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The explosion of activity in finding interactions in complex systems is driven by availability of
copious observations of complex natural systems. However, such systems, e.g. the human brain, are
rarely completely observable. Interaction network inference must then contend with hidden variables
affecting the behavior of the observed parts of the system. We present a novel data-driven approach
for model inference with hidden variables. From configurations of observed variables, we identify
the observed-to-observed, hidden-to-observed, observed-to-hidden, and hidden-to-hidden interac-
tions, the configurations of hidden variables, and the number of hidden variables. We demonstrate
the performance of our method by simulating a kinetic Ising model, and show that our method out-
performs existing methods. Turning to real data, we infer the hidden nodes in a neuronal network in
the salamander retina and a stock market network. We show that predictive modeling with hidden
variables is significantly more accurate than that without hidden variables. Finally, an important
hidden variable problem is to find the number of clusters in a dataset. We apply our method to
classify MNIST handwritten digits. We find that there are about 60 clusters which are roughly
equally distributed amongst the digits.

I. INTRODUCTION

To go from observations to predictive understanding
is to go from stamp-collecting to science. Absent princi-
pled quantitative laws, biological and social systems can
be generally described as networks of interacting nodes,
with time-series data providing a window on the dynam-
ics of the underlying system. In the present era of big
data, the network reconstruction problem has attracted
considerable interest in research areas ranging from neu-
roscience [1–4] and genomics [5–7] to finance [8–11]. A
fundamental caveat is that such reconstructions always
rely on partial observation of these complex networks.
For example, it is hopeless to follow the simultaneous
spiking activity of every neuron in the brain, the tran-
scription of every gene in the genome, and every fluctu-
ating factor in a financial system.
The problem of accounting for the unobserved con-

stituents of any system is ill-posed without further in-
formation, simply because the number, the interactions,
and the configurations of these hidden nodes must all
be identified from the observed data and, a priori, one
can make the former two as large and as complicated,
respectively, as one pleases. To render the problem well-
defined, one can first choose a theoretical model structure
and then account for the unobserved nodes within this
structure. Given the importance of this problem, much
work has been devoted to it.
A simple approach is to maximize the likelihood of

observed configurations after marginalizing unobserved
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configurations [12]. Another effective approach is the Ex-
pectation Maximization (EM) algorithm for hidden vari-
ables that contains two alternating steps, inferring all
interactions of observed and hidden variables from con-
figurations of observed variables, and reconstructing the
configurations of hidden variables consistent with these
inferred interactions [13]. As one might expect, this al-
gorithm is computationally impractical for even moder-
ately large systems if the fraction of unobserved vari-
ables is significant. Furthermore, hidden variable config-
uration reconstruction accuracy is greatly dependent on
interaction inference accuracy, a factor that becomes sig-
nificant for limited datasets. Therefore, recent network
reconstruction methods have considered alternative ap-
proaches, such as mean field approximations [12, 14] and
replica methods [15, 16]. However, the mean field approx-
imations work only for weak and dense interactions [14],
while the replica methods allow the inference of strong
and sparse interactions but impose the stringent assump-
tion of independence between hidden variables [16]. In
addition to non-interacting hidden variables, random in-
teraction strengths and the thermodynamic limit are two
prerequisites for exact inference using the replica meth-
ods [15].

We recently formulated a new approach [17, 18] to net-
work reconstruction for observed variables that is signifi-
cantly more accurate inference-wise in the limit of sparse
sampling and orders of magnitude faster computation-
wise than previous methods. Based on this foundation,
we propose a new approach for network reconstruction in-
cluding hidden variables, by replacing the inference step
with our approach. This does not, by itself, address the
crucial question of the number of unobserved variables, so
we complete our proposal by formulating a simple quanti-
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tative test of model complexity to determine this number.
This paper is organized as follows: We briefly review

