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A large number of real networks show abrupt phase transition phenomena in response to environ-
mental changes. In this case, cascading phenomena can induce drastic and discontinuous changes
in the system state and lead to collapse. Although complex network theory has been used to inves-
tigate these drastic events, we are still unable to predict them effectively. We here analyze collapse
phenomena by proposing a minimal two-state dynamic on a complex network and introducing the
effect of local connectivities on the evolution of network nodes. We find that a heterogeneous sys-
tem of interconnected components presents a mixed response to stress and can serve as a control
indicator. In particular, before the critical transition point is reached a severe loss of low-degree
nodes is observed, masked by the minimal failure of higher-degree nodes. Accordingly, we suggest
that a significant reduction in less connected nodes can indicate impending global failure.

1w Many natural, economic and social systems 3s using this approach, we show that the route
n exhibit abrupt phase transition phenomena 35 towards the critical point is shaped by the
» in response to environmental changes [IHI1]. s connectivity class of the nodes, with significant
13 Examples include epidemic spreading, traffic 3s consequences on the formulation of effective
1 networks, climatic and ecosystems changes, 3 indicators of transition forecasting.
15 cells networks, and heart and brain dynam-
16 ics. In this context, complex network theory
17 has been applied to both real and humanly- «  Dynamical model on networks. We consider
constructed systems and has provided useful « a two-state dynamic model [I5] where an “ac-
statistical measurements and indicators able « tive” node can fail either because of internal fac-
2 to describe such complex phenomena [12HI4].  tors with an intrinsic transition rate p, or be-
Recently a similar approach was used to s cause of external influences with a rate p;. Ex-
investigate economic data [I5]. It was found s ternal failures are due to factors external to the
23 that combining a simple dynamics of internal « node and occurs when the number of its failed
2 and external failure with a reversal process s neighbors exceeds a certain threshold, thus de-
s of recovery in an interacting network reveals 4 noting a compromised functionality by a loss of
2 critical transitions in the percentage of active s feedback in interactions with other nodes. In-
2z nodes and hystereses that cause the phase- = ternal failure occurs when intrinsic stresses ex-
flipping phenomena seen in fluctuating stock s ceed a certain level. Nodes recover at a rate
20 market indices. That formulation is also able to s p, when they are able to mitigate destructive
» describe a more general class of processes [15]. s functional alterations. Compared to the orig-
s In this contribution, we propose a gener- s inal model [I5] we introduce an equal mean
alization that takes into account network s recovery time from both external and internal
33 heterogeneity induced by topology, similarly s failures and use transition rate instead of re-
s to studies on epidemic spreading [16]. By s covery time to describe the rescue process as
so a single transition from failed to active. We
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also examine heterogeneity in node connectiv- 10 failed neighbors of degree k, i.e. the probabil-
ity. Specifically, the effective rate of a node’s 103 ity that a node of degree k is failed conditioned
external failure takes into account the degree- 14 on one of its neighbor being active [20]. This
dependent probability that it will be exposed to 105 is a dynamical variable satisfying Eq. with
a fraction of failed nodes that exceeds a thresh- 4 R; = Z;”:(g)_l (kﬁgil)all:—j—l(l — 0),)7. Taking
old. The threshold value depends on network ; into account all degree classes in the network
e degree, i.e., a damaged neighborhood must be

and considering both reference nodes and neigh-
defined locally with respect to the original local 4, bors, Eq. is a dynamical system of order 2k.
connectivity. In our model, we set this threshold

It is convenient to rewrite equation by mul-
at 50% of the node’s original neighborhood size, ., tiplying both sides by 1/pa and by rescaling the
based on the hypothesis that a particular node ,

time to be dimensionless from 7 = p, ¢,
is insensitive to extrinsic failure if at least half
of its neighbors are safe. Slight variations of this df% (1)
threshold don’t alter our analysis significantly. dr
This approach models several dynamical pro-
cesses occurring in real networks, from the func-
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us where P, = p./p, and ps = ps/p,. We investi-
tional regulation of interacting cells, to epidemic gate system behavior by analyzing steady-state

and information spreading, to financial markets ' active fractions of nodes for each connectivity
crashes [I5, 7, §]. In a d’ dition, the proposed M class, by varying the dimensionless parameters
C ’ ur P and pg, i.e. at different grades of internal

us and external failures occurrence, and recovery
no capacity. In particular, we numerically com-

recovery dynamics, and with homogenous and ' P ute fixed points of EO{ by slowly Yarying
normally distributed thresholds [I9H21]. 1 the control parameter p, both for positive (in-
122 crements) and negative (decrements) directions

