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We study quantum dynamics in the framework of repeated interactions between a system and a
stream of identical probes. We present a coarse-grained master equation that captures the system’s
dynamics in the natural regime where interactions with different probes do not overlap, but is
otherwise valid for arbitrary values of the interaction strength and mean interaction time. We then
apply it to some specific examples. For probes prepared in Gibbs states, such channels have been
used to describe thermalisation: while this is the case for many choices of parameters, for others
one finds out-of-equilibrium states including inverted Gibbs and maximally mixed states. Gapless
probes can be interpreted as performing an indirect measurement, and we study the energy transfer
associated with this measurement.

I. INTRODUCTION

In the study of open quantum systems, various schemes
were conceived and employed to describe dynamics of
a physical system under the influence of uncontrollable
degrees of freedom from its environment. For instance,
this influence may be broken down into individual events,
where the system is assumed to interact with an envi-
ronmental probe (or ancilla). Such repeated interaction
models have been studied previously in the context of
heat dissipation and thermalization [1–10] as well as ap-
plications in thermal machines [6, 11–15]. However, an
effective master equation description has been proposed
only in the limit of short (and strong) system-probe in-
teractions [2–4, 6, 8–11].

Here we formulate a scheme that extends this frame-
work to arbitrary interaction strengths and times
(Sec. II), resulting in features missed in previous short-
time treatments. After some general observations
(Sec. III), we illustrate this by first considering repeated
interactions with thermal probes in Sec. IV. We show how
systems can achieve tunable out-of-equilibrium steady
states, including population inversion, depending on the
interaction time. In fact, the system will almost never
equilibrate to the temperature of the environment unless
the interactions are strictly energy-preserving. Specifi-
cally, we shall see in Sec. IV D that a composite system,
regardless of its internal coupling, can never thermalize
as a whole and would at best equilibrate locally should
the probes interact locally with one subsystem. As a
second example, we look at repeated interactions in the
form of an indirect measurement process in Sec. V. We
shall see that only gapless probes can realize ideal von
Neumann measurements, whereas realistic probe inter-
actions result in a more complex system evolution. Our
model also sheds light on the origin of the apparent heat-
ing effect, which is simply the external work associated to
switching on and off the interaction between the system
and the probes.
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FIG. 1. Sketch of a random repeated interaction process. A
system state ρ interacts sequentially at an average rate γ with
individual probes in state η. Each interaction is mediated by
a Hamiltonian Ĥint switched on for a duration τ .

II. REPEATED INTERACTION MODEL

We consider a system with Hamiltonian Ĥs that in-
teracts with a sequence of non-interacting probes with
Hamiltonians Ĥp in discrete, non-overlapping events.

Each interaction is given by the unitary Û(τ) =

exp[−i(Ĥ0 + Ĥint)τ/~] with Ĥ0 = Ĥs + Ĥp. It describes

a coupling Hamiltonian Ĥint with characteristic coupling
strength g that is switched on for a finite duration τ .
If the interaction is repeated at regular time steps ∆t
with identical probe units in states η, the system state ρ
evolves through applications of the map [6, 11]

Φ(ρ) = trp

[
Û0 (∆t− τ) Û (τ) (ρ⊗ η)Û† (τ) Û†0 (∆t− τ)

]
.

(1)
This process can be viewed as an incoherent energy ex-
change channel, but it can also describe external driving
through periodic (and possibly resonant) control pulses,
the period set by the waiting time ∆t between successive
events.

In situations where the exact timing of an interac-
tion event is irrelevant or unknown, we could assume
a Poisson process that occurs at an average rate γ, as
sketched in Fig. 1. This would allow us to derive a mas-
ter equation that describes the system evolution based on
the stochastic jump processes induced by the repeated
interactions. The probes may represent uncontrollable
degrees of freedom of a thermal environment, in which
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case η = exp[−βĤp]/Zp. The waiting time ∆t is then
a random variable following an exponential distribution
p(∆t) = γe−γ∆t, and we demand that γτ � 1 in order to
stay within the Markovian framework of non-overlapping
interactions. While this implies that the system evolves
freely for most of the time and gets interrupted only
by occasional events, the latter may well describe strong
system-probe interactions. This contrasts the weak cou-
pling assumption necessary for obtaining standard Born-
Markov master equations.

To arrive at a consistent description of the system evo-
lution across arbitrary interaction strengths g and times
τ , we employ a formalism inspired by scattering theory
and collisional decoherence [16–21] that accurately de-
scribes each jump by singling out the net effect of the
interaction Hamiltonian from the free evolution,

Ŝ = Û0

(
−τ

2

)
Û(τ)Û0

(
−τ

2

)
. (2)

The symmetric form of the product implies that Ŝ† de-
scribes the time-reversed event.

The average change in system state, coarse-grained
over individual interaction events is given by

dρ =

{
− i
~

[Ĥs, ρ]dt

}
(1−γ dt)+γ dt

[
trp{Ŝρ⊗ ηŜ†} − ρ

]
,

(3)
provided that γτ � 1. Keeping terms of dt up to first
order, we arrive at a master equation

ρ̇ = − i
~

[Ĥs, ρ] + γ
[
trp{Ŝρ⊗ ηŜ†} − ρ

]
, (4)

Unlike previous studies, where master equations are de-
rived expanding Û(τ) in the limit of short (gτ � 1) and
possibly strong (g � ωs,p) interactions [2–4, 6, 8–11], our
approach captures the dynamics of the process without
imposing any parameter constraints other than γτ � 1
(see App. A). Notice that (4) is of Lindblad form: indeed,

with η =
∑
k ηk|k〉〈k| and L̂k` = 〈`|Ŝ|k〉, it reads

ρ̇ = − i
~

[Ĥs, ρ]+γ
∑
k,`

ηk

[
L̂k`ρL̂

†
k` −

1
2{L̂

†
k`L̂k`, ρ}

]
. (5)

This framework of repeated interactions could
be extended beyond the assumption of identical
events by introducing a multidimensional random
variable ξ, which accounts for the fluctuations in
{Ĥp(ξ), Ĥint(ξ), η(ξ), τ(ξ)} arising from inhomogeneity
of the probes or of the interaction events. The dissipative
part of the master equation (4) would then be replaced
by the ensemble-averaged expression

Lρ = γ
[∑

ξ

p(ξ)trp

{
Ŝ(ξ)ρ⊗ η(ξ)Ŝ†(ξ)

}
− ρ
]
, (6)

where p(ξ) is probability distribution of ξ. In case it
is only the probe states η(ξ) that fluctuate, we can in-
troduce the ensemble-averaged state η =

∑
ξ p(ξ)η(ξ) to

retrieve the simpler form (4).

