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Raman side-scatter, whereby scattered light is resonant while propagating perpendicular to a
density gradient in a plasma, was identified experimentally in planar-target experiments at the
National Ignition Facility (NIF) at intensities orders of magnitudes below the threshold for absolute
instability. We have derived a new theoretical description of convective Raman side-scatter below
the absolute threshold, validated by numerical simulations. We show that ICF experiments at
full ignition-scale, i.e. with mm-scale spot sizes and density scale lengths, are prone to increased
coupling losses from Raman side-scatter as the instability can extend from the absolute regime near
the quarter-critical density to the convective regime at lower electron densities.

I. INTRODUCTION

Inertial Confinement Fusion (ICF) [1] experiments aim
to implode and compress deuterium-tritium fuel capsules
to thermonuclear ignition and burn using lasers. The
capsules are imploded via the rocket effect of the blow-
off of an ablator outer layer on the capsule [2, 3]; the
ablator can be driven either directly by lasers in the so-
called “direct-drive” (DD) scheme [4], or indirectly via
the x-rays from the interior walls of a “hohlraum” cav-
ity surrounding the capsule and irradiated by lasers in
the “indirect-drive” geometry [5]. In either configura-
tion, electron plasma waves (EPW) can be resonantly
driven by laser-plasma instabilities (LPI). These EPWs
can trap and accelerate electrons to suprathermal ener-
gies, which can prematurely preheat the fuel and impede
compression, and can scatter the laser away from the tar-
get, reducing the laser energy coupling. The main LPI
processes coupling laser light and EPWs are stimulated
Raman scattering (SRS) and two-plasmon decay (TPD)
[6].

One particular SRS geometry which received great at-
tention in the 1970’s is tangential side-scatter, whereby
the scattered light is resonant at its “turning point” in
a density gradient, i.e. where it propagates perpendicu-
larly to the gradient, following a constant density contour
[7–10]. This process constitutes the only situation where
SRS can become “absolute” (i.e. exponentially growing
in time at a fixed spatial location, rapidly reaching satu-
ration via pump depletion or other non-linear processes)
in low density regions below nc/4, the quarter-critical
density for the laser wavelength; Raman side-scatter was
therefore initially anticipated to be particularly threat-
ening for ICF, but its observation has remained rather
elusive in experiments and thus generated less interest
after the 1980’s. However, this process has recently
been the subject of renewed investigations and interest
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in the ICF and laser-plasma communities: it was indeed
suggested as the generating mechanism for the observa-
tion of suprathermal electron “beaming” in indirect-drive
ICF experiments (as a collective process via a shared
EPW)[11, 12] , and was also identified in experiments us-
ing foam targets at the Omega facility (also as a collective
process, via a shared scattered light wave) [13]. How-
ever, the laser intensities in most of these experiments
were in fact orders of magnitude below the absolute in-
stability threshold for side-scatter, if the EPW damping
is accounted for. The “Rosenbluth gain formula”[14] was
used to explain the presence of Raman side-scatter in
these experiments, since the convective gain value it pro-
vides goes to infinity at the turning point; however, this
is also incorrect, since that formula ignores the refrac-
tion of the scattered light towards lower density regions,
which will keep the convective gain finite. A theoretical
justification for these recent observations of side-scatter
is still lacking.

In this article, we present the first measurements of
Raman side-scatter over a wide range of electron densi-
ties, from nc/4 where the observation is consistent with
an absolute instability to lower densities (down to 0.1nc)
where the laser intensity is many orders of magnitude be-
low the absolute threshold. In order to correctly describe
the process below the absolute threshold, we have derived
a new analytical description of Raman side-scatter in the
convective regime. This description extends the validity
of the “Rosenbluth gain” to the scattered light’s turning
point, by accounting for the refraction of the scattered
light which keeps the propagation distance at the res-
onant density (and thus the amplification gain) finite.
This result was validated against numerical integration
of the SRS fluid equations in Fourier space. We find that
ICF experiments at full-scale (∼MJ-laser energies, ∼mm-
scale density gradients and laser spots) are more prone to
coupling losses from Raman side-scatter, as the instabil-
ity is no longer restricted to the absolute regime near the
quarter-critical density, but can extend to lower densi-
ties by having sufficient gain and amplification length in
the convective regime. The new methodology and find-
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ings from this paper were recently applied to interpret an
experimental investigation of suprathermal electron gen-
eration in ICF [15], where it was shown that tangential
side-scatter is a major contributor to the generation of
suprathermal electrons in full-scale DD conditions.

