev. Lett. 95, 014502 (2005). 
[26] M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess, and E. Lindahl, 

SoftwareX 1, 19 (2015). 
[27] W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives, J. Am. Chem. Soc. 118, 11225 

(1996). 



 20

[28] L. A. Girifalco, J. Phys. Chem. 96, 858 (1992). 
[29] See Supplemental Material at [URL to be inserted] for a discussion on the rotational effect 

of gas molecules. 
[30] D. Timpel, K. Scheerschmidt, and S. H. Garofalini, J. Non-cryst. Solids 221, 187 (1997). 
[31] F. Cleri and V. Rosato, Phys. Rev. B 48, 22 (1993). 
[32] D. Beeman, J. Comput. Phys. 20, 130 (1976). 
[33] W. Feller, Introduction to Probability Theory and Its Applications (Wiley, New York, 

1972), 2 edn., Vol. 2. 
[34] O. M. Wilson, M. R. Knecht, J. C. Garcia-Martinez, and R. M. Crooks, J. Am. Chem. Soc. 

128, 4510 (2006). 
[35] J. Jiang, G. Oberdörster, A. Elder, R. Gelein, P. Mercer, and P. Biswas, Nanotoxicology 2, 

33 (2008). 
[36] K. Suttiponparnit, J. Jiang, M. Sahu, S. Suvachittanont, T. Charinpanitkul, and P. Biswas, 

Nanoscale. Res. Lett. 6, 27 (2011). 
[37] W. Thomson, Proc. R. Soc. Edinb. 7, 63 (1872). 
[38] H. Asada, Jpn. J. Appl. Phys. 19, 2055 (1980). 
[39] N. Miyoshi, K. Osuka, I. Kinefuchi, S. Takagi, and Y. Matsumoto, J. Phys. Chem. A 118, 

4611 (2014). 
[40] V. Y. Rudyak, S. L. Krasnolutskii, A. G. Nasibulin, and E. I. Kauppinen, in Doklady 

Physics (Springer, 2002), pp. 758. 
[41] Y. Kuga, K. Okauchi, D. Takeda, Y. Ohira, and K. Ando, J. Nanopart. Res. 3, 175 (2001). 
[42] H. G. Scheibel and J. Porstendo, J. Aerosol Sci. 14, 113 (1983). 
[43] J. Fernández de la Mora, L. De Juan, K. Liedtke, and A. Schmidt-Ott, J. Aerosol Sci. 34, 79 

(2003). 
[44] A. G. Nasibulin, E. I. Kauppinen, B. A. Thomson, and J. Fernández de la Mora, J. 

Nanopart. Res. 4, 449 (2002). 
[45] S. Ude and J. Fernández de la Mora, J. Aerosol Sci. 34, 1245 (2003). 



 21

TABLE I. Summary of MD results for a silver particle in a bath of nitrogen. 

R 
(nm) N/N0

a
 

T 
(K) μesc 

– Φ r∗( ) 

(K)
′E  

(K) λ c 

π 

MD Eq. (11)b Eq. (11)c 
0.5 1 300 1.33 159 471 0.86 0.40 0.13 0.06 0.12 

0.75 1 300 1.29 227 493 0.81 0.52 0.22 0.28 0.27 
1 1 300 1.49 273 506 0.80 0.53 0.30 0.32 0.38 

1.5 1 300 2.19 340 519 0.80 0.44 0.44 0.52 0.53 
2 1 300 2.17 378 527 0.80 0.48 0.63 0.60 0.60 
1 0.5 300 1.74 273 501 0.82 0.46 0.33 0.37 0.38 
1 2 300 1.49 273 494 0.84 0.49 0.31 0.32 0.38 
1 1 150 2.67 273 281 0.79 0.52 0.76 0.80 0.82 
1 1 250 1.76 273 429 0.80 0.51 0.49 0.50 0.50 
1 1 350 1.40 273 578 0.81 0.50 0.27 0.31 0.29 
1 1 450 1.10 273 718 0.84 0.52 0.20 0.21 0.17 