our inference method and outline its extension to hid-
den variables, paying especial attention to the determi-
nation of the number and interactions of hidden vari-
ables, amongst themselves and with observed variables.
We then validate our method with simulated data from
kinetic Ising models, showing the accurate determination
of the number and interactions of hidden variables for a
range of observed fractions of systems, going up to 40%
hidden variables. Turning to real data, we apply our
method to reconstruct a neural network from partially
observed neuronal activities, and a stock-market network
using data of opening and closing stock prices of 25 Amer-
ican companies. We validate our network reconstructions
by reproducing observed neuronal activities by pinning
just a few neuron configurations, and by exhibiting a
profitable stock trading strategy based on our inferred
network. Finally, we demonstrate that our approach is
suited to unsupervised data clustering as well, given that
cluster membership is a type of hidden variable. We es-
timate the number of hidden features that can explain
the MNIST hand-written digit dataset. Complete source
code with documentation is available [19].

II. METHOD

We explain our approach in the context of a concrete
example for ease of understanding. Consider a stochastic
dynamical system in which a vector of N binary (±1)
variables σ = (σ1, · · · , σN ) evolves stochastically accord-
ing to the conditional probability:

P (σi(t+ 1)|σ(t)) =
exp(σi(t+ 1)Hi(t))

exp(Hi(t)) + exp(−Hi(t))
, (1)

for i = 1, · · · , N . The local field Hi(t) =
∑

j Wijσj(t)

represents the summed influence of the present state σj(t)
on the future state σi(t + 1) through the weight Wij .
This kinetic Ising model has a model expectation, 〈σi(t+
1)〉Hi(t) = tanhHi(t). Generating σ(t) given Wij is easy,
but inferring Wij given σ(t) is not trivial. Although nu-
merous methods exist for the inverse problem [20–22],
we recently proposed a new approach [17, 18]. We give
here a simplified intuitive account. The first step is the
linear regression of Hi =

∑

j Wijσj between Hi and σj .

Suppose we know Hi(t) and σj(t). The coefficient Wij

can then be obtained as usual for the multivariate linear
regression:

Wij =
∑

k

〈δHiδσk〉[C
−1]kj , (2)

where Cjk ≡ 〈δσjδσk〉 is the covariance matrix for σ(t),

with 〈f〉 ≡ L−1
∑L

t=1 f(t) and δf ≡ f − 〈f〉. We de-
rived the linear regression in Eq. (2) using the concept of
free energy in statistical mechanics [17], so we call this

method Free Energy Minimization (FEM). The second
step is the update of the observable,

Hnew
i (t)←

σi(t+ 1)

〈σi(t+ 1)〉Hi(t)
Hi(t) = σi(t+ 1)

Hi(t)

tanhHi(t)
.

(3)
The multiplicative update of Hi(t) corrects the magni-
tude and sign of Hi(t) based on the ratio of observed
σi(t+1) and model expectation 〈σi(t+1)〉Hi(t), which is
always larger than unity in absolute magnitude.
A critical aspect of Eq. (3) is that the limit |Hi| ↓ 0

givesHnew
i (t)← σi(t+1), independent of Hi. In intuitive

terms, a vanishing local field Hi(t) = 0 can lead to σi(t+
1) = ±1 with equal probability. However, our algorithm
forces Hnew

i (t) = σi(t+1), trying to explain the value of
σi(t+1) as a causal result from non-vanishing local field
Hnew

i (t), instead of interpreting it as a random event.
Therefore, the update in Eq. (3) avoids being entirely
multiplicative for determining Wij .
These two steps, Hi(t) → Wij and Wij → Hi(t),

provide a powerful iterative method: (i) given Hi(t) =
∑

j Wijσj(t), update Hi(t)→ Hnew
i (t) using Eq. (3); (ii)

obtain W new
ij by replacing Hi(t) with Hnew

i (t) in Eq. (2);
and (iii) repeat these steps after updating W new

ij →Wij .
We continue this iteration until the discrepancy between
data and model expectation Di(W ) ≡

∑

t

[

σi(t + 1) −

〈σi(t + 1)〉Hi(t)