II. EXPERIMENTS

The experiments described in this article were con-
ducted using the southern hemisphere of the NIF laser
(96 beams, i.e. 24 quadruplets or “quads” grouped into
“outer cones” at 44.5◦ and 50◦ from the vertical axis, and
“inner cones” at 23.5◦ and 30◦). The target was a pla-
nar thick CH slab, with a variable tilt from horizontal
introduced to scan the collection angle θout of the scat-
tered light into the FABS diagnostics (at fixed locations
in the target chamber [16]) from the target normal (Fig.
1). 3D simulations using the code Hydra [17] were per-
formed to verify that the expansion of the plasma remains
mostly 1D up to tilt angles of ∼30◦. Every quad had the
same peak intensity, 2.2×1014 W/cm2. These experi-
ments were designed to produce laser and plasma con-
ditions relevant to full-scale direct-drive ICF conditions
at reduced total laser energy [15], producing a roughly
one-dimensional (1D) plasma expansion due to the large
spot sizes (∼1-2 mm) of the NIF laser [18].
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FIG. 1. a) Polar view (Lambert azimuthal projection) of the
NIF’s 96 southern hemisphere beams. b) Target alignment
and geometry; a tilt was used to vary the angle θout between
the target surface and the FABS diagnostics (located in the
quads 36B and 31B).

For a 1D density profile along z, the expected exit an-
gle of the Raman scattered light θout is easily derived
for a given SRS wavelength λs using refraction laws for
the SRS and laser light waves. Defining ω0, k0(z) [resp.
ωs, ks(z)] as the laser’s (resp. scattered light wave’s)
frequency and wavenumber, and ωpr = ωpe(z = zr)
the resonant electron plasma frequency such that ω2

b =

ω2
pr +3k2bv

2
e (where ve =

√
Te/me is the electron thermal

velocity and ωb = ω0−ωs, kb = k0−ks are the frequency
and wavenumber of the laser and scattered light’s beat

wave), we get:
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 sin(θ0)

√
1−ω2

pr/ω
2
s

1−ω2
pr/ω

2
0

(backscatter)√
1− ω2

pr/ω
2
s (side-scatter)

(1)

where θ0 is the laser incidence angle in vacuum. For
backscatter, the SRS exit angle is always smaller than θ0,
and approaches 0 when ne(zr)→ nc/4. Whereas for side-
scatter, it can take any value in [0, π/2] depending almost
exclusively on λs, with only a weak dependence on θ0 and
the electron temperature (the only dependence of θout
on the laser incidence angle is via kb in the Bohm-Gross
relation, and is typically negligible). The measurement
of θout vs. λs should thus provide a clear signature of
side-scatter, and in particular help clearly distinguish it
from backscatter.

Figure 2a shows the expected exit angle θout for side-
scatter as a function of wavelength for two electron tem-
peratures Te=3 and 5 keV, bracketing the ∼4 keV ±
20% measured in the experiments; these measurements
were performed via dot spectroscopy and by looking at
the spectral shift of the ω0/2 feature, and was consistent
with rad-hydro simulations [15]. This plot also shows ex-
perimental measurements of the Raman scattered light
wavelength at four collection angles θout=[59◦, 50◦, 30◦,
0◦]. The observed wavelengths show an excellent agree-
ment with the theoretical expectation for side-scatter;
the electron densities corresponding to the measured col-
lection angles range from 0.1 to 0.25nc.

In particular, figure 2c shows the time- and spectrally-
resolved SRS measurement at 50◦ (note that the ampli-
tude modulation at 3 GHz in the SRS signal corresponds
to FM/AM modulation in the laser, non-linearly ampli-
fied by SRS). For this experiment, the outer and inner
cones of beams were shot one after the other, as shown
in Fig. 2b; the target was horizontal in the target cham-
ber (no tilt). The wavelength of the SRS signal stayed
unchanged regardless of the incidence angle of the lasers,
which is another distinctive signature of side-scatter (Eq.
1). Note that in addition to the narrow-band signal at
2λ0, the normal incidence measurement also had a broad
feature at ∼600 nm, as seen in Ref. [15], whose origin is
still unexplained.