III. GENERAL CONSIDERATIONS

Before studying specific models of repeated interac-
tions, we present two general considerations: a connec-
tion with the resource theory approach to thermodynam-
ics, and some features of the dynamics in the limit of
short interaction time τ .

A. Repeated interactions and models of
thermalisation

A frequently studied family of interactions are the so-
called energy-preserving interactions, for which there is
no net work cost in coupling the system to the probe.
Mathematically, this translates as [Û(τ), Ĥ0] = 0, that

is [Ĥint, Ĥ0] = 0 if we want the condition to be valid
for all τ . In other words, energy-preserving interactions
can only mediate an exchange of excitations between the
system and the probe. For these interactions, (2) reduces
to the eikonal expression

Ŝeik = exp

[
− iτ

~
Ĥint

]
. (7)

Repeated-interaction channels with energy-preserving in-
teractions and with the probe in the thermal state are a
realisation of “thermal operations” i.e. free operations in
the framework of thermal resource theory [22–26]. These
channels bring the system state closer to (or at least not
further away from) its Gibbs state. Indeed, the com-

mutation requirement implies that ρ = exp[−βĤs]/Zs is
stationary under (4).

Conversely, for interactions that are not energy-
preserving, repeated interactions will typically lead to
equilibration to a non-thermal steady state. In such
cases, additional work is required to mediate a single in-
teraction event between the system and probe [6]. The
average work power associated to the coarse-grained time
evolution is then given by the rate of energy change

Ẇ = γtr
{
Û0

(τ
2

)
ρ⊗ ηÛ0

(
−τ

2

) [
Ŝ†Ĥ0Ŝ − Ĥ0

]}
.(8)

B. Short-time limit

Previous works [2–4, 6, 8–11] on repeated interactions

mainly focus on the short-time limit, where Ŝeik is used to
capture the dynamics between the system and the probes.
Here, we see that using the proposed scattering operator
Ŝ, we are able to retrieve the same results regardless of
whether the interaction is energy-preserving, as follows
from a Baker-Campbell-Hausdorff expansion of (2) [27],

ln Ŝ = − iτ
~

(
Ĥint +

τ2

12~2
[Ĥint, [Ĥint, Ĥ0]]

− τ2

24~2
[Ĥ0, [Ĥ0, Ĥint]] + . . .

)
(9)
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The scattering operator (7) can then be Taylor-expanded
to recover the known short-time master equation . How-
ever, the condition ωsτ � 1 explicitly breaks the validity
of the rotating wave approximation (RWA), as it makes
a difference whether the full interaction Hamiltonian or
only its resonant terms are plugged into the short-time
operator (7). In particular, caution must be exercised in

such cases when the system-probe interaction Ĥint does
not preserve energy in the first place, but it could be
reduced to its energy preserving resonant terms by ex-
ploiting the RWA. This may lead to wrong conclusions
for the effect of short-time interactions.

Consider for instance the short-time behavior of prod-
uct interactions, Ĥint = ~gÂ ⊗ B̂, where Â and B̂ are
Hermitian operators. Expanding the bath operator into
its eigenbasis, B̂ =

∑
k bk|k〉〈k|, we find that the single

events are described by a mixture of unitary transforma-
tions of the system state,

trp{Ŝeikρ⊗ ηŜ†eik} =
∑
k

〈k|η|k〉e−igbkτÂρeigbkτÂ. (10)

The von Neumann entropy, a concave function of the sys-
tem state, can only increase under such an operation: a
purity-decreasing unital map [28, 29]. Hence, repeated
product interactions could not describe thermalization
to a finite temperature, as such a process would be able
to decrease the entropy of states that are initially hot-
ter. We are left instead with combinations of dephasing
and heating towards the maximally mixed state; energy
preserving product interactions would result in pure de-
phasing.

Conversely, thermalizing master equations can be con-
sistently obtained from a product interaction by per-
forming the secular approximation in the standard Born-
Markov approach [30]. As we shall demonstrate, repeated
interactions will act like conventional heat reservoirs and
lead to the correct thermal state only in exceptional cases
of resonant energy exchanges. In other cases, they serve
as ergotropy reservoirs that lead to out-of-equilibrium
states including population inversion. For purely phase-
modulating couplings, [Ĥint, Ĥs] = 0, the Born-Markov
setting and repeated interactions both result in a dephas-
ing master equation of the same form [31].

IV. SPIN EQUILIBRATION WITH THERMAL
PROBES

In this section we consider a single spin Ĵ with transi-
tion frequency ωs, interacting with identical probe spins

ĵ with transition frequency ωp. The probes are initialised
as thermal states of an environment of inverse tempera-
ture β. We study the family of interaction Hamiltonians

H = Ĥs + Ĥp + Ĥint

= ~ωsĴz + ~ωpĵz + ~
∑

k=x,y,z

gkĴk ⊗ ĵk . (11)

This family includes the dephasing channel (gx,y = 0),
the pure exchange of excitations (gx = gy and gz = 0),

as well as the dipole-dipole coupling Ĥint ∝ Ĵ · ĵ when
gx,y,z = g. For qubits, the general master equation is
presented in App. B. A higher system spin under re-
peated exchange interactions with qubits is considered
in App. C. In the following, we illustrate the main fea-
tures of equilibration under repeated linear interactions
by means of the instructive and often employed case of
a qubit interacting with resonant qubit probes. Higher
system spins, non-resonant probes, and a composite two-
spin system will be considered later.