]2
is minimized. Notice that the param-

eter update in Eqs. (2-3) is completely independent of
the computation of Di. This crucial feature allows the
small sample size inference to avoid overfitting because
the minimization of Di is used only as a stopping crite-
rion. This is notably distinct from many maximum like-
lihood methods that minimize a cost function and stop
at a minimal cost configuration, even if this is a local
minimum.
Now we propose to apply the FEM method to infer in-

teractions from/to hidden variables. The system σ =
(σ1, · · · , σN ) = (σv,σh) = (σv

1 , · · · , σ
v
Nv

, σh
1 , · · · , σ

h
Nh

)
has Nv observed (visible) and Nh hidden variables (N =
Nv +Nh). As a variant of the EM algorithm, we first as-
sign random configurations for hidden variables. We then
infer interaction weights Wij for observed-to-observed,
hidden-to-observed, observed-to-hidden, and hidden-to-
hidden variables with the FEM method. Given Wij , we
can update the configurations of hidden variables as fol-
lows. First, we define the likelihood for σh

J(t) = ±1:

L±J,t = P (σh
J (t) = ±1|σ(t− 1))

N
∏

i=1

P (σi(t+1)|F±
J [σ(t)]),

(4)
where we use a flip operator F±

J [σ] = (σv
1 , · · · , σ

h
J =

±1, · · · , σh
Nh

). Then, we assign σh
J (t) = ±1 using the like-

lihood ratio L±J,t/(L
+
J,t + L

−
J,t). The iterations between

the parameter optimization (M step) and the variable
update (E step) provide accurate inference of the inter-
action weights, Wij , and the unknown configurations of
hidden variables. Note, in particular, that the hidden
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variables are updated one by one because the likelihood
of each hidden variable depends on the state of other
hidden variables.
We must now consider the problem of determining the

number of hidden variables. A simple measure would be
the same discrepancy between observation σv

i (t+ 1) and
model expectation 〈σv

i (t+ 1)〉Hi(t),

Dv ≡

Nv
∑

i=1

Di(W ) (5)

but this is clearly not taking the hidden variables into
account. On the other hand, extending the sum in Eq. (5)
to include hidden variables is useless because the E step
update is minimizing these additional terms explicitly.
Nevertheless, as we know nothing about hidden states,
the inference error of hidden states cannot be assumed
to be smaller than the inference error of visible states
because the hidden states are being inferred as a function
of the visible states in the E step. Thus, motivated by
standard error propagation, for an unbiased estimation
we assume that both inference errors have the same scale,
and define the scaled discrepancy of the entire system
based on the observed part as

D ≡ Dv

(

1 +
Nh

Nv

)

. (6)

The scaled discrepancy can be interpreted as a balance
the goodness of fit for observed variables, Dv, and hidden
variable model complexity, (1 + Nh/Nv). The empirical
discrepancy is similar in spirit to the Akaike information
criterion [23] and Bayesian information criterion [24] with
log-likelihood of observation (− logLv ∼ Dv) and model
degrees of freedom (Nv +Nh). Crucially, note here that
the information criteria are formulated for complexity
in terms of the number of model parameters. Hidden
variables, however, add two types of complexity, both an
increase in the number of couplings and an increase in the
number of states underlying every visible state, which are
themselves being determined by the E step.
Finally, our method can be summarized as the follow-

ing set of steps:
For a range of numbers of hidden variables, in parallel
and independently,
(i) Assign configurations of hidden variables at random;
(ii) Infer interaction weights Wij including observed-to-
observed, hidden-to-observed, observed-to-hidden, and
hidden-to-hidden from the configurations of observed and
hidden variables using FEM;
(iii) Flip the states σh

J (t) of hidden variables using the
likelihood ratio L±J,t/(L

+
J,t + L

−
J,t) (see Eq. (4)).

(iv) Repeat steps (ii) and (iii) until the discrepancy of
observed variables is minimized. The final values of Wij

and hidden states are the inferred coupling weights and
configurations of hidden spins, respectively.
Pick the number of hidden variables that minimizes
Eq. (6).