Next, we repeated the experiment at the 50◦ collection
angle (Figs. 2b-c) but with selected quads turned off in
order to help identify the origins of the SRS observed
in Q36B FABS; indeed, since the side-scatter exit an-
gle is essentially independent of the laser incidence, any
one (or multiple) beam(s) can potentially drive the ob-
served SRS. The results are shown in Fig. 2d, where four
quads (36B, 13B, 15B and 33B, highlighted in Fig. 1a)
were successively turned off. The SRS dropped signifi-
cantly when Q36B and Q33B were turned off, by ∼95%
and ∼50% respectively; whereas turning off the opposed
quad had comparatively little effect. This indicates that
most of the measured SRS signal at 50◦ is a single-quad
process, driven by the quad in the most opposite direc-
tion to the SRS which maximizes the side-scatter gain (as



3

FIG. 2. a) Expected exit angle for Raman side-scatter [Eq.
(1)] for two electron temperatures, Te= 3 and 5 keV (brack-
eting the ∼4 keV estimated temperature in the experiments),
and FABS measurements at four collection angles θout=[59◦,
50◦, 30◦, 0◦]. b) Laser pulse shape for collection at θout=
50◦ (in this case the target was horizontal, and the data
was collected in FABS 36B). c) SRS spectrum from the
50◦ collection angle with all quads turned on, showing the
same observed wavelength wether the outer cones (44.5◦ and
50◦ incidence) or inner cones (23.5◦ and 30◦ ) were shot. d)
Same as c) with selected quads turned off as indicated (the
selected quads are highlighted in Fig. 1a).

shown below). While recent work (Refs. [11, 13]) brought
attention to collective processes for Raman side-scatter
(where multiple lasers collectively drive a shared EPW or
scattered light wave), these observations show that the
instability can also exist as a single-quad process.

III. THEORY

The well-known “Rosenbluth gain” formula [14] is of-
ten used to evaluate the risk of LPI processes such as
SRS or TPD in a non-uniform plasma; however it is in-
valid near the turning point of the scattered light, as it
ignores refraction which will keep the propagation length
through the resonance region (and thus the gain) finite,
and makes use of an envelope or WKB assumption for
the scattered light, which breaks down at the turning
point. In the following we derive an expression for the
gain at the turning point, valid below the absolute in-
stability threshold. We still use a WKB model for the
scattered light, which will be justified later.

Developing the fluid response for the density perturba-
tion, (∂2t +ω2

p + 2ν∂t−3v2e∇2)δn = c2n0∇2(a0as), where

ν = νL+νeiω
2
b/ω

2
pe is the EPW damping (sum of the Lan-

dau and collisional dampings) and a0, as the laser and
scattered light’s potential vectors normalized to e/mec

2

(such that a0 ' 0.85×10−9
√
I[W/cm2]λ0[µm]2), we get,

assuming a forced response of the plasma to the beat
wave and an un-depleted laser: δn = 1

2k
2
bn0c

2a0a
∗
s/(D +

2iνωb), where D(kb, ωb) = ω2
b −ωp(z)2− 3kb(z)

2v2e (with
D = 0 at z = zr). The steady-state energy gain exponent
G for the SRS light can then be derived starting from the
light wave equation, giving:

G =

∫
S

k2b |a0|2ω2
p

4ks

2νωb

D2 + 4ν2ω2
b

ds, (2)

where the path integral is taken along the propagation of
the SRS light.

Away from the turning point, the integration con-
tour S can be approximated as a straight line, with
s = −z/ cos(θ) (cf. Fig 3a). We define s = 0 as the
location of the SRS resonance (i.e. D(0)=0, with D(s) =
ω2
b −ω2

pe(s)−3v2ek
2
b (s)), and Taylor-expand D(s) around

0, D(s) ' s∂sD(0). We get ∂sD(0) = ω2
pr cos(θ)/L,

and the integrand in Eq. (2) takes the usual form of
a Lorentzian, giving the following integrated gain (which
does not depend on the damping anymore):

G =
πk2b
4ks

a20L

cos(θ)
. (3)

By comparison, the Rosenbluth gain derivation consid-
ers three coupled plasma modes (two EM and one EPW)
in a density gradient, satisfying ω0 = ωs − ωL (where
ωL is the Langmuir wave frequency) and a wave-vector
dephasing κ(z) = k0(z)−ks(z)−kL(z); in the vicinity of
the resonant density where κ = 0, the Rosenbluth gain
is given by GR = 2πγ2/[κ′vszvLz], where vsz and vLz are
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the group velocities of the scattered light and EPW along
z, respectively, γ = kLcωpea0/4

√
ω0ωs is the SRS tem-

poral growth rate, and the prime denotes the derivative
along z. Noting that κ′vLz ' ωpr/2L, we can easily ver-
ify that the “strong damping” gain derivation from Eq.
(2) to Eq. (3) recovers the Rosenbluth gain formula.