A. Qubit system and resonant probe qubits

We now set J = j = 1/2 and ωs = ωp; we also omit
the pure dephasing contribution by setting gz = 0. The
master equation (4) becomes (see App. B),

ρ̇ = −i(ωs + δω)[Ĵz, ρ] +
∑

k=x,z,±
ΓkD[Ĵk]ρ. (12)

It consists of a coherent shift δω in the system frequency,
a dephasing channel at the rate Γz, a bit flip channel at
Γx, and incoherent energy exchange channels with the
(de-)excitation rates Γ±,

δω = γIm{C} cos
G+τ

2
, (13)

Γz = γ

∣∣∣∣C − cos
G+τ

2

∣∣∣∣2 , Γx = 4γK sin
G+τ

2
,

Γ± = γ
e±βωs/2

Zp

[
K − sin

G+τ

2

] [
K − e∓βωs sin

G+τ

2

]
.

Here we have abbreviated G± = (gx±gy)/2 and we have
denoted

C =
exp

[
−i
(

2ωs +
√
G2
− + 4ω2

s

)
τ/2
]

G2
− +

(
2ωs +

√
G2
− + 4ω2

s

)2 (14)

×

[
ei
√
G2

−+4ω2
sτ

(
2ωs +

√
G2
− + 4ω2

s

)2

+G2
−

]
,

K =
2G−

(
2ωs +

√
G2
− + 4ω2

s

)
G2
− +

(
2ωs +

√
G2
− + 4ω2

s

)2 sin

√
G2
− + 4ω2

s

2
τ.

Notice that only the exchange rates Γ± depend on the
probe temperature here. Γz,x and δω would also exhibit
such a dependence off-resonance or for gz 6= 0.

The system qubit equilibrates to a steady state that
is diagonal in the eigenbasis of σz, with the ratio of the
probabilities of excited and ground states

χ =
〈 12 |ρ

∣∣ 1
2

〉
〈− 1

2 |ρ
∣∣− 1

2

〉 =
eβωsK2 + sin2(G+τ/2)

K2 + eβωs sin2(G+τ/2)
. (15)
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FIG. 2. (color online) Steady state 〈Ĵz〉 for J = j = 1/2
for different interaction times τ at a rate γ = 10−3gx. Here,
ωp = ωs = 4.4gx and gz = 0 and we consider thermal probes
at kBT = 1.5~ωp. The large red area and the smaller blue
regions have a thermal occupation of β and −β, respectively,
while the white regions separating them indicate maximally
mixed states. Similar features (albeit at shifted temperatures)
would be observed if the probe qubits were not on resonance.

For interaction times
√
G2
− + 4ω2

sτ = 2mπ, m ∈ Z+,

we have K = 0 and therefore χ = exp(−βωs): the sys-
tem converges to the Gibbs state at the temperature of
the probe. The condition χ = exp(βωs) means that the
system converges to the inverted Gibbs state (“negative
temperature”). This happens when (gx + gy)τ is a mul-
tiple of 4π.

A more comprehensive view of the stationary state of
the system is obtained by plotting the mean spin value
〈Ĵz〉 = (χ − 1)/2(χ + 1) as a function of the interac-
tion time τ and of the ratio of coupling constants gy/gx
(Fig. 2). We have chosen some specific values for the
other parameters, but we have checked that the qualita-
tive behavior is stable over a wide range of values.

We see that for gy/gx > 0 the steady state is very close
to the Gibbs state for almost all values of τ : this is be-
cause the RWA is usually valid and therefore the effective
interaction is an exchange interaction. However, even for
large values of τ we still find the reversed Gibbs state in
narrow lines close to the condition K = 0. This shows
that a naive RWA stripping of the counter-rotating terms
in Ĥint is not always valid even for long interaction times.
Conversely, for gy/gx < 0, the inverted Gibbs state is ob-
tained in a wide range of parameters, especially for small
τ . The regions of thermalisation and anti-thermalisation
are separated by a band in which 〈Ĵz〉 ≈ 0 i.e. χ ≈ 1.
There, the steady state is maximally mixed: in thermal-
isation language, the channel acts as a bath of infinite
temperature for the system.

B. Product interaction (gy = gz = 0)

In this subsection we study the instance gy = 0, i.e. a
product X-type interaction between system and probes,
involving both resonant energy exchange and counter-

-0.1

0

0.1

0 5 10 15 20 25 30

-1

-0.5

0

FIG. 3. Steady state 〈Ĵz〉 for (a) J = 1/2 and (b) J = 2
at different interaction times τ at a rate γ = 10−3gx through
linear X-interaction with ωp = 4.4gx, gy,z = 0 using thermal
resonant qubit probes ωp = ωs at kBT = 1.5~ωp. The dashed
lines mark the thermal occupation at β while the states are
non-passive in the shaded regions.

rotating terms. The main features are already visible in
the line gy/gx = 0 of Fig. 2, which we plot on a linear
scale as Fig. 3(a). But we extend our considerations to
other spins than qubits [see Fig. 3(b)] and without im-
posing resonance.

In the short-time limit, both co- and counter-rotating
coupling terms have equal contributions. The system
equilibrates to a maximally mixed state with 〈Ĵz〉 → 0.
The effect of the system-probe interactions is then equiv-
alent to that of a non-selective measurement process
[32, 33] in the x-basis, which can be used as an entropy
source for heat engines [34–38]. We shall come back to
this interpretation in Section V. At longer interaction
times, the steady state typically equilibrates close to a
Gibbs state of inverse temperature βs = βωp/ωs, with
occasional windows where the system could achieve non-
passive steady states, i.e. states with ergotropy [25, 39].
These windows are generally broader at strong couplings
gx and more frequent for higher system spins.