III. RESULTS

A. Kinetic Ising model

To demonstrate the performance of our method, we
synthesized binary time series of N = 100 spins by us-
ing the Sherington-Kirkpatrick model [25]. The update
of spin σ follows Eq. (1) with preset coupling strengths
Wij (Fig. 1A). Our goal is to reconstruct all of Wij from
observations of a fraction of σ(t). Suppose that we only
observe the time series of 60 spins with 40 spins hid-
den (Fig. 1B). When we reconstructed the interactions
Wij between observed node i and observed node j using
FEM, the reconstructed Wij , based on the partial obser-
vations, showed a large error (Fig. 1C). We introduced
40 hidden variables, and applied the EM algorithm out-
lined in the previous section. The reconstructed Wij was
close to the true Wij (Fig. 1D). How well are the hid-
den variable configurations recovered? For the case of 40
hidden variables, the true configurations of the hidden
variables were recovered with an accuracy of 96.6%. The
reconstruction accuracy increased with fewer spins hid-
den (Fig. 2). For instance, when 90 spins were observed
with 10 spins hidden, the accuracy was 97.6%.

The number of hidden variables is usually unknown in
real-world problems. When we reconstructed Wij with
different numbers of hidden variables, the mean square
errors of observed-to-observed interaction strengths,
MSE= N−2

v

∑

i,j∈obs(Wij−W
true
ij )2, were minimal at the

right number of hidden variables (Fig. 3, upper panel).
The MSE is also inaccessible in real-world problems, but
the minimum of D (Eq. (6)) captured the correct value
of Nh (Fig. 3, lower panel, red lines).

To reconstruct Wij from observed and hidden vari-
ables, we used FEM. For the M step, mean field meth-
ods such as näıve, Thouless-Anderson-Palmer, and exact
mean field methods (nMF, TAP, and eMF), and maxi-
mum likelihood estimation (MLE) can also be used. A
brief review of these methods can be found in Ref. [17].
Given partial observations, mean field approaches were
not successful in reconstructing Wij(Fig. 4). For a small
percentage of hidden variables (90 observable and 10 hid-
den), FEM and MLE showed a similar performance in
the reconstruction of observed-to-observed and hidden-
to-observed interactions. However, FEM outperformed
MLE in reconstructing observed-to-hidden and hidden-
to-hidden interactions (Fig. 4A-D). For a large percent-
age of hidden variables (60 observable and 40 hidden
variables), FEM showed significantly better performance
even for observed-to-observed and hidden-to-observed in-
teractions (Fig. 4E-H). We quantified the reconstruction
performance by measuring MSE between Wij and W true

ij .
FEM showed more accurate reconstruction of Wij with
lower MSE in every case. More importantly, in addi-
tion to better performance, FEM took approximately 100
times less computation time than MLE due to its multi-
plicative update (see [17–19] for details).
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FIG. 1. (Color online) Network reconstruction from partial observations. From the actual interaction weights (A), typical
time series of 100 variables are generated according to the kinetic Ising model (B). Using the configuration of 60 observable
variables, the interaction weights are recovered in two cases: ignoring (C) and including (D) the existence of hidden variables.
Error represents (W true

ij −Wij) with the same scale of the color bar as in (A). Data length L = 40, 000 is used.
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FIG. 2. Accuracy of network reconstruction and fraction
of hidden variables. The inference accuracy is plotted as a
function of the fraction of visible variables, Nv/N . Results
for system size N = 100 and data lengths L = 40, 000 (black
circles) or L = 80, 000 (red triangles) are shown.

B. Neuronal network

The analysis of real data brings out issues far more
clearly than simulated validations. Therefore, we ap-
plied our method to infer hidden nodes and their con-
tributions in a real neuronal network. We used the
time series data of the 80 most active neurons from
published multi-channel recordings of neuronal firing in

the salamander retina [26]. Considering the existence
of unobserved hidden variables, we modeled the evo-
lution of neuronal activities by defining a local field,
Hi(t) = Hext

i +
∑

j Wijσj(t), that determines the future

activity of σi(t + 1). The external local field Hext
i rep-

resents the bias of the ith neuron that sets its thresh-
old [17]. For various numbers of hidden variables Nh,
we computed Hext

i and Wij . The activities of observed
neurons were explained better and Dv kept decreasing
with a larger Nh of hidden variables (Fig. 5B). However,
once we considered the overall discrepancyD, an optimal
number of hidden variables was N∗

h = 4. Thus, the inclu-
sion of four hidden variables best explained the activities
of observed neurons, taking model complexity into ac-
count. Given these four hidden variables, the connection
weights Wij were reconstructed as shown in Fig. 5C.