The size of the resonance region can be estimated by
setting D = ±2νωb (FWHM of the Lorentzian), which
gives ∆z = 4νL/ωpr. The cos(θ) dependence is not ex-
plicit due to the definition of L, taken as the derivative
along z not s; taken along s, the length of the resonance
is thus ∆l = 4νL/[ωpr cos(θ)] (cf. Fig. 3a).

Near the turning point, the ray-tracing equations (ṙ =
vg, v̇g = 1

2c
2∇ω2

p/ω
2, where the dot denotes the time

derivative) give a parabolic trajectory for the SRS light:
x(t) ' vst and z(t) ' −c2ω2

prt
2/(4L2ω2

s) (as illustrated
in Fig. 3b). The gain integral can be parametrized with
respect to time; here we set t = 0 as the time when
the scattered light goes through resonance, i.e. D(t =
0) = 0. D needs to be expanded to the second order:

D(t) ' tḊ(0) + t2D̈/2, with Ḋ(0) = −3v2eω
2
prk0z/(Lωs)

(where k0z = k0(zr) ·z) and D̈(0) = ω4
prc

2/(2L2ω2
s). The

first order term comes from the increase in kb near the
turning point (due to the rotation of ks - as was noticed
in Ref. [7]), whereas the second-order term comes from
the decrease in density as the light moves away from its
turning point. In the limit of negligible EPW damping,
the SRS lights first moves out of resonance due to the
increase of k2b (since k̇2b ∝ t), which increases ω2

L(t) =
ω2
pe(t) + 3k2b (t)v2e away from ω2

b ; later, the decrease in

ω2
pe(t) (∝ t2) catches up and brings ωL down, back to ωb

at t1 = −2Ḋ(0)/D̈(0) when D(t1)=0. In other words,
the scattered light is in fact resonant twice, first at the
turning point and a second time slightly away from it.
The resulting gain, obtained from integrating Eq. (2), is:

G = 2GR(0)
ksc

2

3v2ek0z
, (4)

where GR(0) is the SRS Rosenbluth gain for normal in-
cidence. However, with EPW damping levels more typ-
ical of ICF conditions, the two resonances can overlap
and merge, and the quadratic term in the expansion of
D (∝ t2) dominates. The gain then takes the following
form, explicitly depending on the EPW damping:

G = GR(0)

√
ω2
s − ω2

pr

ω2
pr

√
ωpr

ν
, (5)

where the damping is evaluated at the turning point.
This expression, which assumes a parabolic trajec-

tory of a wave packet through a linear density gradient,
should in principle be equivalent to a straight propaga-
tion through a parabolic density profile (with the peak of
the spatial gain rate located at the vertex of the parabola
in either case); the latter situation was studied in Ref.
[19], and one can easily verify that their gain formula is
indeed equivalent to ours.

FIG. 3. a) SRS resonance away from the turning point, as
given by the Rosenbluth formula when refraction can be ne-
glected (1D problem); the length of the resonance region is
approximately ∆l along the path of the scattered light. b)
Tangential side-scatter geometry, where the resonance occurs
at the turning point; refraction moves the scattered light away
from the resonance and leads to a finite convective gain G,
and resonance region, defined by ∆z and ∆x. c) Side-scatter
gain [numerical solution from Eqs. (6)-(7)] vs. wavelength
and laser intensity for L=800 µm, Te=4 keV and θ0v=50◦;
the region of absolute instability is marked in white, and the
orange region corresponds to our experimental observations
(with intensities ranging from 2.2 to 1×1014 W/cm2 to ac-
count for the ∼50% laser absorption at higher densities). d)
Size of the resonance region ∆x and ∆z [Eqs. (8)-(9)], and
size of the NIF beams projected along the x-direction (dotted
line).