If the system and the probes are qubits, the physics
is rather simple and we have already sketched it above.
When τ = 4πn/gx, the interaction is a partial swap be-
tween the two two-qubit states | 12 ,

1
2 〉 and |− 1

2 ,−
1
2 〉 mod-

ulo phases, which effectively describes a system interact-
ing with an inverted thermal probe. At the more frequent
values τ = 4πn/

√
g2
x + 16ω2

s , the counter-rotating con-
tributions cancel and the system equilibrates to a Gibbs
state. Let us add here that the steady-state work power
(8) has an interesting behavior: besides vanishing at the
thermal operation points as expected, it is suppressed
in the vicinity of inversion points and is exactly zero at
those points (Fig. 4). In other words, no work is needed

to maintain the inverted thermal state, even though Û(τ)
is not an energy-preserving operation there. Of course,
work must be spent to bring an initial state to the steady
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FIG. 4. The dashed line is the mean spin 〈Ĵz〉 from Fig. 3(a),
zooming in a window near a population inversion point. The
solid line is the corresponding steady-state work power (8),
vanishing when the state is thermal as expected, but also
when the state is anti-thermal (gxτ ≈ 12.5).

state: the repeated interaction process can be viewed as
an ergotropy reservoir continuously ‘charging’ the system
qubit.

For higher system spins J and still qubit probes, the
interaction-induced energy level splitting leads to in-
commensurate frequencies; so one cannot find points in
which the steady states are thermal or anti-thermal, even
when 〈Ĵz〉 is close to the value expected for such states
[Fig. 3(b)]. The regions of population inversion now cor-
respond to τ -values describing a vanishing net resonant
exchange |m, 1

2 〉 ↔ |m+ 1,− 1
2 〉 for m < J .

C. Study of gy = ±gx

Moving away from the product interaction towards the
top end (gx = gy) or the bottom end (gx = −gy) of Fig. 2,
we arrive at the complementary limiting cases where the
system always equilibrates either at the positive or nega-
tive probe temperature, regardless of the interaction time
τ . This follows from the formula (15) for the ratio of
steady-state populations.

For gx = gy = g and ωs = ωp, the system-probe inter-
action describes a resonant exchange of excitation that
preserves the total energy. In other words, the resonant
probes realize a channel of thermal operations that effec-
tively models spin thermalization, as often noticed and
exploited [1–15]. This holds true for arbitrary system
spin numbers J , see App. C, as well as for harmonic oscil-
lators. Should the probes be off-resonance, ωp 6= ωs, then
the system will equilibrate to a Gibbs state of a different
temperature from its environment, βs = βωp/ωs, as can

be confirmed by noticing that [(ωp/ωs)Ĥs + Ĥp, Ŝ] = 0.

For qubits, Ŝ reduces to a partial or full swap [1, 40, 41].
Notice however that the master equation obtained from

(4), derived in App. C, is generally not equivalent to the
standard Born-Markov spin thermalization model with
Lindblad operators Ĵ±. Moreover, the process may be
accompanied by additional dephasing when gz 6= 0. In
fact, the standard thermalisation master equation is re-
trieved only in the limiting scenario of short-time inter-
actions (gτ � 1) and for ωs = ωp and gz = 0.

1 10 100 1000
-0.2

0

0.2

FIG. 5. (color online) Accumulated work cost for a spin-2
system, initialised in its ground state, to reach steady state
through dipole-dipole interaction gx = gy = gz = g with off-
resonant qubit probes at temperature kBT = 1.5~ωp. We
consider moderately strong dipole-dipole couplings with g =
0.05ωp at an average rate γ = 10−3ωp. Solid and dotted
lines correspond to short (ωpτ = 2) and long (ωpτ = 200)
interaction times, respectively. The system is detuned from
resonance with the probes according to ωs/ωp = 0.8 (blue,
bottom), 0.9 (purple), 1.1 (red), and 1.2 (yellow, top).

This has immediate implications when describing a
system subjected to repeated exchange interactions in
a thermal environment. Thermalization does not emerge
as a natural consequence even at prolonged interaction
times with a broad spectrum of thermal probes in (6), be
it spins or harmonic oscillators — contrary to the secular
weak-coupling treatment with thermal oscillator baths.
The reason lies in the inherent time dependence of the
repeated interaction framework. Whenever the system
and probes are off-resonance, the repeated switching of
the interaction results in a non-vanishing work power (8)
that must come from external degrees of freedom.

As an exemplary plot, we show in Fig. 5 the cumu-
lative work W for dipole-dipole interactions for a sys-
tem with J = 2 as a function of time, for various
system-probe detunings and interaction times. In all
cases, the system eventually reaches the same steady
state ρ∞ ∼ exp[−β~ωpĴz] and the work saturates, but
the time to get there varies with τ and g, and the accu-
mulated work cost depends on the detuning.

D. A modified model: equilibration in a composite
system

In the standard derivation of a thermalization master
equation considering a composite system coupled weakly
and simultaneously to a broad spectrum of environmental
modes [30], previous works have shown that the resulting
master equation depends on the internal coupling and
can describe either local thermalization of the subsystem
or thermalization to a global Gibbs state [42–47].

In this subsection, we show that in the case of local
repeated interactions with a composite system, we will
only obtain a local master equation.
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Consider two linearly coupled spins,

Ĥs = ~ω1Ĵ
(1)
z + ~ω2Ĵ

(2)
z + ~

∑
k

GkĴ
(1)
k , Ĵ

(2)
k , (16)

only one of which also interacts linearly with thermal

probe spins Ĥint = ~
∑
k gkĴ

(1)
k ĵk. Contrary to the pre-

dictions of a secular master equation in the Born-Markov
setting [42–46], this process will generally not bring the

system to a global Gibbs state ρ
(12)
∞ ∝ exp[−βĤs] regard-

less of the internal coupling strengths Gk or the chosen
probe frequency. A simple argument can be made based
on the fact that [Ĥ0, Ĥint] 6= 0 as long as there is a non-
vanishing internal coupling. Hence, local repeated probe
interactions cannot be made a thermal operation accord-
ing to resource theory.