Average: μesc = −1.45Φ r∗( ) c ′E   0.80±0.02 0.49±0.04    

a N0 = 2.45×1019 cm–3. b Evaluated using μesc , λ , and c values shown for each case. c Evaluated using the 
μesc  expression and average λ, and c values shown in the bottom line of the current table.   
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FIG. 1. Collision dynamics of C60 with Ar. (a) Illustration of two collision scenarios. (b) The Ar-C60 
potential functions (r is measured from the C60 mass center) sampled from 10 MD trajectories at the C60 
vibration temperature of 50 K, incident Ar velocity of 72.5 m/s, and the impact factor b = 0. Inset: the 
differences of the potential energy between 50 K and 0 K for C60. (c) The ′E  distribution under the 
condition same as panel (b). Lighter (green) bars indicate surface adsorption; darker (blue) bars represent 
immediate reflections under the same condition as (b). Line: Gamma distribution fit. (d) The probability 
of surface adsorption over a range of well depth relative to that of Ar. The error bars illustrate the 
sensitivity of π to Eesc with the upper and lower bars representing 25% and 75% of the gas undergoing 
immediate reflections, respectively. The dashed line is drawn to guide the eyes. 
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FIG. 2. Time evolution of the number of N2 molecules absorbed on the Ag particle for several particle 
radii at T = 300 K and p = 1 atm (top panel) and at several combinations of temperature and gas number 
density for a fixed particle radius R = 1 nm. Solid lines: MD simulations; dash lines: fits to MD results 
using Eq. (10). Inset in the top panel: An MD snapshot of a silver particle (R = 1 nm) in 863 N2 molecules 
(T = 300 K, p = 1 atm).   
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FIG. 3. Mean lifetime of the adsorbate N2 on a Ag particle (R = 1 nm) as a function of temperature at 1 
atm pressure. Inset: histogram of the lifetime of adsorbed N2 under the same condition. The line is an 
exponential fit to the distribution. 
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FIG. 4. Nondimensionalized post-collision energy distributions evaluated at r* = R + 0.5 nm for four 
particle radii. Each distribution is obtained from evaluating >100 MD trajectories of collisions of N2 with 
an Ag particle with the system temperature of 300 K and pressure of 1 atm. Lines: fits to the Gamma 
distribution function.  The shaded histogram bars represent the immediate reflection events and the open 
bars represent surface adsorption. 
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FIG. 5. Nondimensionalized post-collision energy distributions evaluated at r* = R + 0.5 nm for N2 
collisions with an Ag particle with R = 1 nm evaluated at four system temperatures. Each distribution is 
obtained from evaluating >100 MD trajectories of collisions of N2 at the pressure at 1 atm. Lines: fits to 
the Gamma distribution function.  The shaded histogram bars represent the immediate reflection events 
and the open bars represent surface adsorption. 
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FIG. 6. Dimensionless escape energy  of N2 with silver particles determined from MD simulations of 
particle radii R = 0.5, 0.75, 1, 1.5, and 2 nm at 300 K and 1 atm is represented by the circle symbols as a 
function of dimensionless potential energy Φ r∗( ) c ′E . The solid line is the fit to  .  The triangle 
symbols denote the MD results at 150, 250, 350 and 450 K as shown.  The squares represent results at 
300 K but with different gas densities (pressures).  The dashed lines bracket the uncertainty in the 
coefficient. 
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FIG. 7. Comparison of the probabilities of surface adsorption by Eq. (11) and those directly evaluated 
with MD over the conditions listed in Table 1.   
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FIG. 8. Sensitivities of surface adsorption probability π  with respect to the energy accommodation factor 
λ (a), the coefficient of dispersion c (b), and the dimensionless escape energy μesc (c), all at 300 K for an 
Ag particle in an N2 bath.  



 30

 

 

 

 
FIG. 9. Probability of adsorption or equivalently, momentum accommodation coefficient of silver particle 
in N2 as a function of particle radius R at the indicated temperature and 1 atm pressure. The lines are the 
predictions of Eq. (11); the symbols are from MD simulations (see, Table 1).  
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FIG. 10. The reduced collision integral in the specular and diffuse collision limits (dashed lines) and the 
experimentally-derived collision integral values (diamonds: [41], squares: [42], open circles [43]). The 
solid line is the prediction (Eq. 23); solid symbols: from MD directly using Ω 1,1( )∗ = ϕΩs

1,1( )∗ + 1−ϕ( )Ωd
1,1( )∗. 

Inset: material density of Ag from MD using two methods (see text).  
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FIG. 11. The experimentally-derived (symbols), fitted using Eq. 23 (solid lines) and limiting reduced 
collision integral (a. Cu2O [40], b. PEG: diamonds [40]; circles: [45]) as a function of the particle radius 
R.  
 
 