To verify the validity of this expression, we Fourier-
transform the fluid equations for the EPW and scattered
light wave’s wave equations with respect to z; this tech-
nique avoids using an envelope along z (i.e. using the
WKB approximation), which would break down at the
turning point of the scattered light. The coupled equa-
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tions are:

das(k)

dk
= −i L

ω2
pr

Dtas(k) + i
L

2
a0η, (6)

dη(k)

dk
= −i L

ω2
pr

Dlη(k) + i
Lk2bc

2

2ω2
pr

a∗0as(k), (7)

where η(k) = δn∗(k − k0z)/n0, Dt = ω2
s − (ω2

pr + k2sc
2)

and Dl = ω2
b−(ω2

pr+3k2bv
2
e +2iνωb). Recasting these two

equations into a single Schrödinger equation and finding
its eigenvalues is a well-known technique to derive analyt-
ical solutions for the absolute threshold of TPD and SRS
[10, 20–22]. Here we follow the technique used by Short
et al. for TPD [23], and perform a numerical integration
of the ODE’s, which allows us to recover the analytical re-
sults from Ref. [10] for the absolute threshold but also to
describe the convective regime of the instability – while
including the effects of EPW damping. The numerical
integration is performed between the input and output
vacuum-plasma boundaries for the scattered light, where
the Fourier variable must coincide with the vacuum k-
vector, i.e. kin = −kout =

√
(ωs/c)2 − k2sx. The bound-

ary conditions taken at kout (“output” for the scattered
light wave but “input” for η, per its definition above) are
as(kout) = 1, η(kout) = 0; the integration is performed
from k = kout to k = kin and the convective gain is then
simply given by G = log(|as(kout)|2/|as(kin)|2) - the ab-
solute instability manifests itself by a divergent gain. We
have verified that the numerical integration gives very
similar results to Eq. (5) when the instability is below
its absolute threshold, which will be justified below when
analyzing the size of the resonance region.

The gain as a function of laser intensity and scattered
light wavelength, together with the absolute threshold
boundary, are plotted in Fig. 3c for the parameters from
the NIF experiments (L=800 µm, θ0=50◦, polarization
smoothing included by assuming that the p-polarized
laser wave drives the same EPW as the s-polarized com-
ponent, but with a lower coupling due to the angle be-
tween the two light waves’ electric fields). This shows
that the observed side-scatter signals for the lower den-
sities are largely below the absolute threshold. Likewise,
a similar calculation of the absolute threshold including
EPW damping for the conditions of Ref. [13] shows that
the single-quad intensity in these experiments was also
several orders of magnitude below the absolute thresh-
old. This is due to the EPW damping for typical ICF
conditions which pushes the absolute instability thresh-
old (as derived in Ref. [10]) to high laser intensities for
densities below ∼650 nm. The SRS side-scatter signals
observed in our experiments as well as those from Refs.
[13] should rather be interpreted using a convective gain
expression like the one we derived.

The physical size of the resonance region for tangential
side-scatter, as illustrated in Fig. 3b, is:

∆z = 2L
ν

ωpr
, (8)

∆x = 4L

√
2ν

ωpr

√
ω2
s − ω2

pr

ω2
pr

. (9)

This shows that side-scatter is unlikely to remain sig-
nificant for wavelengths below∼600 nm, not only because
the gain becomes too small but also because the ampli-
fication length along x becomes larger than the size of
the laser beams, meaning that the scattered light would
leave the laser beam envelope before reaching full am-
plification. This also explains why our gain formula,
based on WKB, gives similar results to the numerical
integration of Eqs. (7): indeed, the WKB solution
for a light wave’s electric field in a density gradient is
highly accurate up to a very narrow region at the turn-
ing point (the “Airy depth”, where an Airy function is
required to correctly describe the electric field’s transi-
tion to an evanescent mode past the turning point), of
order [Lλ2s/(4π

2)]1/3 ' 2 µm [6]. Figure 3d shows that
∆z, the width of the resonance region along z, is typically
much larger than the Airy depth, except for wavelengths
above 650 nm where the instability is absolute anyway:
the convective gain formula is thus appropriate as long
as one remains below the absolute threshold, as most of
the amplification occurs in a region where WKB remains
valid.