Since W true
ij is unknown for the neuronal network, we

validated our reconstruction in two different ways. First,
we selected some neurons as input neurons, and then
based on the activities of these input neurons, we gen-
erated the activities of remaining neurons by using the
reconstructed Wij . Here we selected the input neurons
based on having the strongest influence to other neurons
by gauging

∑

i |Wij |. Given varying numbers of input
neurons, we could successfully reconstruct the actual ac-
tivities of the remaining neurons (Fig. 5D). As the num-
ber of input neurons increased, the reconstruction ac-
curacy increased (Fig. 5E). Moreover, the inference ac-
curacy for including hidden variables was significantly
better than that for ignoring hidden variables (Fig. 5E).
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Second, given σ(t), we predicted σ(t+ 1), and then cal-
culated the covariance Cij = 〈δσi(t + 1)δσj(t)〉. The re-
constructed covariance was plotted to compare with the
actual covariance from the observation. The prediction
performance was significantly improved when the 4 hid-
den variables were included (Fig. 5F and G).

C. Stock network

Our method has a wide range of practical applica-
tions. As a demonstration, we reconstruct a stock mar-
ket network with possible hidden nodes. We used stock
price time series of 25 major companies in the S&P
500 index in five different sectors: technology (AAPL,
GOOGL, MSFT, INTC, IBM), finance (BRK.B, JPM,
WFC, BAC, C), health care (JNJ, PFE, UNH, MRK,
AMGN), consumer discretionary (AMZN, WMT, HD,
DIS, EBAY), and energy and industrial (XOM, CVX,
GE, BA, MMM) [27]. We examined the price difference
between daily opening and closing stock prices. Their
fluctuations from January 2005 to July 2018 are shown
in (Fig. 6A). First, instead of considering the continu-
ous price fluctuations, we defined a discretized measure
of price changes. If the daily price increased at time t for
the ith company (opening price < closing price), we de-
fined σi(t) = +1. However, if the price decreased (open-
ing price > closing price), then σi(t) = −1. Finally, if
the price was unchanged (opening price = closing price),
we defined σi(t) = σi(t− 1).
We applied our method to this discretized data, and

inferred external factors Hext
i and interacting factors

∑

j Wijσj(t) that stochastically determine σi(t + 1).

Since FEM works well even for small sample sizes [17], we
divided the data into two-year periods to probe possible
slower temporal changes in the interactions Wij between
stock prices. In particular, we show results from more
recent data for 2014 to 2016 (Fig. 6B-D) and 2016 to
2018 (Fig. 6E-F). The discrepancy Dv between observed
σv
i (t+1) and model expectation 〈σv

i (t+1)〉model kept de-
creasing as expected when more hidden nodes were intro-
duced (Fig. 6B and E). However, the entire discrepancy
D, considering the model complexity with hidden vari-
ables, showed a minimum atN∗

h ≈ 4-5 hidden nodes. The
inferred stock market network including interactions be-
tween observed and hidden nodes is visualized in Fig. 6C
and F. When we generated time series of stock prices
using the reconstructed network, we found that the co-
variance of the generated sequences was consistent with
the covariance of original sequences (Fig. 6D and G).
An accurate predictive network reconstruction should

enable profitable trades. In particular, does our discrete
reduction of the price data still contain enough informa-
tion to be useful? First, we reconstructed the interactions
between companies including the appropriate number of
hidden nodes by using stock price data for the most re-
cent T days: σ

v(t − T + 1),σv(t − T + 2), · · · ,σv(t).
Then, we predicted the price change direction σ

v(t + 1)