Local equilibration, on the other hand, can be achieved
with exchange interactions (gx = gy, Gx = Gy) as in the
single-spin case [10, 11]. Specifically, the short-time scat-
tering operator (7) is precisely that of a single spin inter-
acting with a probe as before, and so the corresponding
dissipator in the master equation (4) yields a local Gibbs
state in that limit. At finite τ -values, indirect coupling
contributions between Ĵ(2) and the probe start to appear
in the scattering operator (2), implying that (4) does not
resemble the local thermalization master equation. Nev-
ertheless, the product Gibbs state rescaled to the probe

occupation, ρ∞ ∝ exp[−β~ωp(Ĵ (1)
z + Ĵ

(2)
z )], will remain

a steady state of the repeated interaction process.

V. EQUILIBRATION UNDER INDIRECT
MEASUREMENTS

This last section is motivated by the recent interest in
the connection between thermodynamics and measure-
ment [34–38]. Hamiltonians of the type Ĥint = ~gÂ⊗ Âp
can famously be read as describing the indirect measure-
ment of the observable Â of the system by changing the
state of the probe (usually called pointer in this context).

For definiteness, we consider two qubits with Ĥs +
Ĥp = ~ωsĴz + ~ωpĵz as above, and with interaction
Hamiltonian

Ĥint = ~g(cos θĴz + sin θĴx)⊗ ĵx. (17)

In each interaction, the pointer qubit (initialised in the

ground state of Ĥp) is rotated around the x-axis clockwise

or counterclockwise depending on the Â-state of the sys-
tem qubit. Whether each measurement is weak or strong
is determined by the coupling strength g and the interac-
tion time τ . In our repeated interaction framework, prob-
ing happens at random times, and between these times
the system evolves under Ĥs. Thus, each pointer does not
find the state left by the previous pointer, but a rotated
version thereof, unless [Â, Ĥs] = 0. Under these condi-
tions, we expect the repetition of ideal measurements to
leave the system in the maximally mixed state (admit-
tedly, such a repeated interaction channel is not a model

of an informative measurement). This is indeed what we
find for ωp = 0, which is the ideal case for a pointer,
insofar as its rotation and resetting do not require any
investment of energy. Specifically, for ωp = 0, the re-
sulting master equation (App. D) contains two Lindblad

operators of the form cosαkĴz + sinαkĴx, which gener-
ically align along different axes. Such dissipators are
typically obtained in standard weak measurement mas-
ter equations from expanding Gaussian POVMs along a
measurement axis [32, 48]. Since the Lindblad operators
are Hermitian, the fixed point of the master equation is
the maximally mixed state. Only when [Â, Ĥs] = 0, that

is when Â = Ĵz, both dissipators become Ĵz and any
mixture of energy eigenstates is a steady state. In the
case ωp > 0, the steady state value of 〈Ĵz〉 as a function
of τ is plotted in Fig. 6. We see that the steady states
remain close to the maximally mixed state (〈Ĵz〉 = 0)
only for ωp � ωs.

Going back to ωp = 0 and barring the case [Â, Ĥs] = 0,
we have seen that the repeated interaction channel con-
sisting of ideal measurements leads to unbounded in-
crease of entropy. This is analogous to an infinite-
temperature bath, and indeed the energy exchange by
measurement is also sometimes termed ‘quantum heat’
[34]. However, similar to the observation made in
Ref. [49], here this ‘quantum heat’ is actually work, orig-

inating in the switching on and off of Ĥint. Indeed, re-
ferring to (8), a measurement of Â can increase the en-
ergy of the system when it does not commute with the
free system Hamiltonian Ĥ0 = Ĥs. In Fig. 7, we show
the cumulative work injected into a system initialized in
the ground state. At any given time, the work is much
lower when measurement is performed close to the z-axis
(dashed) rather than along the x-axis (solid), in which
case the energy of the system is significantly modified.
Since ωp = 0, the total work invested to get to the max-
imally mixed state should match the total change in en-
ergy of the system W = ~ωs/2. We see also that the
cumulative work depends on the interaction time: while
the total work invested to reach steady state should be
the same, the rate at which work is injected is lower for
weaker measurement.

VI. CONCLUSIONS

We have formulated a master equation to describe the
average dynamics of a repeated interaction process be-
tween a system and a stream of probes. By adopting
a scattering approach which coarse-grains over individ-
ual interactions and separates them from the free system
evolution, our model gives accurate predictions across ar-
bitrary interaction durations and strengths.

As a testbed, we first considered finite-time repeated
interactions with thermal probes. It turns out that such
processes generally do not describe system thermaliza-
tion to the environment temperature, except in tailored
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FIG. 6. Steady state 〈Ĵz〉 for a J = 1/2 system of frequency
ωs = 5g interacting with a probe qubit initialized at ground
state with frequencies ωp/ωs (a) 0.1, (b) 0.01 and (c) 0.001
via a measurement interaction (17) where θ = π/100 (dashed)
and θ = π/2 (solid) at a rate γ = 10−3g.

100 1000 10000
0

0.5

FIG. 7. (color online) Cumulative work with time for
θ = π/2 (solid lines) and θ = π/100 (dashed line) con-
sidering different system-probe interaction times gτ = 0.05
(blue, thinnest), 0.1 (red) and 1 (purple, thickest) at a rate
γ = 10−3g for an ideal probe with ωp = 0 interacting with a
system initialized in the ground state.

scenarios of resonant energy exchange between a single-
gapped system and probes. Hence repeated interactions
are incompatible with thermal operations once we con-
sider off-resonant exchanges or local interactions within
a composite system. Consequently, we typically attain
out-of-equilibrium steady states in a thermal environ-
ment, including Gibbs-like states (albeit at “wrong” tem-
peratures), infinite-temperature and population-inverted
states, depending on not just the form of interaction but
also the interaction duration.

We also modelled indirect measurements by pointer
probes via repeated interactions and saw that an ideal

measurement process by a gapless probe generally leads
to infinite heating, apart from measurements that com-
mute with the system Hamiltonian. This apparent “heat-
ing” is attributed to the work associated with turning on
and off the interaction Hamiltonian.