Mean-field theory. By adopting a mean-field 1 at different and constant values of p,. Fixed
approach it is possible to write a balance equa- 14 points calculated at p)* are used as the initial
tion that regulates the dynamics of the fraction s guess at prTt. We test the behavior of the
of active nodes for each degree class, 126 model in (i) a random network, (ii) a scale-free
a0 topology, (iii) a spatially-embedded network ex-

A\L) sk _ k 128 tracted from a finite set of nodes and shaped by

at pr=Ja0) = (pa+peBi) fa(1), (1) 129 nearest-neighbors interactions. We select these
10 architectures because real networks are usually
heterogeneous and exhibit features common to
122 both random and regular networks or may show
138 scale-free features such as hubs.
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model shares similarities with the Watts model
and with other generalizations analyzing cas-
cades in networks with no intrinsic failure and
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ss where f% is the fraction of active nodes in the
s k—th class and Ry is the average probability
o that the neighborhood of a node of degree k
a is damaged. This factor takes into account
= the effective probability 6y that a node of de- s Random networks. We consider a Poisson

s gree k connects to a failed neighbor and all the w7 degree distribution characterized by P(k) =

o configurations in which the number of active R (k)k /K!, and by a conditional degree dis-

s neighbors is less then or equal to the thresh- s tribution P(K'|k) = K P(k')/(k), peculiar of
o 0ld m(k) = k/2 (rounded down to the nearest

) ) mk) [k \ gk "~ 10 uncorrelated networks. We set the mean de-
o integer), ie. Ry = 3 /0 (kfj)ek (1 =0) gree of network (k) = 10 in our calculations,
o with 6, = >, P(K'|k)ff and ff = 1 — fk. 12 and restrict our analysis to k < 25 because
o By definition, P(k’|k) is the probability that a s this allows us to include the most significant
o node of degree k is connected to a node of de- 1 fraction of nodes (the distribution rapidly goes
o gree k'. Notably, fi represents the fraction of s to zero when k > (k)). Figure [IA shows
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Figure 1. Active fraction of nodes in a random un-
correlated network computed by varying the param-

eter P, = pr/pa at different values of ps = ps/pa.
(A) ps = 100. (B) ps = 50. (C) ps = 10. (D)
ps = 1. Colored curves represent the active frac-

tion of nodes for different connectivity classes of
nodes. Markers represent the total active fraction
of nodes in the network computed as Y, P(k)fA4.
High values of spreading parameter show discontin-
uous transitions before which a significant loss of
low-degree nodes can be observed.

14 f
A [ wpp
b 1+ k=2
k k=3
fa 1 k-4
] |—k=5
k=6
0- | oglobal
1000 ~ 1 1000 = 1
Pr Dr
Figure 2. Active fraction of nodes at different

threshold values in a random uncorrelated network,
computed by varying the parameter p, = p,/p. at
ps = 100. (A) m(k) = 2k/3. (B) m(k) = k/3. Col-
ored curves represent the active fraction of nodes
for different connectivity classes of nodes. Markers
represent the total active fraction of nodes in the
network computed as ), P(k)f%. Transition point
in (A) and (B) occurs at lower and higher values
of the spreading parameter, respectively, compared
to m(k) = k/2, because of a lower or higher resis-
tance of nodes to neighbors failure. In both cases, a
significant loss of low-degree nodes can be observed
before the abrupt transition.
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that at ps = 100 the system undergoes a clear
discontinuous abrupt transition and hysteresis.
Note that each node subpopulation approaches
the discontinuity point differently. Low-degree
nodes show a smooth and strong decline in their
fraction of active units. High-degree nodes re-
main strong until they reach the critical point.
In the extreme cases of k = 1,2 approximately
50-70% of nodes are in a failed state prior to
the transition point. Figures [IB, [IIC, and
show that this behavior is qualitatively main-
tained at lower values of ps, i.e., at lower values
of the external failure rate, although the tran-
sition point shifts at lower recovery rate values.
When ps = 1 the transition is smooth for all
node subpopulations. When we consider the
global behavior of the ensemble, by computing
the total fraction of active nodes in the network
as fa = >, P(k)f%, the differences disappear
(black markers in Figure [1). The total active
fraction is discontinuous in the asymptotic so-
lutions at high values of the spreading term and
shows small variations prior to the transition,
which reproduces the behavior of high-degree
nodes. The partial smoothing of the global
steady-state solutions as a function of the con-
trol parameter before the transition point is pri-
marily due to the leaf (k = 1) and less connected
nodes (k < 6), as was found in the local anal-
ysis. Results computed at different values of
the threshold m(k) = 2k/3,k/3 (rounded down
to the nearest integer) show that this behavior
is qualitatively conserved also when nodes are
more or less resistant to neighbors failure (Fig-
ure , despite a shift of the transition point at
lower and higher values of the spreading param-
eter, respectively.