for the next day. Our strategy was to buy the stock i that
had the highest probability of increasing with a maxi-
mum Hi(t), and to sell the stock j that had the highest
probability of decreasing with a minimum Hj(t) at the
beginning of the day. This trading strategy is expected
to have a maximum profit bounded by (close price(i) −
open price(i)) + (open price(j) − close price(j)). The
trading simulation from 2008 to 2018 with a moving time
window T = 500 days obtained 350% cumulative profit
(Fig. 6H). This profit was significantly higher than the
profit of 50% using random trades, which is due to the
secular rise of the entire stock index. Furthermore, the
reconstructed network including hidden nodes showed a
larger profit than the 250% profit from the reconstructed
network ignoring the hidden nodes. Next, we refined the
trading strategy by buying/selling the stock that has the
highest probability of increasing/decreasing but only if
its price has decreased/increased on the previous day. In
particular, this may result in only buying or only sell-
ing on any specific day. This new strategy produced the
same cumulative profit in total, but it doubled the profit
per transaction (Fig. 6I and J). Finally, we confirmed
that the optimal time window for the highest profit was
about T = 500 days (Fig. 6J).

D. Classification of handwritten digits

Another potential application of our method, inter-
preting hidden states as labels, is for unsupervised clas-
sification. We demonstrate this idea with the MNIST
data of handwritten digits [28]. The data has 60,000 digit
samples of 28×28 pixel gray-scale (between 0 and 255)
images obtained from 500 different individuals. Some of
sample digits are shown in Fig. 7A. Our goal is to classify
the 60,000 images into distinct clusters where each clus-
ter represents different digits as well as different writing
styles without using true labels for unsupervised clas-
sification. We formulated the classification problem as
follows. Different digits and writing style combinations
are encoded in hidden variable states σh. Then, one real-
ization of σh(t) generates a digit image σv(t), where t is
now being used to index the MNIST images. The feature
has Nh degrees of freedom with σh

J (t), J = 1, · · · , Nh. In
particular, for simplicity, we adopted one-hot encoding
by assigning only one nonzero element σh

J (t) = 1 among
Nh elements of σh(t). Then, the generated image has
binary values of σv

i (t) = 1 (gray > 1) or σv
i (t) = −1

(otherwise) for the ith pixel, which is determined by the
conditional probability,

P (σv
i (t) = ±1|σ

h(t)) =
exp(±Hi(t))

exp(Hi(t)) + exp(−Hi(t))
(7)

where Hi(t) ≡
∑

J WiJσ
h
J (t) represents a local field act-

ing on the ith pixel. Here, to reduce the computational
cost, we ignored observed pixels i if more than 95% sam-
ples had the same value. The threshold 95% showed sim-
ilar results as a more restrictive threshold of 99%. Thus,
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(red triangles) are shown as a functions of the number of hidden variables (B). A predicted neuronal network is visualized in
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of hidden variables, the activities of 80 neurons are reconstructed (D). Inference accuracy of remaining neuronal activities are
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for this setup, our reconstruction method considers only
hidden-to-observed interactions. Note that unlike the
general setup in Eq. (1), this setup assumes no observed-
to-observed, observed-to-hidden, and hidden-to-hidden
interactions. Furthermore, here the label t is an image
index, not time as in the previous examples. The hid-
den state σh(t) with label t affects the visible state σv

i (t)
with the same label t. Briefly summarizing the inference
procedure, we (i) assign a random binary vector σ

h(t),
in which only one element has nonzero value (σh

J (t) = 1);
(ii) apply FEM to reconstruct the interaction strength
WiJ from hidden label J to observed pixel i; (iii) update
the hidden states by assigning σh

J (t) = 1 for the label J
that makes the likelihood of the observed pixels of sample
t the highest and σh

J (t) = 0 for the other Nh−1 elements;
(iv) repeat steps (ii) and (iii) until the discrepancy Dv

between σv
i (t) and 〈σv

i (t)〉Hi(t) = tanhHi(t) saturates.