At higher wavelengths, the absolute instability might
locally deplete the laser, though the measured SRS might
not directly reveal this activity due to the strong reab-
sorption (the narrowness of ∆z for λs >600 nm means
that the amplification will be very spatially localized, so
reabsorption will be significant). For ICF experiments,
this means that side-scatter at wavelengths near nc/4
may not necessarily represent a significant coupling loss
(since the laser light has already been absorbed by the
time it reaches nc/4, e.g. by about 50% in our condi-
tions, and since the scattered light will be even more
strongly reabsorbed), but might still drive large EPWs
that can generate suprathermal electrons, which is a po-
tential concern for DD ICF in particular [15]. Whereas
at lower wavelengths, the smaller EPW velocity should
generate electrons at lower energies, but the coupling loss
might become more significant.

We can estimate the extension of these results to spher-
ical density profiles from DD implosions by comparing
the curvature of the scattered light at the turning point
to that of the (spherical) density profile. In DD implo-
sions, hydrodynamic scaling preserves the ratio ρn/L to
∼4, where ρn is the radius of curvature of the iso-density
surface at the electron densities most relevant to Raman
side-scatter (∼15-20%nc) and L the gradient scale-length
at these densities (whether for sub-scale experiments at
Omega or full-scale at NIF [24]). By comparison, the ra-
dius of curvature of a side-scattered ray near its turning
point (from the parabola equation derived previously) is
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ρs = 2L(1 − ω2
pr/ω

2
s)/(ω2

pr/ω
2
s). The ratio of the scat-

tered light curvature to the density profile curvature is
thus ρs/ρn ≈ 1

2 (1 − ω2
pr/ω

2
s)/(ω2

pr/ω
2
s). For the SRS

wavelengths of interest here (λs ≥ 600 nm), we have
ω2
pr/ω

2
s ≥0.5 and therefore ρs/ρn ≤ 0.5. This means that

refraction will move the scattered light out of resonance
before the curvature from the density profile does, and
Raman side-scatter should still be present in spherical
DD implosions at levels comparable to those observed in
these experiments.

IV. CONCLUSION AND DISCUSSION

In summary, we have demonstrated the presence of
Raman side-scatter in ICF experiments at full direct-
drive ignition scale, over a wide range of electron den-
sities spanning ∼0.1-0.25nc. The side-scatter process is
inconsistent with an absolute instability for lower den-
sities and should rather be treated as a convective in-
stability for which we provide a simple analytical gain
estimate, as well as an estimate for the size of the am-
plification region. While side-scatter is likely limited to
densities near nc/4 for small-scale experiments, the com-
bination of large density scale-lengths, large laser spot
sizes, and high electron temperatures (leading to higher
EPW damping) can lead to the presence of side-scatter
at lower densities in the convective regime, as observed
in several recent experiments at the NIF.

Regarding the potential impact of Raman side-scatter
on ICF experiments: first of all, for indirect-drive, with
the currently available suite of diagnostics, we have not
obtained any measurements pertaining to SRS that re-
quire or even suggest the presence of side-scatter in low-
gas-fill (.0.3 mg/cc) hohlraums. This is based on two

experimental observations: i) All SRS measured on NIF
has been consistent with backscatter, with all the energy
contained in a cone of divergence angle ∼2-3 times larger
than that of the incident quad (cf. typical examples in
Ref. [16]). No scattered light was observed outside these
cones, including from other backscatter diagnostics on
cones that did not generate Raman backscatter (the lower
detection threshold is a few Joules falling within a beam’s
aperture, which would correspond to less than ∼10 kJ if
extrapolated into 4π sr). ii) Energy conservation from
Manley-Rowe relations dictates that any significant laser
energy conversion into Raman side-scatter should be ac-
companied by a comparable energy conversion into hot
electrons. The apparent absence of hot electrons (�1%
of laser energy) in recent (2015 onward) experiments us-
ing low gas-fill hohlraums makes it unlikely that Raman
side-scatter is energetically significant in this low-gas-fill
hohlraum design space.

In contrast, for direct-drive ICF, Raman side-scatter
has been identified as one of the main mechanisms re-
sponsible for the generation of suprathermal electrons in
MJ-scale conditions[15]. While the inferred hot electron
preheat is in the acceptable range based on estimates
from rad-hydro simulations, it is close to significantly
affecting the fuel compressibility and, therefore, further
study is warranted.
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