Scale-free networks. We further investigate
model behavior in a scale-free topology. In this
case we consider a degree distribution P(k) =
k™7 with v = 3. A finite-size network of 10000
nodes constructed with similar parameters by
using the BA algorithm [22] showed a maxi-
mum degree of about 50. Therefore we use
this cutoff in the mean-field description with
the aim to keep low the dimensionality of the
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dynamical system and the computational cost.
We also assume an uncorrelated network and
adopt the same conditional degree distribution
used in the random case. Active fractions of
nodes in scale-free topology do not show abrupt
transitions also in case of high probabilities of
failures spreading (see Fig. [3A). However, it is
still possible to observe a larger reduction in
the partial fractions of active nodes within the
low-connectivity classes compared to the highly
connected ones. Interestingly, in this case, these
larger reductions are not masked when observ-
ing the global behavior of the network. In fact,
the total fraction of active nodes mostly repre-
sents the behavior of less connected nodes which
are much more abundant than hubs in scale-
free networks. Results obtained with a cutoff of
k = 100 and k = 200 do not show significant
differences (see Fig.s[3B and FIC).

Spatially-embedded regular networks. We fi-
nally determine model solutions in the non-
random regular networks typical in interact-
ing space-embedded systems in which units are
physically connected. In particular, we build
a spatially-embedded network starting from a
cubic lattice, fixing a three-dimensional Moore
neighborhood of range 1 to set the connections.
Then, we randomly remove links with p;=0.3 to
induce heterogeneities. Such topological prop-
erties resemble the biological architecture of g-
cell networks in endocrine pancreatic islets, an
emblematic case in which communications are
key in shaping emergent dynamics, cell func-
tion, and fate [23H30]. Note that this architec-
ture can be representative of many other sys-
tems in which physical constraints shape net-
work topology, such as highways, water distri-
bution, and power grid networks. The resulting
graph is a spatial network of ~ 11000 nodes
with a maximum of 26 neighbors per node. We
compute statistics of the network using normal-
ized frequency of nodes degree and normalized
edge frequency between nodes of degree k and
k'. Each conditional probability P(k'|k) is nor-
malized at 1. Figure 3D shows that prior to the
transition point when the recovery rate values
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Figure 3. Active fraction of nodes computed by
varying the parameter p, = p,/p. at ps = 100.
(A) Scale-free uncorrelated network (cutoff k& = 50).
(B) Scale-free uncorrelated network (cutoff & =
100). (C) Scale-free uncorrelated network (cutoff
k = 200). (D) Spatially-embedded network (degree
distribution and conditional degree distribution cal-
culated from a finite-size network, see text). Col-
ored curves represent the active fraction of nodes
for different connectivity classes of nodes. Markers
represent the total active fraction of nodes in the
network computed as Y, P(k)fk. The scale-free
topology do not show abrupt transition in contrast
to the spatially-embedded one. Larger variations
in low degree nodes compared to high-degree nodes
can be observed in both cases.

are decreasing, the active fraction of low-degree
nodes (here k = 4 is the lowest degree) changes
smoothly and more quickly than in high-degree
nodes, in line with random and scale-free uncor-
related networks. At the transition point when
the network globally collapses, the active frac-
tion of all node classes becomes discontinuous.
In line with the random network, the total frac-
tion of active nodes is representative of the high-
degree nodes of the network, while the larger
reductions in the active fraction of lower degree
nodes are masked.

Validation of mean-field analysis. To check
whether mean-field theory correctly describes
real networks behavior, we further simulated
the two-state dynamical model in three finite-
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size networks of 10000 nodes (11056 for the
spatially-embedded case) characterized by the
three topologies discussed above. In this case,
the stochastic nature of the process is not
smoothed by the thermodynamic limit. In par-
ticular, numerical simulations are performed via
random evolutions of the networks by using a
Monte Carlo method. All nodes are initialized
in an active or failed state depending on the
initial value of the parameter p, and on the di-
rection of variation: failed state for low p, and
increments of the parameter, active state for
high p, and decrements of the parameter. To
compute steady-state average fractions of nodes
we adiabatically changed the control parame-
ter and calculated the time-averaged numbers
of active nodes within each connectivity class
at every step, discarding a proper initial pe-
riod to avoid the effect of transient responses on
steady-states estimates. We then used the final
state of the network to set the initial state at
the next p, value. Numerical simulations con-
firmed the results obtained with the mean-field
analysis (Fig. [d). When varying the control pa-
rameter, the active fractions of nodes show fluc-
tuations around a smoothly varying mean value
that follows the mean-field solutions for all the
connectivity classes. Although the critical point
is slightly shifted at lower values of the control
parameter, the emergent phenomena are quali-
tatively unchanged.