Our formalism extends beyond the presented exam-
ples of thermalization and measurement and sets forth
repeated interactions as a dynamical model that can be
viewed as a tunable incoherent reservoir.
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Appendix A: Stochastic simulations

To confirm the validity of our coarse-grained scatter-
ing master equations underlying the presented results,
(4) and (6) in the main text, we performed Monte-Carlo
simulations of the corresponding Poisson processes. As-
suming that the system interacts with at most one probe
at a time, the time evolution of a single trajectory is iter-
ated as follows: We first draw a waiting time ∆t from the
exponential distribution p(∆t) = γe−γ∆t and evolve the
system state ρ0 → ρ1 freely for the time ∆t−τ/2. Now we
switch on the interaction and attach the thermal probe
state η to the system. If an ensemble of probes (e.g. of
different energies) is considered, in (6), we could draw the
probe parameters from the given distribution p(ξ). The
combined density matrix ρ1 ⊗ η is then evolved for the
time τ according to the unitary Û(τ) given in the main
text. After tracing out the probe, we proceed to the next
iteration with the reduced system state, drawing a new
waiting time, etc. The state is stored at fixed times and
averaged over N � 1 trajectories.

Generally, we found excellent agreement between the
averaged numerical results and the predictions of the
master equation for γτ < 0.1. At larger γτ -values, the
coarse-grained Poisson model of scattering events ceases
to be valid. This is illustrated in Fig. 8, where we com-
pare the results for a qubit interacting with resonant
qubit probes in terms of (a) its mean spin and (b) mag-
nitude of coherence.

To further illustrate the validity and significance of our
scattering-based method for finite-time interactions, sup-
pose we replace Ŝ in our master equation (4) by the short-

time operator Ŝeik (which depends only on the system-
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FIG. 8. (color online) Time evolution of (a) the mean spin 〈Ĵz〉 and (b) the coherence |〈Ĵ+〉|. We consider a qubit system
initialized at |+〉 interacting with resonant thermal qubit probes at kBT = 0.75~ωp, (gx, gy, gz) = (5, 2.5, 1) × 10−2ωp, and
γ = 2.5× 10−3ωp. The stochastic simulation results averaged over 106 trials (markers) are compared to the predictions of the
ensemble-averaged master equation (lines) for γτ = 0.05 (blue, circles), 0.1 (red, triangles) and 1 (purple, stars).
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FIG. 9. We compare the master equations derived using Ŝ (solid lines) with Û(τ) (stars) and Ŝeik (triangles) using the same
parameter settings as Fig. 8. The left panels (a) and (c) correspond to γτ = 0.05, (b) and (d) to 0.1.
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probe interaction Hamiltonian) or the unitary map Û(τ)
(which represents the combined system-probe time evo-
lution). The latter could arise if a ‘reset’ approach as
in [50] would be employed to model the present finite-
time repeated interaction process, for instance. Figure
9 shows that these näıve implementations of the time
evolution predict results that do not match our master
equation model (solid lines) and the ensemble-averaged

random process. In particular, while Û(τ) (stars) repro-
duces the evolution of the spin population in (a) and (b),
it overestimates the decoherence effect in (c) and (d).
The reason lies in an additional dephasing caused by the
contribution of the free Hamiltonian to the time evolu-
tion described by Û(τ); this unphysical dephasing would
be present even for gx,y,z → 0.

Appendix B: Master equation for linear interactions between qubit system and probes

We derive the master equation for the linear interaction Ĥint = ~
∑
k gkĴk ⊗ ĵk for J = j = 1/2 assuming that

the probes are prepared in the Gibbs state η at inverse temperature β. The unitary that corresponds to the free
system-probe evolution is given by

Û0(τ) = eiΩτ/2
∣∣− 1

2 ,−
1
2

〉 〈
− 1

2 ,−
1
2

∣∣+ e−iΩτ/2
∣∣ 1

2 ,
1
2

〉 〈
1
2 ,

1
2

∣∣+ ei∆τ/2
∣∣− 1

2 ,
1
2

〉 〈
− 1

2 ,
1
2

∣∣+ e−i∆τ/2
∣∣ 1

2 ,−
1
2

〉 〈
1
2 ,−

1
2

∣∣ , (B1)

where Ω = ωs + ωp and ∆ = ωs − ωp. In this case, Ĥ = Ĥ0 + Ĥint is block-diagonal in subspaces
{∣∣− 1

2 ,−
1
2

〉
,
∣∣ 1

2 ,
1
2

〉}
and

{∣∣− 1
2 ,

1
2

〉
,
∣∣ 1

2 ,−
1
2

〉}
,

Ĥ =
~
4

−2Ω + gz 0 0 gx − gy
0 −2∆− gz gx + gy 0
0 gx + gy 2∆− gz 0

gx − gy 0 0 2Ω + gz


. (B2)

Introducing G∆ = (gx + gy)/2 and GΩ = (gx − gy)/2, the eigenvalues and eigenvectors are

λ±∆ =
~
4

(
−gz ± 2

√
G2

∆ + ∆2

)
, λ±Ω =

~
4

(
gz ± 2

√
G2

Ω + Ω2

)
,

∣∣∆+
〉
∝ −G∆

∣∣ 1
2 ,−

1
2

〉
+

(
∆ +

√
G2

∆ + ∆2

) ∣∣− 1
2 ,

1
2

〉
,

∣∣∆−〉 ∝ (∆ +
√
G2

∆ + ∆2

) ∣∣ 1
2 ,−

1
2

〉
+G∆

∣∣− 1
2 ,

1
2

〉
,

∣∣Ω+
〉
∝
(

Ω +
√
G2

Ω + Ω2

) ∣∣ 1
2 ,

1
2

〉
+GΩ

∣∣− 1
2 ,−

1
2

〉
,

∣∣Ω−〉 ∝ −GΩ

∣∣ 1
2 ,

1
2

〉
+

(
Ω +

√
G2

Ω + Ω2

) ∣∣− 1
2 ,−

1
2

〉
. (B3)