Then, the one-hot hidden states σ
h represent distinct

classes of MNIST images σv.
We examined various possible numbers (10 to 100) of

labels by varying the number Nh of hidden variables. As
the hidden degrees of freedom Nh increased, the model
generated images of σv

i (t) closer to the originals. In other
words, the discrepancy Dv kept decreasing as Nh in-
creased (Fig. 7B). However, once the model complexity
was penalized with the overuse of the hidden degrees of
freedom, an optimal degrees of freedom N∗

h was deter-
mined with a minimum overall discrepancy D. The esti-
mate N∗

h ≈ 60 means that the 60,000 MNIST images can
be optimally clustered into about 60 classes of digits and
writing styles. The mean images 1/Nc

∑

t∈c σ
v
i (t) corre-

sponding to the 60 labels are shown in Fig. 7C. Here Nc

is the number of samples corresponding to label c. It is
of particular interest that each digit was divided into ap-
proximately six classes, suggesting that, in the MNIST
dataset, about six different writing styles exist for ev-
ery digit. To confirm the robustness of this result, we
repeated the analysis with only 20,000 of the MNIST im-
ages, and obtained a similar conclusion (dashed lines in
Fig. 7B).

IV. SUMMARY

Given partial observations of systems, complete net-
work reconstruction is a longstanding problem in infer-
ence. In this paper, we propose a new iterative approach
based on free energy minimization (FEM) and expecta-
tion maximization. We demonstrated on simulated sys-
tems that our method can accurately estimate the ac-
tual number of hidden variables from partial observa-
tions. Furthermore, network reconstruction was success-
ful in recovering not only observed-to-observed interac-
tions but also those involving hidden variables (hidden-
to-observed, observed-to-hidden, and hidden-to-hidden).
Hidden-to-hidden interactions are challenging to recon-
struct with mean-field methods [12, 14]. We applied this
method to reconstruct a real neuronal network and a

stock market network with the inclusion of possible hid-
den variables. The reconstructed networks were then val-
idated by reproducing real neuronal activities and by a
profitable trade simulation, respectively. Finally, as an-
other potential application to unsupervised pattern clas-
sification, we found hidden labels in hand-written digit
data.
FEM is more effective for network reconstruction than

maximum likelihood estimation (MLE), because it sepa-
rates the cost function evaluation from the independent
multiplicative parameter update. This has two major
benefits that are crucial for the application to hidden
variable problems to succeed. The first is that the cost
function can be used as a stopping criterion to avoid over-
fitting for small sample sizes, important when considering
large numbers of possible hidden variables. The second is
that the multiplicative update is computationally much
more efficient (approximately 100 times faster than usual
MLE-based network reconstruction methods), also criti-
cal for determining the configurations of hidden variables.
The computational cost of the M step is proportional to
Nh + Nv while the computational cost of the E step is
proportional to Nh × L. Therefore, the relationship be-
tween the computational time of the two steps depends
on the values of Nv, Hh, and L. For the kinetic Ising
model (Fig. 1), with Nv = 60, Nh = 40, and L = 40, 000,
the computational cost of the M step is less than that
of E step. However, for the stock data (Fig. 6), with
Nv = 25, Nh ∼ 4, and L = 500, the computational cost
of the M step is larger. Since the algorithm reconstructs
interactions strengths Wij from the jth node to the ith
node independently for the ith node, the network recon-
struction can be easily parallelized, and therefore scaled
to large system sizes.
In this paper, we focused on Markovian dynamics with

constant linear interactions for clear demonstration. We
focused only on inference, without addressing prediction
issues, though we did provide evidence in the stock mar-
ket case that there is predictive value in our inferred
model. However, little modifications can cover more gen-
eral problems. For example, FEM is applicable for infer-
ring polynomial non-linear interactions as well as linear
ones [17]. In addition, to probe the time dependence
of the interaction strengths, one may divide data into
groups of data with different time windows. Then one can
examine the temporal modulation of the interactions by
inferring the interactions for different time periods. Fi-
nally, if one rearranges data, e.g., σ̃(t) = (σ(t),σ(t−1)),
one can apply FEM to infer the influence of present and
one-step past states. We expect, therefore, that FEM
can be used for many applications of network inference.
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