Our results show that adding heterogeneity
to the mathematical representation of a dynam-
ical network produces a qualitatively different
response from each connectivity class of nodes.
The leaf and less connected nodes display an
emergent behavior similar to that in sparse
topologies, and highly-clustered nodes display
abrupt transitions in their active fraction that
resemble the global behavior of strongly con-
nected networks responding to changes in con-
trol parameters. This is in line with the in-
creased failure probability of low degree nodes
in small cascade regimes and with hysteresis ob-
served in similar threshold models [20, 21]. Al-
though, these formulations do not include recov-
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Figure 4. Active fraction of nodes numerically com-
puted in a finite-size (N = 10000) random uncorre-
lated network computed by varying the parameter
Dr = pr/pa at different values of ps = ps/pa. (A)
ps = 100. (B) ps = 1. (C) Comparison of global
behavior between numerical simulations and mean-
field at ps = 100. (D) Comparison of global behav-
ior between numerical simulations and mean-field
at ps = 1. Colored points in (A) and (B) denote
the active fraction of nodes for different classes of
nodes. Black curves and red squares in (C) and
(D) represent the total active fraction of nodes in
the network for mean-field and simulations, respec-
tively, computed as >, P(k)fk.

ery and intrinsic failure and are based on differ-
ent threshold rules. Our results are also simi-
lar to the original Watts model [I9] in case of
large extrinsic failure probability, where thresh-
old has significant effects. It is worth mention-
ing that, in our case, fixing the threshold to
k/2 rounded down induces asymmetry between
even and odd degrees in the partial active frac-
tion of nodes. In particular, our choice makes
odd degree nodes to be susceptible to exter-
nal failure at more than 50% of failed neigh-
bors. Instead, even nodes became susceptible
exactly at 50% of failed neighbors and, thus,
are more likely to fail. The asymmetry changes
by setting the threshold to k/3 or 2k/3, and
this is again mostly linked to the percentage of
neighbors which have to be failed to make the
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node susceptible. Notably, while in scale-free
networks the global fraction of active nodes is
strongly representative of less connected nodes,
in random and spatially-embedded networks the
opposite holds, and large reductions in less con-
nected nodes are masked in the global response.
In these specific cases, relying on a global in-
dicator of network functionality, such as the
total fraction of active nodes, is likely to be
misleading and can significantly underestimate
failure risk and the probability of critical col-
lapses. Indicators of catastrophic transitions
based on slowing down of the recovery dynam-
ics from perturbations and flickering phenom-
ena in the state of the system have been pro-
posed in the literature [31} [32]. In particular,
they were applied to the identification of catas-
trophic changes in climate, ecologic mutualistic
communities, and depression development [33-

33 [35]. These dynamical indicators have a differ-
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ent nature compared to the steady-states here
analyzed, which instead are not dynamical by
definition. However, they are strictly linked to
critical bifurcation points and bistability of the
dynamical system and, thus, to the underlying
steady solutions on which we based our anal-
ysis. Here we suggest that monitoring loss in
leaf and less connected nodes in networks show-
ing critical discontinuous transitions gives addi-
tional perspectives on catastrophic failure pre-
diction. Moreover, if the intrinsic dynamics of
the network is considerably faster than the char-
acteristic time which rules stressful parameters
variation, time-window measures of the average
active fraction on nodes based on their connec-
tivity class have the potential to be adopted in
a dynamical perspective. Future investigations
will be devoted to a detailed time-analysis using
predictive indicators based on the observed phe-
nomena, as well as testing the effects of other
threshold rules and nodes correlation [36}, 37].

In conclusion, our results reveal that losing leaf
and less connected nodes in response to stress
may be a general feature of complex systems
characterized by dynamical units whose behav-
ior is regulated in heterogeneous complex net-
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works. Based on the very general dynamics used
to model nodes evolution, we believe that the
observed behavior has potential impacts on un-
derstanding the response of several natural and
artificial systems upon degradation, and it will
encourage expanded research investigating such
possibility in real scenarios.
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