Then the unitaries Û(τ) and Ŝ that describe the scattering event are given by

Û(τ) =
∑

ω=Ω,∆

e−iλ
+
ω τ/~

∣∣ω+
〉 〈
ω+
∣∣+ e−iλ

−
ω τ/~

∣∣ω−〉 〈ω−∣∣ . (B4)

Ŝ = e−igzτ/4
{
CΩ

∣∣− 1
2 ,−

1
2

〉 〈
− 1

2 ,−
1
2

∣∣+ C∗Ω
∣∣ 1

2 ,
1
2

〉 〈
1
2 ,

1
2

∣∣− iKΩ

(∣∣− 1
2 ,−

1
2

〉 〈
1
2 ,

1
2

∣∣+ h.c.
)}

+eigzτ/4
{

[C∆

∣∣− 1
2 ,

1
2

〉 〈
− 1

2 ,
1
2

∣∣+ C∗∆
∣∣ 1

2 ,−
1
2

〉 〈
1
2 ,−

1
2

∣∣− iK∆

(∣∣− 1
2 ,

1
2

〉 〈
1
2 ,−

1
2

∣∣+ h.c.
)}
. (B5)

Here we introduce

Cω = e−iωτ/2
ei
√
G2

ω+ω2τ/2
(
ω +

√
G2
ω + ω2

)2

+ e−i
√
G2

ω+ω2τ/2G2
ω

G2
ω +

(
ω +

√
G2
ω + ω2

)2 ,

Kω =
2Gω

(
ω +

√
G2
ω + ω2

)
G2
ω +

(
ω +

√
G2
ω + ω2

)2 sin

√
G2
ω + ω2

2
τ. (B6)
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The master equation is then given by

ρ̇ = −i
(
ωs + γ

eβωp/2Im{e−igzτ/2CΩC∆}+ e−βωp/2Im{eigzτ/2CΩC∆}
Zp

)
[Ĵz, ρ]

+
γ

Zp

(
eβωp/2

∣∣∣CΩe
−igzτ/4 − C∗∆eigzτ/4

∣∣∣2 + e−βωp/2
∣∣∣CΩe

igzτ/4 − C∗∆e−igzτ/4
∣∣∣2)D[Ĵz]ρ

+
γ

Zp

(
eβωp/2K2

Ω + e−βωp/2K2
∆ − ZpKΩK∆

)
D[Ĵ+]ρ+

γ

Zp

(
eβωp/2K2

∆ + e−βωp/2K2
Ω − ZpKΩK∆

)
D[Ĵ−]ρ

+
4γKΩK∆

Zp

(
eβωp/2D

[
cos

gzτ

4
Ĵx + sin

gzτ

4
Ĵy

]
ρ+ e−βωp/2D

[
cos

gzτ

4
Ĵx − sin

gzτ

4
Ĵy

]
ρ
)
. (B7)

At steady state, the ratio of the probability of excited and ground states is

χ =
〈 12 |ρ

∣∣ 1
2

〉
〈− 1

2 |ρ
∣∣− 1

2

〉 =
eβωp/2K2

Ω + e−βωp/2K2
∆

eβωp/2K2
∆ + e−βωp/2K2

Ω

. (B8)

In particular, if one either sets gx = −gy or chooses τ such that K∆ = 0, i.e.
√
G2

∆ + ∆2τ = 2nπ, then (B8) reduces

to χ = eβωp , i.e. the steady state is a negative-temperature state with βs = −βωp/ωs. For exchange interactions
(gx = gy), the steady state will be a Gibbs state at βs = βωp/ωs. In general, (B8) reduces to

χ ≈ 1− 4gxgy sinh (βωp/2)

(g2
x + g2

y) cosh (βωp/2) + 2gxgy sinh (βωp/2)
(B9)

in the short-time limit where τ � ω−1
s,p, g

−1
x,y. When gx or gy = 0, the system would be maximally mixed, i.e. (B9)

reduces to χ ≈ 1. This agrees with the short-time behavior of product interactions discussed in the main text.

Appendix C: Master equation for exchange interaction between a spin-J system and spin-1/2 probes

Here we give an explicit form of the repeated interaction master equation (4) for the case of exchange spin-qubit
interactions (gx = gy = g). For the system spin, we use dimensionless spin operators and define the usual (2J + 1)-
dimensional algebra via

[Ĵk, Ĵ`] = iεk`nĴn, Ĵ± = Ĵx ± iĴy, Ĵz|m〉 = m|m〉, Ĵ2 = J(J + 1)1. (C1)

The unitary that corresponds to the free system-probe evolution is given by

Û0(τ) =
J∑

m=−J

[
e−i(ωsm+ωp/2)τ

∣∣m, 1
2

〉 〈
m, 1

2

∣∣+ e−i(ωsm−ωp/2)τ
∣∣m,− 1

2

〉 〈
m,− 1

2

∣∣] . (C2)

To obtain Û(τ), we observe that Ĥ = Ĥ0 + Ĥint is block-diagonal in the subspaces
{∣∣m,− 1

2

〉
,
∣∣m− 1, 1

2

〉}
for −J <

m ≤ J , with eigenvalues and eigenvectors

λ±m =
~
4

[(
m− 1

2

)
ωs − gz ± 2

√
G2
m + ∆2

m

]
,∣∣ψ+

m

〉
∝ −Gm

∣∣m,− 1
2

〉
+
(

∆m +
√
G2
m + ∆2

m

) ∣∣m− 1, 1
2

〉
,∣∣ψ−m〉 ∝ (∆m +

√
G2
m + ∆2

m

) ∣∣m,− 1
2

〉
+Gm

∣∣m− 1, 1
2

〉
, (C3)

where we define ∆m = ∆−
(
m− 1

2

)
gz and Gm = g

√
J(J + 1)−m(m− 1)/2. Then the unitary reads as

Û(τ) =

J∑
m=−J+1

(
e−iλ

+
mτ/~

∣∣ψ+
m

〉 〈
ψ+
m

∣∣+ e−iλ
−
mτ/~

∣∣ψ−m〉 〈ψ−m∣∣)
+e−i(2ωsJ+ωp+gzJ)τ/2

∣∣J, 1
2

〉 〈
J, 1

2

∣∣+ ei(2ωsJ+ωp−gzJ)τ/2
∣∣−J,− 1

2

〉 〈
−J,− 1

2

∣∣ . (C4)
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The unitary scattering operator Ŝ is

Ŝ = eigzτ/4
J∑

m=−J+1

[
Cm

∣∣m,− 1
2

〉 〈
m,− 1

2

∣∣+ C∗m
∣∣m− 1, 1

2

〉 〈
m− 1, 1

2

∣∣− iKm

(∣∣m,− 1
2

〉 〈
m− 1, 1

2

∣∣+ h.c.
)]

+ eigzJτ/2
(∣∣−J,− 1

2

〉 〈
−J,− 1

2

∣∣+
∣∣J, 1

2

〉 〈
J, 1

2

∣∣) , (C5)

where

Cm = e−i∆τ/2
ei
√
G2

m+∆2
mτ/2

(
∆m +

√
G2
m + ∆2

m

)2

+ e−i
√
G2

m+∆2
mτ/2G2

m

G2
m +

(
∆m +

√
G2
m + ∆2

m

)2 ,

Km =
2Gm

(
∆m +

√
G2
m + ∆2

m

)
G2
m +

(
∆m +

√
G2
m + ∆2

m

)2 sin

√
G2
m + ∆2

m

2
τ. (C6)

Again, if the probes are prepared in the Gibbs state η at inverse temperature β, an explicit master equation can be
derived from (4),

ρ̇ = −iωs[Ĵz, ρ] +
γeβωp/2

Zp
D[L̂1]ρ+

γe−βωp/2

Zp
D[L̂2]ρ+

γeβωp/2

Zp
D[L̂−]ρ+

γe−βωp/2

Zp
D[L̂+]ρ, (C7)

with the Lindblad operators

L̂1 = eigzJτ/2 |−J〉 〈−J |+ eigzτ/4
J∑

m=−J+1

C∗m |m〉 〈m| ,

L̂2 = eigzτ/4
J−1∑
m=−J

Cm |m〉 〈m|+ eigzJτ/2 |J〉 〈J | ,

L̂+ = eigzτ/4
J∑

m=−J+1

Km |m〉 〈m− 1| , L̂− = L̂†+. (C8)

(C7) predicts the decay of all coherences, as well as a Gibbs thermal state at temperature βs = βωp/ωs since
〈m− 1|ρ∞|m− 1〉 / 〈m|ρ∞|m〉 = eβωp for −J < m ≤ J . In addition, we see that for J 6= 1/2, the dissipators do

not reduce to Ĵ±, which implies that the thermalization rates would defer from the standard Born-Markov spin
thermalization master equation

ρ̇ = −iωs
[
Ĵz, ρ

]
+ Γeβωs/2D[Ĵ−]ρ+ Γe−βωs/2D[Ĵ+]ρ, (C9)

where Γ is an arbitrary thermalization rate derived under this framework.
To illustrate these differences more explicitly, we consider the master equation of a spin-1/2 system

ρ̇ = −i
(
ωs + γIm{C1/2}

) [
Ĵz, ρ

]
+ γ

∣∣1− C1/2

∣∣2D[Ĵz]ρ+
γ|K1/2|2

Zp

(
eβωp/2D[Ĵ−]ρ+ e−βωp/2D[Ĵ+]ρ

)
. (C10)

From (C10), we see that the repeated exchange interaction between the probes and the system not only leads to
dissipation terms, but also to dephasing and a shift in energy. However, these latter terms are of higher order in g
and τ and therefore negligible in the short-time limit.

Appendix D: Master equation for measurement interaction with ideal probe

We consider the repeated measurement master equation with interaction Hamiltonian (17) for an ideal measurement

probe, i.e. ωp = 0. The Hamiltonians Ĥ0 = ~ωsĴz ⊗ 1 and Ĥ = Ĥ0 + ~g(cos θĴz + sin θĴx)⊗ ĵx are block-diagonal in

the eigenbasis representation |±〉 of ĵx,

Ĥ = M̂+ ⊗ |+〉 〈+|+ M̂− ⊗ |−〉 〈−| , M̂± = (~ωs ± ~g cos θ)Ĵz ± ~g sin θĴx. (D1)
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The scattering matrix Ŝ can be written as Ŝ =
∑
j=± K̂j ⊗ |j〉 〈j| where

K̂± = ei~ωsĴzτ/2e−iM̂±τei~ωsĴzτ/2 = A±1 + 2iB±Ĵz ∓ 2iC±Ĵx,

A± =

[
cos
(ωsτ

2

)
cos(R±τ) + sin

(ωsτ
2

) ωs ± 2g cos θ sin(R±τ)

2R±

]
,

B± =

[
sin
(ωsτ

2

)
cos(R±τ)− cos

(ωsτ
2

) ωs ± 2g cos θ sin(R±τ)

2R±

]
,

C± =
g sin θ sin(R±τ)

R±
, R± =

√
4g2 + ω2

s ± 4gωs cos θ

2
. (D2)

Assuming that the probe is initialized in the ground state, the master equation is given by

ρ̇ = −iωs[Ĵz, ρ] +
γ

2

(
K̂+ρK̂

†
+ + K̂−ρK̂

†
− − 2ρ

)
= −i

[
ωsĴz − γ (A+B+ +A−B−) Ĵz + γ (A−B− −A+B+) Ĵx, ρ

]
+ γ

√
B2

+ + C2
+D[B+Ĵz + C+Ĵx]ρ+ γ

√
B2
− + C2

−D[B−Ĵz − C−Ĵx]ρ, (D3)

which effectively describes weak measurements in the basis of B+Ĵz + C+Ĵx and B−Ĵz − C−Ĵx.
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A. Auffèves, npj Quantum Inf. 3, 9 (2017).
[35] C. Elouard, D. Herrera-Mart́ı, B. Huard, and
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